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Abstract

The authors examine the evidence presented by Galí and Gertler (1999) and Galí, Gertler,

Lopez-Salido (2001, 2003) that the inflation dynamics in the United States can be well-desc

by the New Keynesian Phillips curve (NKPC). The authors address several important

econometrics issues that arise in estimating the NKPC model. Using the continuously upda

generalized method of moments (GMM) estimator proposed by Hansen, Heaton, and Yaro

(1996) and the three-step GMM estimator developed by Bonnal and Renault (2003), the au

find that the empirical evidence for the real marginal cost is rather weak. Specifically, result

sensitive to the instrument sets, normalization, estimators, sample period, and data revisio

JEL classification: C13, C52, E31
Bank classification: Inflation and prices; Econometric and statistical methods

Résumé

Les auteurs examinent les résultats de Galí et Gertler (1999) et de Galí, Gertler et Lopez-S

(2001 et 2003) selon lesquels la dynamique de l’inflation aux États-Unis est correctement d

par la nouvelle courbe de Phillips keynésienne. Ils considèrent différents problèmes

économétriques importants que soulève l’estimation de la nouvelle courbe de Phillips

keynésienne. À l’aide de l’estimateur « constamment actualisé » de la méthode des mome

généralisés (GMM) proposé par Hansen, Heaton et Yaron (1996) et de l’estimateur GMM e

trois étapes mis au point par Bonnal et Renault (2003), les auteurs montrent que le rôle du

marginal réel n’est pas bien étayé sur le plan empirique. En effet, les résultats sont sensibl

choix de l’ensemble d’instruments, de la méthode de normalisation, de l’estimateur et de la

période étudiée, de même qu’aux révisions des données.

Classification JEL : C13, C52, E31
Classification de la Banque : Inflation et prix; Méthodes économétriques et statistiques



1 Introduction

The short-run dynamics of in
ation and its cyclical interaction with real aggregates is an impor-

tant issue both in theory and in practice, especially for central banks in the conduct of monetary

policy. The recent experience that several countries have had with high levels of economic ac-

tivity and low in
ation casts doubt on the ability of the traditional Phillips curve to model

in
ation dynamics.

A recent class of dynamic stochastic general-equilibrium models integrates Keynesian fea-

tures, such as imperfect competition and nominal rigidities, allowing new perspectives on in-


ation dynamics. These models are grounded in an optimizing framework, where imperfectly

competitive �rms are constrained by costly price adjustments. Within this framework, the pro-

cess of in
ation is described by the so-called New Keynesian Phillips curve (NKPC), which has

two distinguishing features: (i) the in
ation process has a forward-looking component, and (ii) it

is related to real marginal costs. Compared with traditional reduced-form Phillips curves, which

are subject to the Lucas critique, the NKPC is a structural model with parameters that do

not vary as policy regimes change. This aspect is particularly important and has been outlined

in a number of papers: parameter instability in reduced-form models is likely. Furthermore,

the NKPC speci�cation has dramatic implications for the conduct of monetary policy in that,

for example, a fully credible central bank can bring about disin
ation at no recessionary cost

if in
ation is a purely forward-looking phenomenon. A crucial issue, therefore, is whether the

NKPC is empirically relevant.

Work by Gal�� and Gertler (1999, henceforth GG) and Gal��, Gertler, and Lopez-Salido (2001,

2003, henceforth GGLS) provides evidence that the in
ation dynamics in the United States (and

the euro area) can be well-described by the NKPC. Their results suggest that: (i) the hybrid

speci�cation of the NKPC outperforms the purely forward-looking version of the NKPC (without

a lag of in
ation in the dynamics) over the period and the countries considered, (ii) the forward-

looking component is much more important than the backward-looking component, and (iii) the

real marginal cost variable is statistically signi�cant at the standard level and, in contrast to the

traditional output-gap measure, greatly improves the statistical �t of the in
ation dynamics. In

both studies, parameter estimates are obtained by the generalized method of moments (GMM)

and statistical signi�cance is based on Newey-West estimates of the covariance matrix (with a

�xed bandwith).

In the literature, several econometric issues have been raised regarding the empirical rele-

vance of the results obtained by GG and GGLS. The common criticisms of the NKPC include:

(i) whether it actually captures in
ation persistence (Fuhrer 1997; Fuhrer and Moore 1995),

(ii) the plausibility of its implied dynamics (Mankiw and Reis 2002), and (iii) its estimation

methodology. We focus on the third issue, about which di�erent econometrics concerns have

already been expressed. For instance, Rudd and Whelan (2001, 2003) and Lind�e (2001) suggest

that GG and GGLS's results may be the product of speci�cation bias associated with the GMM

estimation procedure. Mavroeidis (2001) discusses identi�cation issues in the case of single-

equation formulations like the NKPC. Indeed, the properties of the non-modelled variables are

1



important for the identi�cation process. In empirical applications, identi�cation is achieved by

con�ning important explanatory variables to the instrument sets, and misspeci�cation results.

Nason and Smith (2004) argue that GMM estimates typically lead to parameters that are near-

identi�ed. Hence, higher-order dynamics in marginal cost or the output-gap are required for

identi�cation and testing. Ma (2002) also assesses the question of identi�cation and applies the

test of weak instruments developed by Stock and Wright (2000). Dufour, Khalaf, and Kichian

(2004) use exact tests and discuss the weak identi�cation and the optimal instruments in the

NKPC. Another important debate concerns maximum likelihood (ML) versus GMM estimates

of the hybrid NKPC (Jondeau and Le Bihan 2003; Kurmann 2002).

In this paper, we re-examine the empirical relevance of the NKPC for the United States, fo-

cusing on three problems that emerge from the estimation strategy adopted by GG and GGLS.

First, as is well known, the usual two-step GMM estimator (henceforth, 2S-GMM) has ques-

tionable �nite sample properties.1 Given the relatively large number of moment conditions, the

estimates reported in GG and GGLS are potentially biased. For instance, Guay, Luger, and

Zhu (2004) show that standard GMM estimates of the NKPC in Canada are sensitive to the

number of instrumental variables. On the other hand, the bias of the usual 2S-GMM estimator

has been well-documented in the independent, identically distributed (i.i.d.) case by Newey and

Smith (2004). Using higher-order asymptotic expansions for members of a class of generalized

empirical likelihood estimators, they show that this bias grows with the number of moment con-

ditions. This may be the case in GG and to some extent in GGLS, since they use an arbitrary

number of instruments.

Second, the 2S-GMM procedure su�ers from a lack of invariance to transformations of the

original moment conditions. As GG and GGLS report, the results obtained for the NKPC and

the hybrid version depend on the normalization adopted for the GMM estimation procedure. In

this respect, results based on a GMM estimator invariant to normalization may help distinguish

between the two speci�cations and may illustrate the robustness of the NKPC's estimates.

Third, as shown by several studies, the small-sample properties of method-of-moments esti-

mators depend crucially on the number of lags used in the computation of the variance-covariance

matrix. There is no a priori reason to use, as GG and GGLS do, a �xed window (12 lags) to

compute the optimal weighting matrix. Moreover, the power of the overidentifying restrictions

depends critically on this weighting matrix. For instance, the standard J-test may lead to no

rejection of the speci�cation, although the NKPC (forward looking or hybrid) is misspeci�ed.

Consequently, all these issues are pertinent to a discussion of the three conclusions by GG and

GGLS: (i) the reduced-form coeÆcient on real marginal cost is positive and statistically signi�-

cant, (ii) overidenti�cation tests reject the pure forward-looking speci�cation of the NKPC and

accept the hybrid form, and (iii) the forward-looking component of price in
ation is dominant.

Our estimation strategy di�ers from GG, GGLS, and other 2S-GMM-related studies of the

NKPC in three important ways. First, the small-sample bias is addressed by using the contin-

uously updated GMM estimator (CUE) developed by Hansen, Heaton, and Yaron (1996) and

1See the special issue of Journal of Business and Economic Statistics (1996) volume 14.
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the three-step GMM (3S-GMM) estimator proposed by Bonnal and Renault (2001, 2003). To

our knowledge, this is the �rst empirical study to apply the 3S-GMM estimator. Both estima-

tors have better �nite sample properties than the standard 2S-GMM estimator in Monte Carlo

simulations. Second, the CUE allows us to distinguish between the two speci�cations proposed

by GG and GGLS, since it is robust to normalization. Third, we compute an automatic lag-

selection procedure proposed by Newey and West (1994), and therefore we do not rely on an

arbitrary truncation lag of the bandwith.2 Our estimator of the variance-covariance matrix also

uses the sample moments in mean deviation to improve the low power of the standard J-test

as suggested by Hall (2000). Hence, we address the issues raised by Dotsey (2002), who �nds

that the conventional speci�cation test used in GG lacks power. The empirical relevance of

the NKPC is also addressed by reconsidering the measurement of the real marginal cost and,

speci�cally, how robust it is to data revisions.

Our estimation strategy leads to the following conclusions. First, our results show that

the forward-looking component of the NKPC is dominant regardless of the estimator that we

use. Second, the J-test suggested by Hall rejects the purely forward-looking speci�cation of

the NKPC curve and generally accepts the hybrid form. The results, however, depend on

the normalization of the NKPC and the instrument sets chosen. Third, the CUE, which is

invariant to the normalization, allows us to distinguish between the con
icting results regarding

the normalization retained. Fourth, the empirical evidence for the real marginal cost is rather

mixed, and is particularly sensitive to the well-known problem of the choice of instrument set.

