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Abstract

The authors test the statistical significance of Pindyck’s (1999) suggested class of econom

equations that model the behaviour of long-run real energy prices. The models postulate m

reverting prices with continuous and random changes in their level and trend, and are estim

using Kalman filtering. In such contexts, test statistics are typically non-standard and depe

nuisance parameters. The authors use simulation-based procedures to address this issue; n

standard Monte Carlo test and a maximized Monte Carlo test. They find statistically signific

instabilities for coal and natural gas prices, but not for crude oil prices. Out-of-sample forec

are calculated to differentiate between significant models.

JEL classification: C22, C52, C53, Q40
Bank classification: Econometric and statistical methods

Résumé

Les auteurs testent la signification statistique de la famille d’équations économétriques que

Pindyck (1999) met en avant pour modéliser le comportement des prix réels de l’énergie e

longue période. Ces modèles, qu’il estime au moyen du filtre de Kalman, postulent la station

des prix par rapport à la moyenne ainsi que des variations continues et aléatoires de leur niv

de la pente de leur tendance. Dans ces conditions, les statistiques de test ne sont généralem

standard et dépendent de paramètres de nuisance. Afin de contourner la difficulté, les aute

recourent à des procédures de test reposant sur la simulation, en l’occurrence les versions s

et maximisée du test de Monte-Carlo. Ils constatent des instabilités statistiquement signific

dans le cas des cours du charbon et du gaz naturel, mais non dans celui du pétrole brut. Ils f

prévisions en dehors de la période d’estimation dans le but de départager les modèles signi

Classification JEL : C22, C52, C53, Q40
Classification de la Banque : Méthodes économétriques et statistiques



1. Introduction

It has long been known that fluctuations in energy prices have important and lasting effects

on the economies of industrialized countries. As a recent example, Hamilton (2003) finds

a strongly significant and non-linear relationship between changes in oil prices and GDP

growth. Similarly, in small open-economy settings, Amano and van Norden (1995) find

long-run links between oil prices and real exchange rates. Enduring price movements in

energy commodities can also cause relative price changes among a wide range of products

in the economy, ultimately feeding into the rate of inflation for some duration. Thus,

future values of oil prices in particular, and energy products in general, are important

ingredients of long-run forecasts for various macroeconomic variables.

Forecasting the behaviour of energy prices can be quite challenging. In addition to

domestic and international supply and demand conditions, a complete model also needs to

take into account market regulations, technological advances, and geopolitical considera-

tions. These non-market-related aspects present the biggest challenges for the forecaster,

since they are largely unpredictable. For that reason, Pindyck (1999) suggests that, rather

than fully articulated structural equations, it is preferable to adopt simple models – where

prices grow in real terms and at a fixed rate – for our long-run forecasting needs.

Despite being simple, these models are flexible, allowing prices to grow from their

current level (i.e., prices follow a random-walk process with drift) and/or from a chang-

ing trend line (i.e., prices revert to a possibly moving mean). Such differences can be

thought of as reflecting differing assumptions regarding resource depletion and technolog-

ical change.1 Indeed, using a simple Hotelling model, Pindyck shows that long-run energy

prices should revert to an unobservable trending long-run marginal cost, with continuous

random changes in their level and in the slope of their trend. He proposes a family of

econometric models for these prices (discrete versions of multivariate Ornstein-Uhlenbeck

processes) that integrate the desired features. Versions of these models are estimated

using the Kalman filter, and out-of-sample forecasts are obtained.

The forecast excercises conducted by Pindyck show some mixed results, but overall

1For example, an energy type that is produced and sold competitively should have its price reverting

to a long-run marginal cost that itself can change over time.
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good potential, for the class of equations considered. The estimated models, however, are

not tested statistically. Furthermore, the statistical significance of continuous and random

changes in the level and trend of energy prices in general is not addressed. Yet, whether

time-varying-parameter (TVP) approaches to long-run forecasting are successful depends

importantly (although not exclusively) on their statistical goodness-of-fit. In other words,

it would be interesting to determine whether Pindyck’s mixed results can be rationalized

statistically.

In this paper, we complement Pindyck’s study by conducting tests for continuous and

random shifts in real energy prices. We are thus able to select, within the suggested

family of models, specifications that are statistically significant for crude oil, coal, and

natural gas prices. Our methodology relies on simulation-based exact testing procedures,

applicable in situations where standard testing is not valid; that is, when unidentified

nuisance parameters are present under the null hypothesis.2 The tests are also valid when

data samples are small. We complete our results by providing a number of out-of-sample

forecast statistics.