In e�ect, there exists some empirical support for the original dataset used by GG and GGLS.

In contrast to those studies, the output-gap variable must not belong to the information set.

Nevertheless, the real marginal cost is no longer signi�cant when we consider revised data or an

updated version of the dataset. Our conclusions are robust to the de�nition of the real marginal

cost and the inclusion of additional lags of in
ation.

The rest of this paper is organized as follows. In section 2, we present the theoretical

framework that yields the NKPC. In section 3, we describe the econometrics issues associated

with standard GMM estimation, and present our estimation strategy based on the CUE and the

3S-GMM estimator developed by Bonnal and Renault (2001, 2003). In section 4, we present the

estimation results. A discussion of the main �ndings follows in section 5. Section 6 concludes.

2 The New Keynesian Phillips Curves

2.1 Speci�cations

The NKPC, as advocated by GG, is based on a model of price-setting by monopolistically

competitive �rms. Following Calvo (1983), each �rm, in any given period, may reset its price

with a �xed probability of 1 � � and, with probability �, its price will be kept unchanged

2We also use the method proposed by West (1997). Our main conclusions remain unchanged.
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or proportional to trend in
ation, 
.3 These adjustment probabilities are independent of the

�rm's price history such that the proportion of �rms that may adjust their price in each period

is randomly selected. The average time over which a price is �xed is given by 1=(1 � �). The

�rms face a common subjective discount factor, �:

Let mct be (log) real marginal cost. The NKPC (Woodford 2003) is then given by:

�t =
(1� �)(1� ��)

� � ���
mct + �Et�t+1; (1)

where � is the �rm's demand elasticities, � the elasticity of marginal cost, and Et�t+1 the

expectation of in
ation at time t + 1 with the information set at period t. Note that the

derivations in Yun (1996) and Goodfriend and King (1997) correspond to the particular case

where the elasticity of marginal cost with respect to output (�) is equal to zero.4

GG extend the basic Calvo model to allow a subset of �rms to use a backward-looking rule

of thumb to capture the inertia in in
ation. The net result is a hybrid Phillips curve that nests

(1). The corresponding hybrid version of the NKPC is then given as follows:

�t = �

�
1

(1� ��)

�
mct + 
fEt�t+1 + 
b�t�1;

where

� =

�
(1� !)(1� �)(1� ��)

�

�
��1;


f = ����1;


b = !��1;

� = � + ! [1� �(1� �)] ;

and ! is the proportion of �rms that use a backward-looking rule of thumb.

Note that the hybrid New Phillips curve for the aggregate assumption considered by Yun

(1996) and Goodfriend and King (1997) is derived in GG and the one based on the assumption

of Sbordone (2001) is derived in GGLS.

Three principal results emerge from the estimations of GG and GGLS: (i) the reduced-

form coeÆcient on real marginal cost, �; is positive and statistically signi�cant; (ii) tests reject

the pure forward-looking speci�cation of the NKPC; and (iii) the forward-looking behaviour is

dominant and the coeÆcients 
f and 
b sum close to unity across a range of estimates. GG

and GGLS interpret these results as evidence in support of the robustness of the NKPC for the

United States (and the euro area).

3This adjustment is necessary if there is trend in
ation, to preserve monetary neutrality in the aggregate.
4Indeed, the hypothesis that individual �rms can instantaneously adjust their own capital stocks implies that

�rms act as price-takers in the input market. Combined with the assumption of a constant-returns-to-scale
technology, real marginal cost is thus independent of output.
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2.2 Measure of marginal cost

Alternative measures of the marginal cost have been considered in empirical investigations of

the NKPC. We consider the simplest measure of real marginal cost based on the assumption of

Cobb-Douglas technology (see GG 1999)5:

Yt = K�
t (AtHt)

(1��)
;

where Kt is the capital stock, At is labour-augmenting technology, and Ht is hours worked.

Real marginal cost is then given by St=(1��), where St =WtHt=PtYt is the labour income

share, Wt the nominal wage, and Pt the price level. In log-linear deviation from the steady

state, one obtains:

mct = st = wt + ht � pt � yt:

The de�nition of the marginal cost may be a critical issue in the estimation of the NKPC.

The standard approximation of the real marginal cost by real unit labour cost arises solely under

the assumption of a constant-returns-to-scale production function (Rotemberg and Woodford

1999). Under more realistic assumptions, the real unit labour cost needs to be corrected. For

instance, Rotemberg and Woodford (1999) discuss possible appropriate corrections for di�erent

assumptions regarding technology. These include corrections to capture a non-constant elastic-

ity of factor substitution between capital and labour and the presence of overhead costs and

labour adjustment costs. Gagnon and Khan (2004) derive the NKPC when �rms use alternative

production functions, and show that each technology introduces a speci�c \strategic comple-

mentarity parameter" and a modi�cation to the real marginal cost measure. Eichenbaum and

Fisher (2003) modify the real marginal cost by allowing the �rms that require working capital

to �nance payments to variable factors of production. Overall, these studies argue that these

corrections do not a�ect the qualitative nature of the results discussed below.

The real marginal cost is a latent variable (e.g., unobservable) and is thus sensitive to both

its de�nition (as well as the underlying assumptions of the model considered|it is model-

dependent) and the data revisions. The latter issue has not yet been discussed in the literature.

It is similar, however, to the standard problems encountered for the measurement of the output

gap or the time-varying non-accelerating-in
ation rate of unemployment (see Orphanides 2001).

This issue is discussed in more detail in section 4.

5We discuss this issue further in sections 4 and 5.
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3 Estimation Issues

3.1 Standard GMM approach

GG and GGLS use the standard 2S-GMM estimator developed by Hansen (1982) to estimate

the NKPC. The optimal 2S-GMM estimator, based on the moment conditions

E [g(zt; �0)] = 0; (2)

is de�ned as b�2 = argmin
�2B

1

T

TX
t=1

g(zt; �)
0
̂(b�1)�1 1

T

TX
t=1

g(zt; �);

where b�1 is a �rst-step estimator, usually obtained with the identity matrix as a weighting

matrix, and 
̂�1 is a consistent estimator of the inverse of the variance-covariance matrix of the

moments conditions.6

Let us now consider the methodology of GG and GGLS. In the case of the hybrid model,

the reduced form can be written as

�t = 
f�t+1 + 
b�t�1 + �mct + "t+1; (3)

where "t+1 is an expectational error term orthogonal to the information set in period t.

The corresponding moment conditions are

Et [(�t � 
f�t+1 � 
b�t�1 � �mct)Zt] = 0; (4)

where Zt is a vector of instruments dated t and earlier.

The orthogonality condition in (4) forms the basis for estimating the model using the GMM.

GG use the following instrument set: four lags each of in
ation, the labour income share, the

output gap,7 the long-short interest rate spread, wage in
ation, and commodity price in
ation.

GGLS choose a smaller number of lags for instruments other than in
ation, in order to minimize

the potential estimation bias that arises in small samples due to the number of overidentifying

restrictions. Their instrument set reduces to four lags of in
ation, and two lags each of the

output gap, wage in
ation, and the labour income share.8 In both GG and GGLS, the variance-

6In other words, a 2S-GMM estimator, b�2; is characterized by the �rst-order conditions:"
1

T

TX
t=1

@g0

@�
(zt; b�2)# 
̂(b�1) 1

T

TX
t=1

g(zt; b�2) = 0;

where b�1 is a preliminary consistent estimator for �0. These �rst-order conditions are called identifying
restrictions.

7Typically, the output gap is obtained by applying the Hodrick-Prescott �lter or by �tting a quadratic trend
to the entire sample.

8A number of studies have also estimated the NKPC in countries other than the United States, applying
equally arbitrary choices for the instrument set and the number of lags used in the construction of the Newey-
West standard errors. See, for example, Banerjee and Batini (2004), Batini, Jackson, and Nickell (2002), and
Balakrishnan and Lopez-Salido (2002).
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covariance matrix used to obtain standard errors for the model parameters is estimated with a

�xed bandwith in which the truncation lag is 12.

3.2 Estimation strategy

Our estimation strategy di�ers in three important ways from other empirical studies of the

NKPC. First, an automatic lag-selection procedure proposed by Newey and West (1994) is

adopted to compute estimates of the variance-covariance matrix of the moment conditions.

Second, our estimator of the variance-covariance matrix uses the sample moments in mean

deviation to increase the power of the overidentifying restrictions test, as suggested by Hall

(2000) and Bonnal and Renault (2001, 2003). A more powerful speci�cation test is clearly

desirable, because it addresses the issues raised by Dotsey (2002), who �nds that the conventional

speci�cation test used by GG (1999) lacks power. Third, two alternative estimators are used for

the nonlinear speci�cation: the CUE and the 3S-GMM estimator. According to the higher-order

asymptotic expansions derived by Newey and Smith (2004), the empirical likelihood estimator

(ELE) a�ords a minimal higher-order estimation bias. The ELE, however, is computionally

demanding. For this reason, we perform these two alternative estimation methods. The CUE

has the advantage that it does not depend on the normalization of the moment conditions, in

contrast to the conventional 2S-GMM estimator (invariance principle), whereas the 3S-GMM

estimator is less sensitive than the CUE to initial conditions. Moreover, these estimators seem

to perform better in a �nite sample than the 2S-GMM.

The CUE is analogous to the 2S-GMM estimator, except that the objective function is

simultaneously minimized over � and 
̂(�). In other words, the empirical variance-covariance

matrix of moment conditions replaces the �xed metrics of the GMM, in which a norm of empirical

moments is minimized. This estimator is given by

�̂ = argmin
�2B

1

T

TX
t=1

g(zt; �)
0
̂(�)�1

1

T

TX
t=1

g(zt; �):

The solution of the minimization problem is numerically equivalent with the optimal weighting

matrix in mean deviation or not, in the i.i.d. case (see Newey and Smith 2004; Bonnal and

Renault 2003). This property is generally true in the autocorrelated case for an estimator of the

covariance matrix that has the same bandwidth.9

The CUE has important advantages over the conventional 2S-GMM estimator. First, unlike

the 2S-GMM estimator, the CUE does not depend on the normalization of the moment condi-

tions. Second, in contrast to the 2S-GMM estimator, Newey and Smith (2004) show for the i.i.d.

9The results will not be systematically identical for the CUE, regardless of whether the variance-covariance
matrix is calculated in mean deviation. As mentioned before, the solution of the objective function for CUE
is numerically equivalent only for the same lag selection necessary to compute the covariance. In fact, there is
no guarantee that the automatic lag-selection procedure will select the same number of lags for the covariance
matrix whether or not it is calculated in deviation. In particular, if the model is misspeci�ed, the number of lags
selected will di�er.
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case that the asymptotic bias of the CUE does not increase with the number of overidentifying

restrictions. In addition, they demonstrate that the CUE has the same minimal higher-order

bias as the ELE if the third moments are null. In fact, the CUE uses the relevant constrained

estimator of the Jacobian matrix by taking into account implied probabilities (de�ned below).

It has, however, the drawback of using an unconstrained estimator of the weighting matrix.10

Two advantages the CUE has over the ELE are that it is less time-consuming and it is not

obtained through a saddle-point problem, which grows with the number of moment conditions.

In contrast, the dimension of the optimization problem for the CUE is equal to the number of

moment conditions. Also, the CUE may be sensitive to initial conditions. Furthermore, Hansen,

Heaton, and Yaron (1996) show that, in small samples, the CUE has the smallest bias among

the instrumental variable (IV) estimators when one estimates standard asset-pricing models.

On the other hand, the 3S-GMM estimator has the two interesting properties of being eÆ-

cient with minimal asymptotic higher-order bias, like the ELE, and preserving the user-friendly

features of least squares. Unlike the standard 2S-GMM estimator, it uses all the information

contained in the moments conditions (4) to estimate �0. In e�ect, the 3S-GMM estimator makes

implicit use of the overidentifying restrictions to improve the estimation of the optimal selection

of estimating equations. The 2S-GMM estimator and the CUE, in contrast, do not use vari-

ance reduction. The poor �nite sample performance of the 2S-GMM estimator can therefore

be explained by the fact that only the information in the just-identi�ed moment conditions is

used. Nevertheless, as Back and Brown (1993) point out, the remaining moment conditions

can be used to improve the estimation of the data distribution by considering the empirical

distribution of the moment conditions. In other words, moment conditions and the proximity

between the estimated distribution and the empirical distribution are exploited, as in one-step

alternatives. In this respect, the 3S-GMM estimator avoids the saddle-point problem and the

numerical procedure's initialization problem, while possessing the optimal-bias property. In ad-

dition, the computational implementation is less burdensome and requires only three quadratic

optimization steps.

To describe the estimator, we �rst introduce the concept of implied probabilities in GMM

estimators (Back and Brown 1993). The implied probabilities are the constrained probabilities

such that the moment conditions are respected at the GMM estimator, b�. Thus,
TX
t=1

pt(b�)g(zt; b�) = 0:

The unconstrained empirical probabilities used in the standard GMM are given by the empirical

frequencies, 1
T .

We next describe the 3S-GMM estimator for the i.i.d. case. Let e� be an estimator asymp-

totically equivalent to the optimal 2S-GMM estimator, b�2. The implied probabilities that cor-

10These two estimators can be included in a general class based on the family of Cressie-Read power-divergence
statistics (Baggerly 1998). The exponential tilting estimator also belongs to this class. Newey and Smith (2004)
use the concept of \generalized empirical likelihood" estimators.
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respond to this optimal GMM estimator are de�ned as follows:

pt

�e�� = 1

T
�

1

T
gT (

e�)
̂T (e�)�1 hg(zt; e�)� gT (
e�)i ;

where gT (
e�) = 1

T

PT
t=1 g(zt;

e�) (see Back and Brown 1993; Bonnal and Renault 2001, 2003).

The 3S-GMM estimator, b�3, is de�ned as the solution of the following equation:"
TX
t=1

pt

�e�� @g0
@�

(zt; e�)#0 " TX
t=1

pt

�e�� g(zt; e�)g0(zt; e�)# 1

T

TX
t=1

g(zt;c�3) = 0:

Therefore, to obtain the 3S-GMM estimator, the implied probabilities are used to estimate the

Jacobian and variance-covariance matrices.

The de�nition of the 3S-GMM estimator extends to the autocorrelated case, where an

autocorrelation-consistent covariance matrix is used to construct the estimator. In this case,b�3 solves the following equations:"
TX
t=1

pt

�e�� @g0
@�

(zt; e�)# hb
t(e�)i�1 1

T

TX
t=1

g(zt; b�3) = 0;

where b
t(e�) = TX
t=1

pt

�e�� g(zt; e�)g0(zt; e�) + 2
KX
k=1

wkKg(zt; e�)g0(zt�k; e�)! ;

and wkK are weights to make the autocorrelation-consistent estimator of the covariance matrix

positive semi-de�nite (see Andrews and Monahan 1992; Newey and West 1994).

The implied probabilities are given by:

pt

�e�� = 1

T
�

1

T
gT (

e�)e
T (e�)�1 hg�(zt; e�)� gT (
e�)i ;

where

g�(zt; e�) = KX
j=�K

0@ X
h;l;l�h=j

�(h)�(l)

1A g(zt; e�);
and �(�) is a 
at kernel such that

�(h) =
1

2K + 1
; h = �K; : : : ;+K:

Bonnal and Renault (2001) show the tight relationship between the weighting matrix for GMM

and the relevant weights, �(�), on the implied probability distributions. In particular, the 
at

weighting of �(�) implies the usual Newey and West estimator of the long-run covariance matrix.

Consequently, the parameter K is chosen according to the data-dependent procedure proposed

by Newey and West (1994).

The 3S-GMM, with its use of a chi-square metric, has the advantage of giving closed-form

solutions for implied probabilities. One potential problem with this estimator is that implied
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probabilities might be unde�ned (e.g., not positive) in �nite samples. Nevertheless, Bonnal

and Renault (2003) show that these probabilities are asymptotically positive and that signed

measures can be used to guarantee the best �t of the estimated distribution to the theoretical

moments. They propose estimating the implied probabilities as an optimally weighted average

of the standard 2S-GMM's implied probabilities (1=T ) and the computed implied probabilities

(pt(�)). This method, known as the shrinkage procedure, allows a non-zero weight to be put on

the 2S-GMM implied probabilities when some of the implied probabilities (pt(�)) are zero.
11

4 Results for the United States

In this section, we report the results for the pure forward-looking NKPC and the hybrid NKPC

using the original dataset of GG (1960Q1-1997Q4), a revised dataset, and an updated dataset

(1960Q1-2001Q3).12 As a �rst step, we use the same instrument sets as GG and GGLS, before

considering alternative instrument sets in a robustness analysis. We address the issues of the

number of instruments and the choice of instruments.

4.1 Estimates of the baseline model

We �rst present estimates of the NKPC (1), given by:

�t = ��mct + �Et�t+1;

where � = 1=(1� ��) and � = (1��)(1���)
� .

If one follows Yun (1996) and Goodfriend and King (1997), then � = 1; following Sbordone

(2001) and GGLS (2001), � = 0:12.13

One econometrics issue in small samples with nonlinear estimation using the 2S-GMM or the

3S-GMM estimator is the way the orthogonality conditions are normalized. In this paper, two

alternative speci�cations of the orthogonality conditions are estimated. The �rst speci�cation

takes the following form:

Et [(��t � (1� �)(1� ��)�mct � ���t+1)Zt] = 0;

and the second is given by

Et

�
(�t � ��1 (1� �)(1� ��)�mct � ��t+1)Zt

�
= 0:

Before estimating both speci�cations, two important issues need to be considered. First, we

check for weakness of instruments by performing an F-test on the �rst-stage regression. Staiger

11Bonnal and Renault (2003) show that the shrinkage procedure may improve the �nite sample properties.
12The sample period of the updated dataset does not include the most recent data, to avoid taking account of

the last revisions of the real marginal cost, which appear to be large at the end-of-sample.
13Results are robust to alternative values of �. They are not reported here, but are available on request.
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and Stock (1997) point out that this statistic is of concern because conventional asymptotic

results may break down under a weak correlation between the instruments and the endogenous

regressor. In our estimated equations, there is no evidence of a weak correlation between the

instruments and the endogenous regressor. Second, Nason and Smith (2004) discuss two fun-

damental sources of non-identi�cation in the NKPC: weak, higher-order dynamics and superior

information. They suggest a pretest in each case: a test of the lag length for the forcing variable

(the real marginal cost) and a test of Granger causality. Applying these tests, we �nd evidence

that the real marginal cost Granger causes in
ation, but that in
ation does not Granger cause

the real marginal cost. This �nding con�rms earlier evidence of Nason and Smith (2004). More-

over, using standard information criteria, we �nd a lag length of order up to one for the real

marginal cost. Overall, these results suggest that a backward-looking component of the Phillips

curve may be necessary.