Our findings indicate significant TVP effects in two of the three energy-price series ex-

amined, which supports Pindyck’s proposed class of models. Indeed, we find a multiplicity

of significant TVP specifications in the natural gas and coal series. To distinguish between

them, we contrast the forecasting ability of the TVP models with forecasts obtained from

a fixed-coefficient model and from a random-walk-with-drift model.

Section 2 describes the class of proposed models and the testing details. Section 3

documents and discusses the obtained results. Section 4 concludes.

2. Models and Test Strategy

Pindyck (1999) considers a basic Hotelling model for any depletable resource that is

produced in a competitive market. With constant marginal costs of extraction, c, and an

isoelastic demand function with unitary elasticity, the price level is given by

Pt = c + (cert/(ercR0/A − 1)), (1)

2These techniques are applied in Khalaf and Kichian (2002).
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where R0 is the level of initial reserves, A is a demand shifter, and r is the interest rate.

This implies that the slope of the price trajectory will be given by

dPt/dt = rcert/(ercR0/A − 1), (2)

so that changes in demand, extraction costs, and reserves all affect this slope.3 If, as

Pindyck (1999) argues, these factors fluctuate in a continuous and unpredictable manner

over time, then long-run energy prices should revert to a trend that itself fluctuates in

the same fashion.

A class of models that integrates the above features is a generalized Ornstein-Uhlenbeck

process, and Pindyck (1999) proposes its discrete version as a suitable econometric frame-

work for forecasting long-run energy prices. This is given by the AR(1)-based dynamic

model:

Pt = c1 + φ1t + φ2tt + c2Pt−1 + εt, t = 1, ..., T, (3)

where Pt refers to the log real price of an energy product and the coefficients φ1t and φ2t

follow the stochastic processes

φ1t = c3φ1,t−1 + v1t,

φ2t = c4φ2,t−1 + v2t.

The underlying error terms εt, v1t, and v2t, t = 1, ..., T, are assumed to be independently

and identically distributed (i.i.d.) with zero means and variances σ2
ε , σ2

v1
, and σ2

v2
, respec-

tively. Following Pindyck’s theoretical development and his discussion on unit root tests,

we adopt a general mean-reverting framework. That is, we impose |c2| < 1 for all TVP

models. The processes for φ1t and φ2t may or may not be mean reverting. These are the

unobservable, continuously evolving parameters that describe long-run marginal costs of

the underlying structural model.

Assuming normality for the distributions of εt, v1t, and v2t, Pindyck proposes that

Kalman filtering be applied to obtain paths for the state variables φ1t and φ2t. This

3For example, an increase in A causes this slope to increase, while increases in c or R0 cause the slope

to decrease. In addition, increases in c or A cause the price level to increase, whereas an increase in R0

leads to a decrease in this level.
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means that, starting with initial values for the model parameters and the state variables,

each period the filter will calculate new values for the state variables to reflect new infor-

mation on the observable series. Once the full paths of the state variables are determined,

the model can be estimated by maximum likelihood to obtain the optimal parameter es-

timates. For the model above, details of the Kalman filtering procedure are described in

Appendix B.

For the purposes of examining the statistical significance of TVP effects, the null

hypothesis of interest is a simple mean-reverting model around a fixed trend line (the

trending Ornstein-Uhlenbeck process given by equation (24) in Pindyck 1999), or, in our

notation:

Pt = c1 + φ1 + φ2t + c2Pt−1 + εt, t = 1, ..., T. (4)

It is clear that the models to be compared statistically are nested at the boundaries of

certain parameters; intuitively, the alternative model becomes more and more like the null

model as the variances of the time-varying parameters approach zero and the parameters

c3 and c4 get close to 1. But, since the variance cannot become identically zero, the

models are nested at the boundary of these parameters. Formally,

model (4) v model (3) when σ2
v1

→ 0, σ2
v2

→ 0, and c3 = c4 = 1.