Tables 1a and b report the results for each speci�cation when a 12-lags Newey-West esti-

mate of the covariance matrix is used.14 The �rst four columns show the probability, �, the

discount factor estimate, �, the reduced-form slope coeÆcient on real marginal cost, �; and the

corresponding duration, D. The �nal column shows Hansen's J-statistic of the overidentifying

restrictions, together with the associated p-values. First, the GMM estimates of the slope co-

eÆcient on marginal cost depend on the normalization. Overall, the coeÆcient is statistically

signi�cant for both instrument sets and both speci�cations.15 This evidence is also supported

in the case of the 3S-GMM estimator. The evidence with the CUE, however, which is robust to

normalization, is mixed. The coeÆcient on the real marginal cost, �; is signi�cant with GGLS's

instrument set, but not with GG's instrument set.16 Second, the overidentifying restrictions

test is far from rejecting the NKPC speci�cation.

Table 2 reports the results of applying the automatic lag-selection procedure of Newey and

West (1994), and Hall's (2000) mean deviation correction. For both normalizations, the 2S-

GMM, CUE, and 3S-GMM estimates of the real marginal cost are signi�cant for almost all

cases at standard level. The estimates of � are, in general, lower with the 3S-GMM than with

the 2S-GMM, but this di�erence is not signi�cant. Other things being equal, the estimates

obtained with the CUE are closer to those obtained with the 2S-GMM and 3S-GMM estimators

for the second speci�cation. This may suggest that the empirical evidence for the real marginal

cost is weak, since the second speci�cation yields more mixed results for this variable. However,

the overidentifying restrictions are rejected for GG's instrument set when the estimator of the

variance-covariance matrix is calculated with the sample moments in mean deviation. It is also

the case for GGLS's instrument set with the GMM and the �rst speci�cation.17

Overall, these results suggest that the empirical evidence for the pure forward-looking NKPC

14The results reported are not directly comparable with GG (1999) and GGLS (2001), but the same conclusions
hold. Tables 1 and 2 in GG (1999) report estimation results for � = 1, whereas we report results for � = 0:12;
and GGLS (2001) do not use the same sample period.
15GG (1999) and GGLS (2001) describe the same result.
16The non-rejection of the null hypothesis H0 : � = 0 leads to an identi�cation problem. Speci�cally, the

reduced form can still be estimated. The structural parameters, however, cannot be retrieved from this reduced
form if the null hypothesis is not rejected. For a complete discussion on identi�cation, see Mavroeidis (2001).
17These results are robust to di�erent sample periods and di�erent values of {.
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is mixed. Speci�cally, Hall's (2000) mean deviation correction suggests that the model is mis-

speci�ed and that richer dynamics are necessary to capture the persistence of U.S. in
ation.

4.2 Estimates of the hybrid model

In this section, we present estimates of the reduced-form parameters and the structural param-

eters for the hybrid version. Two speci�cations (normalizations) are also considered:

Et [(��t � (1� !) (1� �)(1� ��)�mct � ���t+1 � !�t�1)Zt] = 0;

and

Et

�
(�t � ��1(1� !)

�
1� �)(1� ��)�mct � ��1���t+1 � ��1!�t�1

�
Zt
�
= 0:

Tables 3 and 4 report results obtained by setting � = 0:12 for each speci�cation. The �rst

three columns give the estimated structural parameters. The next three give the implied values

of the reduced-form coeÆcients. Also reported are the average price duration, D (in quarters),

corresponding to the estimate of �, and Hansen's J-test for overidentifying restrictions.

According to GGLS's results, there is evidence of a statistically signi�cant real marginal

cost with the �rst speci�cation, but not with the second speci�cation, when a 12-lag Newey-

West estimate of the variance-covariance matrix is used for the conventional 2S-GMM estimator.

Results are similar for the 3S-GMM estimator. At the same time, the real marginal cost is no

longer signi�cant in the case of the CUE, and the estimate of � is close to that obtained for the

second speci�cation with the 2S-GMM and 3S-GMM estimators.

When we use Hall's mean deviation correction, however, the validity of instruments is rejected

more often; i.e., the overidentifying restrictions are rejected with GGLS's instrument set for both

the 2S-GMM estimator and the CUE.18 Interestingly, the real marginal cost is signi�cant in the

case of the CUE, but the overidentifying test rejects the speci�cation with GGLS's instrument

set. As before, the real marginal cost is not signi�cant for the second speci�cation.

Our results therefore provide some evidence for the robustness of the hybrid NKPC. Never-

theless, they still depend on the chosen estimator and the instrument set. The empirical evidence

is rather weak when the second speci�cation is used to estimate the structural and reduced-form

parameters. This is consistent with the results of GGLS, but for a di�erent sample period.

The hybrid speci�cation is rejected when the optimal weighting matrix is calculated in mean

deviation.

Three other parameters are of interest: the degree of price stickiness, �, the degree of \back-

wardness" in price-setting, !; and the discount factor, �. Regarding �, we �nd lower estimates

than GG and GGLS. For example, depending on the estimator, the parameter � is estimated

18If the hybrid Phillips curve is well-speci�ed, the error term should be serially uncorrelated and should have
a moving-average (MA) representation. More precisely, the disturbance will follow an MA process of order one.
The automatic lag-selection procedure of Newey and West (1994), however, suggests that the dynamics of the
disturbance is characterized by higher-order MA representation. This may suggest that the NKPC is misspeci�ed.
Therefore, to some extent, our results di�er from those obtained with the long-run covariance matrix estimator
proposed by West (1997), unless we specify the same order.
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to imply prices that are �xed for 2 to 3 quarters, on average. This result is robust across the

di�erent estimators. It is also fairly consistent with survey evidence that suggests 3 to 4 quar-

ters, on average (see Rotemberg and Woodford 1999). The parameter !, however, is estimated

to be around 0.3 to 0.6; i.e., the fraction of backward-looking price-setters is higher than the

estimates suggested by GG and GGLS.

Although the results suggest some imprecision in the estimate of the degree of backwardness,

one conclusion is robust across methods: in accounting for in
ation dynamics, the forward-

looking component is larger than the backward-looking component. In e�ect, the reduced-form

coeÆcients 
f and 
b are signi�cantly di�erent from zero whatever the estimation method and

set of instruments used. Therefore, the pure forward-looking model is rejected by the data. At

the same time, the quantitative importance of the backward-looking component for in
ation

dynamics is not negligible, even if the forward-looking component remains dominant in the

dynamics of in
ation. Furthermore, as in GG and GGLS, we �nd similar values for the discount

factor. Speci�cally, the estimate of � is reasonably similar across the two normalizations and

the di�erent estimators.

Overall, using the same data set as GG (1999), our results show that (i) the forward-looking

behaviour is dominant, (ii) the duration is of the same order for the di�erent estimators and

prices are �xed for approximately 2 to 3 quarters, (iii) the empirical evidence for the real

marginal cost is mixed, i.e., it depends on the normalization (for the 2S-GMM and the 3S-

GMM estimators), and (iv) tests reject for several cases the hybrid speci�cation of the NKPC

when the mean deviation correction is applied. Because the normalization matters for the

empirical evidence of the real marginal cost, the results obtained with the CUE cast doubt on

the importance of the real marginal cost in explaining in
ation. In this respect, the next step

is to examine whether these results are robust and to what extent we can explain the mixed

evidence regarding the real marginal cost.

4.3 Robustness of the results

To further assess the reliability of our previous results and, more generally, the robustness of

the results in the literature, we consider the following issues in estimating the NKPC model:

the choice of instruments, the revision of the dataset, and the updating of the dataset.

4.3.1 The choice of instruments

As noted earlier, one important issue is the number of instruments used to estimate the NKPC.

The choice of instruments is of particular concern. Hall and Peixe (2003) argue that it is de-

sirable for the chosen instrument set to satisfy certain properties: orthogonality, identi�cation,

eÆciency, and non-redundancy. For instance, their Monte Carlo simulations report that the

inclusion of redundant instruments leads to deterioration in the �nite sample performances of

the 2S-GMM estimator. In addition, it is important that the statistical properties of the instru-

ments not contaminate the limiting distribution of the parameter estimator. In this respect, we

depart from earlier studies by excluding output-gap measures from the instrument sets. Two
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measures of the output-gap are usually retained as instruments. One is based on quadrati-

cally detrended output. With standard unit-root tests (such as the augmented Dickey-Fuller

test), the presence of a unit root in U.S. output cannot be rejected. Under the hypothesis of a

unit root, quadratically detrended output is also characterized by a unit root. Unfortunately,

the asymptotic properties of instrumental variable estimators are not known in the presence of

non-stationary instruments. As a result, the usual inference procedures are likely to be invalid.

The other measure of the output gap is based on the Hodrick-Prescott �lter. In this measure,

the output gap is a combination of lags, leads, and contemporaneous values of output. Such

measures of the output gap violate the basic GMM orthogonality conditions and are likely to

be correlated with the measurement error of the real marginal cost.

Therefore, we reconduct estimations with the following sets of instruments: [1] two lags of

in
ation and one lag of the real marginal cost (just-identi�ed case), [2] two lags of in
ation and

two lags of the real marginal cost, [3] four lags of in
ation and two lags of the real marginal

cost, [4] four lags of in
ation and the real marginal cost, [5] four lags of in
ation and the real

marginal cost and two lags of wage in
ation, and [6] four lags of in
ation, the real marginal

cost, and wage in
ation. Instruments dated t� 1 and earlier are also used to mitigate possible

correlation with the measurement error of the real marginal cost.