In the presence of such identification problems, one cannot rely on estimated stan-

dard errors, since their use for confidence set and t-test purposes is not justified even

asymptotically.4 Nevertheless, a likelihood-ratio type statistic can be constructed to test

the statistical significance of the time variation in the parameters. Specifically, the quasi-

likelihood-ratio (QLR) type statistic takes the form

QLR(J) = 2[LTV P (J) − LFCM ], (5)

where LTV P (J) and LFCM are, respectively, the maximum of the log-likelihood functions

associated with (3) and (4), J refers to the number of iterations involved in the numeri-

cal maximization exercise under (3),5 and the subscript FCM stands for fixed-coefficient

model.
4For theory and references, see Dufour (1997).
5We will show in what follows that taking J explicitly into consideration has an important bearing on

empirical practice.
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It would be wrong, however, to compare this test statistic with tabulated values from

a standard χ2 table. Andrews (2000, 2001) has shown that the limiting null hypothesis

distribution of statistics of the QLR(J)-type is not χ2, since the parameters

ω =
{
σ2

v1
, σ2

v2
, c3, c4

}
(6)

are not identified under the null model (4).

To conduct statistical testing in this context, we therefore resort to maximized Monte

Carlo (MMC) tests developed by Dufour (2004),6 which we apply to our QLR. We de-

note the vector of nuisance parameters that appear (and are identifiable) under the null

hypothesis as:

ω =
{
λ, φ2, c2, σ

2
ε

}
, λ = c1 + φ1. (7)

In Appendix A, we provide a formal exposition of the MMC test method based on any

test statistic whose null distribution can be simulated and given a vector of nuisance

parameters ω. Herein, we summarize the technique as it applies to our testing problem,7

where ω is given by (7). In our test procedure, all that is needed to obtain draws from the

null data-generating process is to set a value for ω; the unidentified nuisance parameters

ω simply do not intervene. Practically, we test a given TVP model as follows:

(i) We calculate the likelihood ratio statistic (5) using the likelihood values of the TVP

model (3) (the alternative model) against its equivalent constant-coefficient model

(4) (the null model). In the process, we save: (a) the quasi-maximum-likelihood

estimate of ω imposing (4), and (b) the number of iterations the maximum-likelihood

algorithm takes to converge. We denote these saved values as ω̂FCM and ĴTV P ,

respectively, and the observed value of (5) as QLR0(ĴTV P ).

(ii) We generate data from the null model drawing from the normal distribution and

setting ω to its estimated ω̂FCM value. With this data, we re-estimate the null and

the alternative models (setting the number of iterations for the TVP maximum-

likelihood algorithm to ĴTV P ), and calculate the QLR statistic based on the obtained

6For further discussion on the Monte Carlo test method in econometrics, see, for example, Dufour and

Kiviet (1996), Dufour and Khalaf (2001, 2002 a,b, 2003), and Khalaf and Kichian (2002).
7For proofs and references, see Dufour (2004).
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likelihood values. The data generation and subsequent calculation of the QLR value

are repeated in N = 199 replications. Thus, we obtain a 199-point distribution of

generated-data QLR values. QLR0(ĴTV P ) is compared with this distribution and

a p-value is calculated based on the rank of QLR0(ĴTV P ) relative to its simulated

counterparts; see equations (2), (3), and (4) in Appendix A. This is denoted as the

Monte Carlo (MC) p-value.

The MMC technique involves repeating step (ii) above, sweeping over combinations

of admissible values of ω.8 Thus, we obtain an MC p-value for each such combination.

The MMC p-value is then the highest obtained MC p-value among these values.9 The

MMC test is significant at level α if the MMC p-value ≤ α. Of course, if the MC p-value

obtained in step (ii) has already exceeded α (e.g., 5 per cent), there is no need to proceed

with the maximization; this saves execution time. Test results are reported in section 3.

Finally, notice that, when maximizing the likelihood with simulated data, we set the

number of numerical iterations to a fixed value, ĴTV P , which corresponds to the number

of iterations required to converge with the observed data.10 The rationale is that, when

the true TVPs are actually close to being constants, numerical convergence will become

difficult despite the use of global maximizers. This means that the QLR statistic can

sometimes be negative in practice. Nevertheless, the flexibility of the MMC test method

allows us to circumvent this problem (see Dufour and Khalaf 2003 for details about QLR-

type test criteria that are based on estimators at any step of the process by which the

likelihood is maximized iteratively).

8The values of ω that we sweep over are set at ω̂FCM ± 5SE; this is a fairly wide range for the

parameters and, in the case of the variance, if it leads to the negative region, we truncate at the value

10−4.
9Since the maximized p-value function is a non-differentiable step function, we use simulated annealing

(a global non-gradient-based algorithm) to obtain the maxima.
10We thank Jean-Marie Dufour for this useful suggestion.
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3. Empirical Results

We consider the data set analyzed by Pindyck (1999). The annual series for crude oil and

bituminous coal extend from 1870 to 1996; for natural gas, the series extends from 1919

to 1996. Estimation is conducted on the logarithm of real prices.11

First, we test Pindyck’s general TVP specification for each energy product. Thus, we

apply the QLR statistic described previously for the null model (4) and the alternative

hypothesis (3):

HA1 : 0 < c3 < 1, 0 < c4 < 1. (8)

Next, we apply the QLR tests for the specific alternatives that were selected by Pindyck

(1999). We impose c3 = 1 for oil, c4 = 1 for coal, and omit the time-varying drift for gas.

These alternatives are formally described as:

HA2 : c3 = 1 and 0 < c4 < 1, (9)

HA3 : c4 = 1 and 0 < c3 < 1, (10)

HA4 : φ1t = φ1, t = 1, ..., T and 0 < c4 < 1. (11)

Table 1 reports the results of the MC and MMC test p-values. All the MC tests

are applied with 199 replications and the algorithm that maximizes the p-value function

(in terms of ω) is initialized at the MC point. Table 2 reports parameter estimates for

significant models.

The statistical tests show that the general TVP specification is supported by the data

for natural gas prices (at the 1 per cent level) and coal prices (at the 7 per cent level),

but not by the data for oil prices. As for the alternatives reported by Pindyck, we find

support for coal prices (at the 8 per cent level) and for gas prices (at the 1 per cent level),

but not for oil prices.

11The data were generously provided by Pindyck. The nominal oil price series and the natural gas

series for 1870 to 1973 are from Manthy (1978) and the U.S. Bureau of the Census (1975). Pindyck

(1999) updated this series through 1995 using data from the U.S. Energy Information Agency and, for

1996, from the Wall Street Journal. The series are deflated using the U.S. wholesale price index until

1970, and the producers price index thereafter.
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Table 1 - Simulation-Based Test Results

Description of tested model Energy type MC p-val MMC p-val

General TVP model

Pt = c1 + c2Pt−1 + φ1t + φ2tt + εt Oil 0.57 -
φ1t = c3φ1t−1 + v1t Coal 0.06 0.07
φ2t = c4φ2t−1 + v2t Gas 0.01 0.01
0 < c3, c4 < 1

Pindyck oil model

Pt = c1 + c2Pt−1 + φ1t + φ2tt + εt

φ1t = φ1t−1 + v1t Oil 0.43 -
φ2t = c4φ2t−1 + v2t

0 < c4 < 1

Pindyck coal model

Pt = c1 + c2Pt−1 + φ1t + φ2tt + εt Coal 0.02 0.08
φ1t = c3φ1t−1 + v1t

φ2t = φ2t−1 + v2t

0 < c3 < 1

Pindyck gas model

Pt = λ + c2Pt−1 + φ2tt + εt Gas 0.01 0.01
φ2t = c4φ2t−1 + v2t

0 < c4 < 1

Notes: MC p-val and MMC p-val designate Monte Carlo and maximized Monte Carlo p-values, respec-
tively. For the MMC, parameter search spaces covered the ordinary least squares (OLS) estimate
± 5 times its standard deviation, except for the OLS variance where we used the range [0.0001,2]. 199
replications are used for each MC exercise.
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Table 2 - Parameter Estimates for Significant Models

Description of model Energy c1 c2 c3 c4 σ2
ε σ2

v1
σ2

v2

General TVP model

Pt = c1 + c2Pt−1 + φ1t + φ2tt + εt Coal 0.37 0.79 0.22 0.93 # 0.0736 0.0002
φ1t = c3φ1t−1 + v1t Gas 2.71 0.52 0.08 0.96 # 0.0312 0.0015
φ2t = c4φ2t−1 + v2t

0 < c3, c4 < 1

Pindyck coal model

Pt = c1 + c2Pt−1 + φ1t + φ2tt + εt Coal 0.35 0.70 0.17 1.00 0.0001 0.0773 0.0002
φ1t = c3φ1t−1 + v1t

φ2t = φ2t−1 + v2t

0 < c3 < 1

Pindyck gas model

Pt = λ + c2Pt−1 + φ2tt + εt Gas 0.07 0.96 - 0.74 0.0434 - 0.0015
φ2t = c4φ2t−1 + v2t

0 < c4 < 1

Note: # indicates a value that is less than 1x10−4.