Tables 5a and b report the results for both normalizations in the case of the hybrid NKPC.

We adopt the data-dependent automatic selection procedure of Newey and West (1994), and

the J-statistic is based on Hall's mean deviation correction.

As expected, the results are similar for the three estimation methods and both normaliza-

tions in the just-identi�ed case. Interestingly, the results are more encouraging for the NKPC.

Speci�cally, for instrument sets [4], [5], and [6], the real marginal cost is signi�cant whatever

the estimation method and normalization. The empirical evidence, however, is found when the

number of instruments is relatively large. As before, the CUE values of � are close to the ones

obtained for the second speci�cation with the 2S-GMM and 3S-GMM estimators. The estimated

value of � for the �rst speci�cation is substantially lower with the 3S-GMM than with the 2S-

GMM estimator. Both speci�cations are not rejected by the overidentifying test, except in two

cases (at the 5 per cent level). The discount factor is estimated at more realistic higher values,

around 0.95 and 0.999, and the forward-looking parameter is more important. The estimates of

� give an average price duration around 2 quarters.

4.3.2 Revised and updated datasets

Figure 1 reports the real marginal cost in log deviation from its mean, calculated as the labour

share of non-farm business from the original database of GG and the revised real marginal cost

(labelled as mc1). One can easily see that the end-of-sample properties of the original series

and \mc1"are di�erent. The revisions of the output measure account for a large part of the

di�erences observed between these two variables. Therefore, to assess how sensitive the results

are to data revisions, we conduct estimations using the instrument sets of GG and GGLS and

the six instrument sets described in section 4.3.1. Our results are reported in Tables 6a and b
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for the instrument sets of GG and GGLS.

According to both normalizations, the real marginal cost is not signi�cant except for the

standard GMM and 3S-GMM estimators in the �rst speci�cation. In contrast to our results in

Tables 4a and b with GG's instrument set, we �nd that the real marginal cost is not signi�cant

for the estimation obtained using the CUE. Hence, the revisions of the real marginal cost cast

some doubts on the robustness of the NKPC.

Tables 7a and b report the results for alternative instrument sets [1] to [6]. The real marginal

cost is signi�cant for only one case: estimation with GMM for the �rst speci�cation with in-

strument set [6]. Remember that, with the original data, the real marginal cost is signi�cant

whatever the estimation methods and normalization for instrument sets [4], [5], and [6]. The data

revisions weaken the empirical evidence in favour of the NKPC, particularly for the estimation

with instrument sets [1] to [6].

Results with the sample size extended to 1960Q1{2001Q3 are provided in Tables 8a and b

for GG's instrument set, and in Tables 9a and b for instrument sets [1] to [6]. Results for GG's

instrument set are very close to the ones obtained with revised data; the real marginal cost is

signi�cant only with the 2S-GMM and 3S-GMM estimators in the case of the �rst speci�cation.

The real marginal cost is never signi�cant with the CUE and for the second normalization. In

the cases of alternative instrument sets [1] to [6], the real marginal cost is not signi�cant (at the

5 per cent level) whatever the normalization and estimation methods.

The empirical evidence for the real marginal cost is weak and depends critically on the

normalization and the instrument set. In fact, the real marginal cost is signi�cant only for the

instrument sets of GG and GGLS and the �rst speci�cation. Unfortunately, the estimator, which

is invariant to the adopted normalization, does not favour empirical evidence for the NKPC. In

all other cases, the real marginal cost is not signi�cant.

5 Discussion

In this section, we examine the issue of how sensitive the results are to the particular measure of

marginal cost that we used, and how informative additional lags of in
ation are in the NKPC.

We also test whether the starting date of the information set (i.e., the degree of predetermi-

nation of in
ation) matters for the dynamics of in
ation, as in Eichenbaum and Fisher (2003).

Our main conclusions are unchanged. Moreover, as Sbordone (2001) and Banerjee and Batini

(2004) show, our results are not speci�c to the particular model of staggered prices adopted

(Calvo's speci�cation), but also hold with �xed-length contracts introduced by Taylor (1980).

In addition, as Adam and Padula (2003) discuss, the in
ation-forecasting measure may be of

concern. Overall, using data from the Survey of Professional Forecasters does not improve the

statistical signi�cance of the real marginal cost in our sample. Detailed results are available on

request.
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5.1 The de�nition of real marginal cost

As we noted earlier, our results may depend on the calculation of the real marginal cost. For

instance, Rotemberg and Woodford (1999), Gagnon and Khan (2004), and Sbordone (2001)

suggest (i) a Cobb-Douglas technology with overhead labour costs, or (ii) a speci�cation with

adjustment costs for labour.19 In both cases, the marginal cost is no longer proportional to the

average labour cost, since there is, respectively, (i) a \productivity bias" and (ii) a \real wage

bias."

In the �rst case, when �rms face adjustment costs for increasing hours of work, of the form
�
2 (Ht �Ht�1)

2
, the real marginal cost can be de�ned as follows (in logarithm):

mct = st + �H

�
H

(1� �)Y

�
�Ht � ��

�
H

(1� �)Y

�
Et�Ht+1:

The parameter � was never signi�cant across estimation methods. Therefore, we calibrate

this parameter following the estimates reported by Ambler, Guay, and Phaneuf (2003), and by

conducting a sensitivity analysis. Increasing the size of the adjustment costs, however, does

not lead to signi�cant changes in our estimates; we obtain a slightly higher degree of nominal

rigidity (see Sbordone 2001). Overall, we �nd only weak empirical evidence for the adjustment

cost-based measure of the real marginal cost.

On the other hand, the second model allows for \overhead labour," which is de�ned as the

number of hours that need to be hired regardless of the level of production. The production

function is thus modi�ed as

Yt = K�
t (At(Ht �H))1��;

where Ht �H is the number of hours in excess of the overhead labour, H � 0.

In this case, the real marginal cost is given by:

mct = st + bht;

where b = H=H

1�H=H
and H is the number of hours worked at steady state.20

The series for hours worked is calculated as being the number of employees multiplied by

the average hours worked per quarter. The resulting series is stationary around a stable mean.

In contrast to the series used by Sbordone (2001) and Gagnon and Khan (2004), no detrending

is necessary. We also include lags of hours worked in the instrument sets considered before. We

�rst try to estimate the parameter b. Unfortunately, the estimates are generally not signi�cant.

Instead, we also calibrate this scalar and conduct sensitivity analysis. Following Rotemberg and

Woodford (1999), the benchmark value is calibrated to 0.4. Our conclusions are not sensitive to

variations in the value of this parameter|only the degree of nominal rigidity rises (see Sbordone

2001). Overall, the empirical evidence of the robustness of the NKPC is still unchanged. In

19Other changes may be considered; for instance, a CES production function. For a complete discussion, see
Gagnon and Khan (2004).
20The value of b is calibrated as in other studies of the NKPC.
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particular, the real marginal cost is signi�cant only for the instrument sets of GG and GGLS

augmented with lags of hours worked, with the �rst speci�cation estimated by 2S-GMM and

3S-GMM. In all other cases, the real marginal cost is not signi�cant.

Therefore, modi�cations to the unit labour cost measure do not signi�cantly alter our main

conclusions.

5.2 The misspeci�cation of the dynamics of in
ation

Two main types of misspeci�cation have been studied in the literature: measurement error and

omitted dynamics. Because we have already discussed the former, we analyze whether omitted

dynamics is a plausible explanation for our results. We therefore consider a hybrid NKPC, in

which additional lags of in
ation are introduced by some speci�c rules of thumb or by other

sources of lag dynamics in in
ation (see Kozicki and Tinsley 2002). To do so, we add extra lags

of in
ation to enter the right-hand side of the dynamics of in
ation. As GG and GGLS point

out, one reason is that the estimated importance of the forward-looking behaviour of in
ation

may re
ect the insuÆcient lagged dependence.

In the estimation, three additional lags of in
ation are added to the right-hand side. The sum

of these additional lags is small and not statistically di�erent from zero. This result holds across

all speci�cations. Thus, it may appear that the hybrid NKPC can account for the in
ation

dynamics with relatively little reliance on arbitrary lags of in
ation. At the same time, some

lagged in
ation coeÆcients are statistically signi�cant despite the fact that the sum is not; i.e.,

a richer in
ation dynamics may be necessary. The broad picture is unchanged, in the sense that

the marginal cost does not have a signi�cant e�ect for most of the speci�cations.

6 Conclusion

Work by Gal�� and Gertler (1999) and Gal��, Gertler, and Lopez-Salido (2001) provides evidence

that the in
ation dynamics in the United States (and the euro area) can be well-described by

the New Keynesian Phillips curve. The approach adopted in our paper has addressed several

important econometrics issues. First, our results show that the forward-looking component of

the NKPC is dominant regardless of the estimator we use. Second, the J-test proposed by Hall

rejects the purely forward-looking speci�cation of the NKPC curve and yields mixed results

for the hybrid form. The results, however, depend on the normalization of the NKPC and the

instrument sets chosen. Third, the CUE, which is invariant to the normalization, allows us to

distinguish between the di�erent normalization results. Speci�cally, the CUE results tend to

favour the second speci�cation, for which the real marginal cost is generally not statistically

signi�cant at the standard level. Fourth, the empirical evidence for the real marginal cost is

rather mixed and is particularly sensitive to the well-known problem of the choice of instrument

set. In e�ect, there exists some empirical support for the original dataset used by GG and

GGLS. In contrast to those studies, however, the output-gap variable must not belong to the

information set. Nevertheless, the real marginal cost is no longer signi�cant when we consider

17



revised data or an updated version of the dataset. Furthermore, our conclusions are robust to

the de�nition of the real marginal cost and the inclusion of additional lags of in
ation.