The results indicate good overall statistical support for Pindyck’s proposed class of

models: there are significant TVP effects in two of the three price series examined. Our

conclusions, however, differ from Pindyck’s regarding which product price is best repre-

sented by TVP models. Unlike Pindyck, we find that the evolution of natural gas and coal

prices is best captured by TVP effects, and not the dynamics of oil prices. Furthermore,

we obtain parameter estimates (see Table 2) that are quite different from those reported

by Pindyck for comparable models.12

The differences in these outcomes need to be elucidated because we consider Pindyck’s

approach of focusing on the models’ forecast content and our approach of statistically

testing the models’ significance to be complementary. For coal and natural gas, the answer

12Only significant TVP model parameters are reported in Table 2.
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may well reside in the sensitivity of Kalman filter estimates to filter initializations.13 But,

for crude oil prices, the difference between our and Pindyck’s outcomes is striking. It

might be that, although there are TVP effects in the data, they are too small to be

captured statistically.

The multiplicity of significant TVP models for coal and gas prices illustrates that,

while the non-adequacy of the fixed-coefficient model is settled, the question remains as

to which TVP model better fits the data. One way to distinguish between the TVP

models is to assess their relative forecast performance. We thus estimate the coal and

natural gas TVP models for the samples ending in 1970 and 1980, respectively, and, with

the state variables fixed to their end-of-sample-values, we compute dynamic forecasts out

to the end of the full sample (i.e., 1996). We then calculate the mean square errors (MSE)

for each of these forecast series and report them in Table 3. For comparison purposes,

we also report MSE of forecasts obtained from a fixed-coefficient model and a unit root

model, both estimated over samples ending in 1970 and 1980.

In the case of coal prices, the results shown in Table 3 indicate that, over the longer

horizon (column MSE1971), all four reported models have similar outcomes. The gen-

eralized TVP model, however, has an MSE that is 10 times smaller than that of the

corresponding fixed-coefficient model over the shorter forecast range. Similarly, in the

case of natural gas prices, although the forecast performances of all four models are fairly

comparable over the 25-year horizon, the specification chosen by Pindyck yields an MSE

that is 30 times smaller than its fixed-coefficient counterpart over the 15-year forecast

range. In contrast, the TVP model for oil has a markedly worse outcome than its cor-

responding fixed-coefficient model, particularly over the shorter horizon. Finally, it is

interesting to note that forecast errors are generally much smaller for the coal series than

for the gas series.

The computation of the MSE confirms the outcomes of the statistical tests and il-

lustrates the usefulness of TVP-type models for forecasting coal and natural gas prices.

In fact, the MSE exercise does not fully reflect the extent to which these models work

better (in terms of forecasting) than their fixed-coefficient counterparts: in the forecasting

13A point raised by Pindyck.
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Table 3 - Mean Square Errors for Selected Models

Description of forecasted model Energy type MSE1971 MSE1981

Oil 0.378 0.086
Pt = λ + c2Pt−1 + φ2t + εt Coal 0.099 0.108

gas 1.676 3.096

Oil 0.206 1.241
Pt = λ + Pt−1 + φ2t + εt Coal 0.105 0.323

Gas 1.161 1.005

General TVP model

Pt = c1 + c2Pt−1 + φ1t + φ2tt + εt Oil 0.446 0.441
φ1t = c3φ1t−1 + v1t Coal 0.123 0.015
φ2t = c4φ2t−1 + v2t Gas 1.406 2.351
0 < c3, c4 < 1

Pindyck coal model

Pt = c1 + c2Pt−1 + φ1t + φ2tt + εt Coal 0.091 0.204
φ1t = c3φ1t−1 + v1t

φ2t = φ2t−1 + v2t

0 < c3 < 1

Pindyck gas model

Pt = λ + c2Pt−1 + φ2tt + εt Gas 1.834 0.106
φ2t = c4φ2t−1 + v2t

0 < c4 < 1

Notes: Mean square errors are calculated over 1971–96 and 1981–96, and denoted MSE1971 and MSE1981,
respectively. The models in the first two rows are estimated by ordinary least squares.
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experiment, state variables are not allowed to adjust to new information after 1970 and

1980; therefore, the MSE are actually overstated in those cases.