Our results suggest that, at the theoretical level, richer versions of the structural model from

which the NKPC is derived would need to be developed. For instance, as Ascari (2004), Bakhshi

et al. (2003), and Cogley and Sbordone (2004) discuss, one interesting approach is to relax the

particularly restrictive assumption that the steady-state in
ation is zero (e.g., to allow for trend

in
ation). Earlier evidence suggests that such models �t the observed in
ation well, and enough

persistence is generated without specifying a hybrid version of the NKPC.
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Table 1a: Forward-Looking NKPC: Form I, � = 0:12

Method Instrument � � � D J-stat

GMM GG .538 .846 .468 2.16 7.22

(.040) (.043) (.120) (.189)

[.000] [.000] [.000] [.000] [.513]

GGLS .503 .823 .580 2.01 10.25

(.024) (.029) (.087) (.097)

[.000] [.000] [.000] [.000] [.984]

CUE GG .659 1.018 .170 2.93 7.12

(.101) (.046) (.136) (.872)

[.000] [.000] [.212] [.000] [.523]

GGLS .543 .856 .449 2.19 9.96

(.043) (.043) (.122) (.208)

[.000] [.000] [.000] [.000] [.987]

3S-GMM GG .537 .854 .468 2.16 8.33

(.038) (.039) (.114) (.178)

[.000] [.000] [.000] [.000] [.401]

GGLS .515 .832 .540 2.06 11.05

(.023) (.026) (.077) (.096)

[.000] [.000] [.000] [.000] [.974]

Note: Standard errors appear in parentheses and p-values appear in brackets for the null hypothesis that the

estimate is equal to zero. A 12-lags Newey-West estimator of the weighting matrix is used.
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Table 1b: Forward-Looking NKPC: Form II, � = 0:12

Method Instrument � � � D J-stat

GMM GG .566 .865 .392 2.30 7.18

(.045) (.042) (.115) (.239)

[.000] [.000] [.000] [.000] [.518]

GGLS .567 .849 .395 2.31 9.87

(.058) (.023) (.065) (.138)

[.000] [.000] [.000] [.000] [.987]

3S-GMM GG .579 .884 .355 2.38 8.13

(.045) (.037) (.105) (.253)

[.000] [.000] [.000] [.000] [.421]

GGLS .572 .859 .382 2.33 10.60

(.025) (.021) (.063) (.139)

[.000] [.000] [.000] [.000] [.980]

Note: See note to Table 1a.
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Table 2a: Forward-Looking NKPC: Form I, � = 0:12

Method Instrument � � � D J-stat

GMM GG .531 .872 .475 2.13 17.89

(.056) (.050) (.164) (.255)

[.000] [.000] [.004] [.000] [.022]

GGLS .540 .846 .463 2.17 35.04

(.037) (.036) (.108) (.174)

[.000] [.000] [.000] [.000] [.038]

CUE GG .606 1.008 .252 2.54 15.13

(.073) (.038) (.129) (.470)

[.000] [.000] [.053] [.000] [.057]

GGLS .613 1.016 .238 2.59 22.33

(.067) (.039) (.117) (.448)

[.000] [.000] [.044] [.000] [.440]

3S-GMM GG .592 .911 .317 2.45 21.17

(.049) (.032) (.100) (.292)

[.000] [.000] [.002] [.000] [.007]

GGLS .555 .868 .415 2.25 21.56

(.031) (.029) (.082) (.156)

[.000] [.000] [.000] [.000] [.486]

Note: The p-values appear in brackets for the null hypothesis that the estimate is equal to zero. The automatic

lag selection of the Newey-West (1994) estimator of the weighting matrix in mean deviation is used.
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Table 2b: Forward-Looking NKPC: Form II, � = 0:12

Method Instrument � � � D J-stat

GMM GG .649 .916 .218 2.85 15.90

(.093) (.048) (.145) (.758)

[.000] [.000] [.134] [.000] [.044]

GGLS .597 .891 .316 2.48 29.38

(.045) (.032) (.096) (.278)

[.000] [.000] [.001] [.000] [.134]

3S-GMM GG .672 .932 .183 3.05 14.71

(.075) (.031) (.099) (.698)

[.000] [.000] [.067] [.000] [.067]

GGLS .618 .902 .273 2.62 20.72

(.039) (.024) (.072) (.267)

[.000] [.000] [.000] [.000] [.566]

Note: See note to Table 2a.
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Table 3a: Hybrid NKPC: Form I, � = 0:12

Method Instrument � � ! � 
f 
b D J-stat

GMM GG .571 .923 .281 .174 .629 .335 2.33 5.99

(.053) (.044) (.060) (.071) (.040) (.045) (.288)

[.000] [.000] [.000] [.016] [.000] [.000] [.000] [.541]

GGLS .509 .886 .248 .272 .607 .334 2.04 10.79

(.033) (.032) (.027) (.058) (.030) (.027) (.136)

[.000] [.000] [.000] [.016] [.000] [.000] [.000] [.967]

CUE GG .634 .988 .389 .082 .614 .382 2.73 5.62

(.124) (.089) (.107) (.079) (.077) (.069) (.923)

[.000] [.000] [.000] [.300] [.000] [.000] [.004] [.584]

GGLS .800 .964 .323 .028 .692 .290 5.00 9.74

(.170) (.062) (.114) (.053) (.074) (.069) (4.244)

[.000] [.000] [.005] [.601] [.000] [.000] [.240] [.982]

3S-GMM GG .577 .947 .305 .153 .626 .350 2.36 6.67

(.052) (.036) (.053) (.060) (.038) (.038) (.289)

[.000] [.000] [.000] [.012] [.000] [.000] [.000] [.464]

GGLS .520 .887 .246 .257 .614 .328 2.08 11.27

(.032) (.031) (.027) (.054) (.029) (.026) (.137)

[.000] [.000] [.000] [.016] [.000] [.000] [.000] [.957]

Note: See note to Table 1a.
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Table 3b: Hybrid NKPC: Form II, � = 0:12

Method Instrument � � ! � 
f 
b D J-stat

GMM GG .638 .974 .426 .074 .588 .403 2.76 5.66

(.076) (.035) (.068) (.046) (.033) (.032) (.578)

[.000] [.000] [.000] [.110] [.000] [.000] [.000] [.580]

GGLS .638 .993 .522 .055 .547 .451 2.76 9.82

(.062) (.038) (.065) (.031) (.027) (.026) (.473)

[.000] [.000] [.000] [.079] [.000] [.000] [.000] [.981]

3S-GMM GG .643 .983 .424 .071 .595 .399 2.80 6.12

(.074) (.033) (.068) (.044) (.033) (.032) (.583)

[.000] [.000] [.000] [.110] [.000] [.000] [.000] [.526]

GGLS .685 1.032 .625 .026 .534 .472 3.17 10.22

(.094) (.060) (.114) (.029) (.026) (.026) (.948)

[.000] [.000] [.000] [.376] [.000] [.000] [.001] [.976]

Note: See note to Table 1a.
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Table 4a: Hybrid NKPC: Form I, � = 0:12

Method Instrument � � ! � 
f 
b D J-stat

GMM GG .557 .941 .296 .176 .622 .351 2.26 9.79

(.065) (.048) (.065) (.079) (.051) (.052) (.329)

[.000] [.000] [.000] [.027] [.000] [.000] [.000] [.201]

GGLS .553 .868 .162 .277 .683 .231 2.24 60.37

(.039) (.032) (.034) (.073) (.041) (.038) (.196)

[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.000]

CUE GG .620 .968 .353 .102 .621 .366 2.63 8.48

(.061) (.039) (.102) (.053) (.042) (.040) (.424)

[.000] [.000] [.000] [.018] [.000] [.000] [.000] [.293]

GGLS .545 .874 .082 .351 .766 .135 2.20 32.65

(.018) (.028) (.032) (.046) (.045) (.046) (.856)

[.000] [.000] [.011] [.000] [.000] [.005] [.000] [.050]

3S-GMM GG .578 .954 .308 .149 .629 .351 2.37 7.99

(.059) (.036) (.056) (.062) (.045) (.043) (.329)

[.000] [.000] [.000] [.017] [.000] [.000] [.000] [.333]

GGLS .564 .888 .170 .250 .692 .236 2.29 19.16

(.033) (.030) (.029) (.056) (.036) (.032) (.172)

[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.575]

Note: See note to Table 2a.
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Table 4b: Hybrid NKPC: Form II, � = 0:12

Method Instrument � � ! � 
f 
b D J-stat

GMM GG .622 .979 .415 .084 .591 .402 2.65 9.68

(.078) (.037) (.075) (.053) (.039) (.037) (.548)

[.000] [.000] [.000] [.119] [.000] [.000] [.000] [.207]

GGLS .754 .990 .472 .027 .610 .386 4.07 50.75

(.134) (.033) (.108) (.040) (.030) (.029) (2.208)

[.000] [.000] [.002] [.501] [.000] [.000] [.068] [.000]

3S-GMM GG .625 .973 .373 .093 .613 .376 2.67 7.23

(.076) (.038) (.070) (.055) (.043) (.041) (.543)

[.000] [.000] [.000] [.094] [.000] [.000] [.000] [.405]

GGLS .731 .993 .438 .036 .622 .376 3.71 14.57

(.108) (.032) (.088) (.040) (.027) (.026) (1.487)

[.000] [.000] [.000] [.376] [.000] [.000] [.013] [.844]

Note: See note to Table 2a.
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Table 5a: Hybrid NKPC: Form I, � = 0:12

Method Instrument � � ! � 
f 
b D J-stat

GMM [1] .531 .858 .409 .166 .501 .450 2.13

[.000] [.000] [.099] [.089] [.037] [.034] [.000]

[2] .568 .983 .177 .212 .751 .239 2.31 3.29

[.000] [.000] [.359] [.175] [.000] [.249] [.000] [.070]

[3] .503 .991 .206 .279 .703 .291 2.01 3.38

[.000] [.000] [.217] [.104] [.000] [.125] [.000] [.336]

[4] .517 .975 .172 .289 .734 .251 2.07 4.80

[.000] [.000] [.262] [.053] [.000] [.182] [.000] [.440]

[5] .490 .935 .278 .263 .603 .366 1.96 5.70

[.000] [.000] [.003] [.038] [.000] [.000] [.000] [.575]

[6] .461 .900 .226 .360 .613 .334 1.86 8.53

[.000] [.000] [.021] [.030] [.000] [.004] [.000] [.482]

CUE [1] .531 .858 .409 .166 .501 .450 2.13

[.000] [.000] [.099] [.089] [.037] [.034] [.000]

[2] .618 .935 .404 .096 .574 .402 2.62 3.06

[.000] [.000] [.071] [.140] [.003] [.024] [.003] [.080]

[3] .665 .963 .210 .109 .737 .241 2.99 4.43

[.000] [.000] [.115] [.442] [.000] [.071] [.062] [.218]

[4] .617 .963 .207 .150 .725 .253 2.61 4.44

[.000] [.000] [.102] [.256] [.000] [.056] [.004] [.488]

[5] .555 .957 .320 .164 .612 .369 2.25 6.15

[.000] [.000] [.000] [.039] [.000] [.000] [.000] [.522]

[6] .550 .984 .316 .164 .627 .366 2.22 9.36

[.000] [.000] [.000] [.048] [.000] [.000] [.000] [.404]

3S-GMM [1] .531 .858 .409 .166 .501 .450 2.13

[.000] [.000] [.099] [.089] [.037] [.034] [.000]

[2] .621 .973 .186 .152 .752 .232 2.64 4.04

[.000] [.000] [.393] [.110] [.002] [.292] [.000] [.044]

[3] .584 .997 .150 .202 .794 .204 2.40 6.09

[.000] [.000] [.292] [.058] [.002] [.224] [.000] [.107]

[4] .578 .987 .154 .210 .781 .211 2.37 7.34

[.000] [.000] [.263] [.040] [.000] [.196] [.000] [.197]

[5] .520 .939 .304 .210 .599 .374 2.08 8.55

[.000] [.000] [.000] [.027] [.000] [.000] [.000] [.287]

[6] .534 .943 .309 .191 .604 .371 2.15 22.89

[.000] [.000] [.000] [.031] [.000] [.000] [.000] [.006]

Note: See note to Table 2a.
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Table 5b: Hybrid NKPC: Form II, � = 0:12

Method Instrument � � ! � 
f 
b D J-stat

GMM [1] .531 .858 .409 .166 .501 .450 2.13

[.000] [.000] [.099] [.089] [.037] [.034] [.000]

[2] .624 .949 .383 .095 .595 .385 2.66 2.13

[.001] [.000] [.278] [.481] [.016] [.107] [.047] [.144]

[3] .547 .982 .319 .165 .623 .369 2.21 3.01

[.000] [.000] [.166] [.288] [.003] [.065] [.005] [.390]

[4] .556 .966 .286 .176 .641 .342 2.25 5.35

[.000] [.000] [.137] [.050] [.001] [.062] [.000] [.375]

[5] .546 .960 .338 .163 .598 .386 2.20 6.35

[.000] [.000] [.000] [.043] [.000] [.000] [.000] [.499]

[6] .526 .951 .369 .169 .565 .417 2.11 9.47

[.000] [.000] [.000] [.088] [.000] [.000] [.000] [.396]

3S-GMM [1] .531 .858 .409 .166 .501 .450 2.13

[.000] [.000] [.094] [.085] [.034] [.031] [.000]

[2] .628 .939 .385 .094 .591 .386 2.69 3.24

[.000] [.000] [.184] [.215] [.013] [.070] [.002] [.072]

[3] .598 .999 .184 .169 .764 .236 2.49 6.26

[.000] [.000] [.230] [.053] [.000] [.155] [.000] [.100]

[4] .580 .984 .225 .174 .710 .281 2.38 6.73

[.000] [.000] [.155] [.038] [.000] [.086] [.000] [.241]

[5] .549 .963 .331 .163 .605 .379 2.22 7.31

[.000] [.000] [.000] [.045] [.000] [.000] [.000] [.398]

[6] .548 .962 .354 .154 .589 .396 2.21 11.51

[.000] [.000] [.000] [.048] [.000] [.000] [.000] [.242]

Note: See note to Table 2a.
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Table 6a: Hybrid NKPC: Form I, � = 0:12 and Revised Data

Method Instrument � � ! � 
f 
b D J-stat

GMM GG .565 .963 .287 .167 .643 .339 2.30 8.51

(.072) (.053) (.082) (.073) (.075) (.076) (.379)

[.000] [.000] [.000] [.024] [.000] [.000] [.000] [.201]

GGLS .505 .868 .154 .363 .676 .237 2.02 35.13

(.038) (.041) (.038) (.090) (.045) (.046) (.154)

[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.027]

CUE GG .552 1.018 .267 .175 .684 .325 2.23 8.28

(.088) (.108) (.084) (.110) (.094) (.078) (.438)

[.000] [.000] [.002] [.114] [.000] [.000] [.000] [.309]

GGLS .565 1.077 .354 .118 .651 .379 2.30 15.54

(.095) (.116) (.090) (.090) (.068) (.061) (.503)

[.000] [.000] [.000] [.191] [.000] [.000] [.000] [.155]

3S-GMM GG .576 .975 .284 .155 .656 .332 2.36 10.15

(.066) (.044) (.075) (.066) (.068) (.068) (.368)

[.000] [.000] [.000] [.020] [.000] [.000] [.000] [.180]

GGLS .505 .860 .144 .374 .680 .225 2.02 20.29

(.040) (.040) (.033) (.093) (.045) (.042) (.162)

[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.503]

Note: See note to Table 2a.
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Table 6b: Hybrid NKPC: Form II, � = 0:12. and Revised Data

Method Instrument � � ! � 
f 
b D J-stat

GMM GG .668 .977 .331 .078 .657 .33 3.01 13.16

(.087) (.043) (.081) (.055) (.056) (.057) (.792)

[.000] [.000] [.000] [.157] [.000] [.000] [.000] [.068]

GGLS .669 .948 .363 .076 .621 .356 3.02 45.58

(.066) (.036) (.063) (.042) (.035) (.036) (3.02)

[.000] [.000] [.000] [.073] [.000] [.000] [.068] [.001]

3S-GMM GG .662 .979 .333 .080 .654 .336 2.95 10.23

(.092) (.045) (.092) (.058) (.063) (.065) (.807)

[.000] [.000] [.000] [.169] [.000] [.000] [.000] [.176]

GGLS .686 .945 .353 .070 .632 .344 3.18 19.49

(.078) (.037) (.064) (.046) (.033) (.034) (.787)

[.000] [.000] [.000] [.135] [.000] [.000] [.013] [.554]

Note: See note to Table 2a.
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Table 7a: Hybrid NKPC: Form I, � = 0:12 and Revised Data

Method Instrument � � ! � 
f 
b D J-stat

GMM [1] .598 .910 .359 .125 .580 .383 2.49

[.000] [.000] [.108] [.186] [.017] [.062] [.008]

[2] .648 1.001 .140 .135 .823 .177 2.84 2.68

[.000] [.000] [.503] [.207] [.001] [.466] [.004] [.102]

[3] .576 1.011 .215 .176 .734 .271 2.36 3.64

[.000] [.000] [.163] [.201] [.000] [.092] [.000] [.304]

[4] .553 1.006 .198 .212 .740 .263 2.24 4.14

[.000] [.000] [.202] [.146] [.000] [.129] [.000] [.530]

[5] .524 .955 .296 .206 .616 .364 2.10 5.02

[.000] [.000] [.013] [.136] [.000] [.0003 [.000] [.656]

[6] .508 .972 .299 .218 .615 .372 2.03 8.13

[.000] [.000] [.009] [.041] [.000] [.002] [.000] [.521]

CUE [1] .598 .910 .359 .125 .580 .383 2.49

[.000] [.000] [.108] [.186] [.017] [.062] [.008]

[2] .657 .941 .334 .089 .633 .341 2.92 2.63

[.000] [.000] [.117] [.203] [.002] [.061] [.011] [.105]

[3] .656 .968 .216 .113 .732 .249 2.91 4.76

[.000] [.000] [.084] [.316] [.000] [.046] [.012] [.190]

[4] .615 .970 .240 .139 .702 .282 2.60 5.18

[.000] [.000] [.051] [.205] [.000] [.021] [.001] [.394]

[5] .634 1.004 .315 .096 .670 .332 2.73 5.58

[.000] [.000] [.003] [.373] [.000] [.000] [.012] [.589]

[6] .678 1.031 .309 .068 .704 .311 3.10 8.28

[.000] [.000] [.010] [.525] [.000] [.000] [.068] [.507]

3S-GMM [1] .598 .910 .359 .125 .580 .383 2.49

[.000] [.000] [.108] [.186] [.017] [.062] [.008]

[2] .663 .986 .219 .103 .742 .249 2.97 3.23

[.000] [.000] [.281] [.153] [.000] [.202] [.004] [.072]

[3] .616 1.015 .203 .139 .762 .247 2.61 7.56

[.000] [.000] [.142] [.108] [.000] [.087] [.000] [.056]

[4] .606 1.015 .192 .154 .769 .240 2.54 8.91

[.000] [.000] [.144] [.072] [.000] [.091] [.000] [.113]

[5] .589 .965 .307 .138 .639 .345 2.43 11.76

[.000] [.000] [.000] [.110] [.000] [.000] [.000] [.109]

[6] .612 .947 .301 .127 .642 .333 2.58 16.92

[.000] [.000] [.000] [.134] [.000] [.000] [.000] [.050]

Note: See note to Table 2a.
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Table 7b: Hybrid NKPC: Form II, � = 0:12 and Revised Data

Method Instrument � � ! � 
f 
b D J-stat

GMM [1] .598 .910 .359 .125 .580 .383 2.49

[.000] [.000] [.108] [.186] [.017] [.062] [.008]

[2] .674 .992 .256 .087 .720 .276 3.07 2.18

[.000] [.000] [.364] [.386] [.006] [.259] [.052] [.140]

[3] .629 1.037 .294 .098 .701 .316 2.70 2.94

[.000] [.000] [.138] [.479] [.000] [.055] [.046] [.401]

[4] .614 1.027 .282 .113 .700 .313 2.59 4.14

[.000] [.000] [.109] [.374] [.000] [.044] [.015] [.529]

[5] .608 .997 .345 .106 .637 .362 2.55 5.17

[.000] [.000] [.008] [.370] [.000] [.000] [.011] [.640]

[6] .608 .997 .345 .106 .637 .362 2.55 5.17

[.000] [.000] [.008] [.370] [.000] [.000] [.011] [.640]

3S-GMM [1] .598 .910 .359 .125 .580 .383 2.49

[.000] [.000] [.108] [.186] [.017] [.062] [.008]

[2] .708 .993 .220 .073 .758 .238 3.43 2.66

[.000] [.000] [.359] [.284] [.002] [.278] [.028] [.103]

[3] .640 1.024 .249 .104 .734 .279 2.78 7.30

[.000] [.000] [.093] [.220] [.000] [.048] [.004] [.063]

[4] .622 1.023 .256 .116 .722 .290 2.65 8.13

[.000] [.000] [.083] [.168] [.000] [.040] [.001] [.149]

[5] .585 .994 .355 .120 .619 .378 2.41 9.34

[.000] [.000] [.000] [.137] [.000] [.000] [.000] [.229]

[6] .647 1.024 .329 .081 .676 .335 2.84 13.36

[.000] [.000] [.006] [.432] [.000] [.000] [.026] [.147]

Note: See note to Table 2a.
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Table 8a: Hybrid NKPC: Form I, � = 0:12 for sample: 1960Q1-2001Q3

Method Instrument � � ! � 
f 
b D J-stat

GMM GG .593 .955 .319 .133 .627 .353 2.46 9.63

(.074) (.055) (.082) (.064) (.071) (.070) (.445)

[.000] [.000] [.000] [.041] [.000] [.000] [.000] [.211]

CUE GG .601 1.026 .274 .119 .705 .308 2.56 8.11

(.103) (.098) (.097) (.097) (.097) (.084) (.680)

[.000] [.000] [.005] [.218] [.000] [.000] [.000] [.323]

3S-GMM GG .604 .975 .320 .120 .641 .348 2.53 11.50

(.069) (.046) (.078) (.058) (.065) (.063) (.441)

[.000] [.000] [.000] [.040] [.000] [.000] [.000] [.118]

Note: See note to Table 2a.

Table 8b: Hybrid NKPC: Form II, � = 0:12 for sample: 1960Q1-2001Q3

Method Instrument � � ! � 
f 
b D J-stat

GMM GG .665 .996 .392 .065 .630 .372 2.98 10.75

(.094) (.053) (.091) (.050) (.061) (.060) (.838)

[.000] [.000] [.000] [.195] [.000] [.000] [.000] [.150]

3S-GMM GG .670 1.011 .398 .060 .632 .372 3.03 10.48

(.098) (.053) (.097) (.050) (.063) (.061) (.903)

[.000] [.000] [.000] [.233] [.000] [.000] [.000] [.163]

Note: See note to Table 2a.
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Table 9a: Hybrid NKPC: Form I, � = 0:12 for sample: 1960Q1-2001Q3

Method Instrument � � ! � 
f 
b D J-stat

GMM [1] .634 .928 .351 .101 .607 .362 2.74

[.000] [.000] [.134] [.195] [.013] [.083] [.014]

[2] .689 .988 .221 .085 .749 .244 3.21 1.97

[.000] [.000] [.346] [.290] [.001] [.256] [.021] [.161]

[3] .597 .997 .245 .147 .707 .291 2.48 3.98

[.000] [.000] [.139] [.259] [.000] [.066] [.021] [.264]

[4] .588 .983 .228 .165 .711 .280 2.43 5.09

[.000] [.000] [.138] [.188] [.000] [.073] [.000] [.404]

[5] .567 .945 .298 .165 .626 .349 2.31 5.19

[.000] [.000] [.017] [.190] [.000] [.004] [.000] [.637]

[6] .558 .954 .310 .166 .619 .361 2.26 9.26

[.000] [.000] [.005] [.063] [.000] [.001] [.000] [.414]

CUE [1] .634 .928 .351 .101 .607 .362 2.74

[.000] [.000] [.134] [.195] [.013] [.083] [.014]

[2] .616 .869 .393 .111 .548 .402 2.60 2.25

[.000] [.000] [.040] [.131] [.007] [.020] [.003] [.134]

[3] .688 .970 .260 .082 .708 .276 3.20 5.34

[.000] [.000] [.052] [.428] [.000] [.019] [.044] [.148]

[4] .691 1.000 .271 .072 .718 .282 3.24 5.42

[.000] [.000] [.051] [.477] [.000] [.016] [.060] [.366]

[5] .699 1.012 .327 .058 .688 .318 3.32 5.66

[.000] [.000] [.010] [.565] [.000] [.000] [.109] [.580]

[6] .743 1.027 .328 .038 .708 .304 3.90 8.32

[.003] [.000] [.025] [.706] [.000] [.000] [.293] [.502]

3S-GMM [1] .634 .928 .351 .101 .607 .362 2.74

[.000] [.000] [.134] [.195] [.013] [.083] [.014]

[2] .726 .990 .218 .064 .763 .231 3.65 1.89

[.000] [.000] [.344] [.311] [.001] [.271] [.040] [.169]

[3] .645 1.007 .247 .105 .727 .277 2.82 9.34

[.000] [.000] [.085] [.162] [.000] [.042] [.001] [.025]

[4] .637 1.006 .248 .110 .723 .280 2.76 10.15

[.000] [.000] [.074] [.132] [.000] [.035] [.000] [.071]

[5] .666 1.006 .328 .074 .673 .330 2.99 13.07

[.000] [.000] [.002] [.294] [.000] [.000] [.005] [.007]

[6] .678 .990 .317 .073 .676 .320 3.10 18.59

[.000] [.000] [.003] [.298] [.000] [.000] [.007] [.029]

Note: See note to Table 2a.
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Table 9b: Hybrid NKPC: Form II, � = 0:12 for sample 1960Q1-2001Q3

Method Instrument � � ! � 
f 
b D J-stat

GMM [1] .635 .928 .351 .101 .607 .362 2.74

[.000] [.000] [.134] [.196] [.013] [.083] [.015]

[2] .709 .981 .306 .061 .688 .302 3.44 1.53

[.000] [.000] [.288] [.448] [.006] [.185] [.100] [.217]

[3] .669 1.027 .345 .067 .673 .338 3.02 3.75

[.002] [.000] [.100] [.578] [.000] [.026] [.112] [.289]

[4] .631 1.002 .380 .083 .625 .376 2.71 5.99

[.000] [.000] [.046] [.318] [.000] [.012] [.015] [.307]

[5] .662 .999 .361 .071 .647 .353 2.96 5.38

[.000] [.000] [.014] [.509] [.000] [.001] [.062] [.614]

[6] .682 1.003 .368 .060 .651 .350 3.15 8.20

[.000] [.000] [.016] [.568] [.000] [.000] [.107] [.515]

3S-GMM [1] .635 .928 .351 .101 .607 .362 2.74

[.000] [.000] [.134] [.196] [.013] [.083] [.015]

[2] .731 .984 .274 .055 .718 .273 3.72 1.71

[.000] [.000] [.272] [.366] [.003] [.195] [.070] [.191]

[3] .680 1.021 .303 .069 .703 .307 3.12 8.54

[.000] [.000] [.058] [.364] [.000] [.024] [.026] [.036]

[4] .674 1.015 .306 .073 .696 .311 3.066 9.39

[.000] [.000] [.048] [.317] [.000] [.017] [.016] [.095]

[5] .647 1.005 .377 .075 .634 .370 2.83 9.07

[.000] [.000] [.000] [.304] [.000] [.000] [.009] [.247]

[6] .754 1.041 .367 .030 .693 .324 4.06 13.64

[.009] [.000] [.032] [.760] [.000] [.000] [.385] [.136]

Note: See note to Table 2a.
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Figure 1: The real marginal cost and data revisions  
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