4. Conclusion

This paper has tested the statistical significance of Pindyck’s (1999) suggested class of

econometric equations that model the behaviour of long-run real energy prices. The

models postulate mean-reverting prices with continuous and random changes in their

level and trend, and are estimated using Kalman filtering. In such contexts, test statistics

are typically non-standard and depend on nuisance parameters. Using simulation-based

procedures to address this issue, we have reported results for both a standard Monte

Carlo test and a maximized Monte Carlo test. Our findings lend some support to the

proposed TVP class of energy models against the null hypothesis of fixed-coefficient mean-

reverting equations. That is, we have found statistically significant instabilities for coal

and natural gas prices, but not for crude oil prices. We have conducted out-of-sample

forecasting exercises to differentiate between various significant models. This illustrates

the complementarity of statistical testing and forecast analysis.
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Appendix A: The Maximized Monte Carlo Test

Monte Carlo tests have recently been generalized to the nuisance parameters-dependent

case by Dufour (2004). Dufour’s general MC test methodology can be summarized as

follows. Consider a (continuous) test statistic, S, the null distribution of which is simu-

lable conditional on a finite set of nuisance parameters. Conforming with the notational

framework of section 2, let us denote the nuisance parameter vector ω ∈ Ω, and let Ω0

refer to the nuisance parameter subspace compatible with the null hypothesis H0 under

test.

Denote by S0 the observed value of S and let Sj, j = 1 , . . . , N refer to N i.i.d.

random draws from the statistic’s null distribution conditional on ω. Dufour’s (2004)

maximized Monte Carlo (MMC) test is defined by the critical region

sup
ω ∈ Ω0

[p̂N(S0|ω)] ≤ α, (1)

where

p̂N(S0|ω) =
NĜN(S0|ω) + 1

N + 1
, (2)

ĜN(S0|ω) =
1

N

N∑
i=1

I[0,∞] (Si − S0), (3)

IA(x ) =

{
1, if x ∈ A,

0, if x /∈ A.
.

Note that NĜN(S0|ω) is the number of simulated criteria ≥ S0; therefore, the formula

for p̂N(S0|ω) gives a conditional empirical p-value. Dufour (2004) demonstrates that the

MMC test based on (1) is exact at level α:

P(H0)

{
sup

ω ∈ Ω0

[p̂N(S0|ω)] ≤ α

}
≤ α,

where P(H0) refers to the probability under H0. The only conditions underlying the latter

inequality are: (i) the possibility of simulating the relevant test statistic under the null
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hypothesis, and (ii) α(N + 1) is an integer.14 No asymptotics on N or T (neither the

number of replications nor the sample size) are required.

In this context, given any consistent estimate of ω that satisfies H0 (denoted ω̂), a

parametric bootstrap-type critical region can be obtained as:

p̂N(S0|ω̂) ≤ α. (4)

In general, however, nothing guarantees that the level property,

P(H0) [p̂N(S0|ω) ≤ α] ≤ α,

holds. Under specific regularity conditions, the bootstrap p-value may be valid asymp-

totically in the sense that

lim
T→∞

{P[p̂N(S0|ω̂) ≤ α] − P[p̂N(S0|ω0) ≤ α]} = 0, (5)

where p̂N(S0|ω0) is the empirical p-value that one would obtain for the “true” (unknown)

nuisance parameters values. Unfortunately, in the context of the TVP test, the results of

Dufour (1997, 2004) and Andrews (2000, 2001) imply that the conditions underlying (5)

fail for the same reason that standard asymptotics fail. In practice, this means that, if a

test rejects based on (4), this result may be spurious even in large samples. Yet bootstrap

non-rejections are not subject to the same limitations: if the bootstrap type test is not

significant, then we can be sure that the exact MMC test is not significant at level α.

Indeed,

p̂N(S0|ω̂) > α ⇒ sup
ω ∈ Ω0

[p̂N(S0|ω)] > α.

It is thus a good strategy to start the MMC sup-p-value step using a commonly used (e.g.,

a constrained QMLE) estimate of ω.

14For example, for α = 0.05, N can be as low as 19. Although, in principle, raising N will typically

increase the test power and decrease its sensitivity to the underlying randomization, the simulation results

reported in Dufour and Khalaf (2001, 2002 a,b, 2003), Dufour et al. (1998), and Dufour et al. (2004)

suggest that increasing N beyond 99 has only a small effect on power.
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Appendix B: Kalman Filtering and the TVP Model

This appendix draws heavily on Kim and Nelson (1999), chapter 3. Consider the TVP

model (3), which we rewrite for convenience in matrix notation as:

yt = Htβt + Azt + εt, (1)

βt = Fβt−1 + ηt, t = 1, ..., T,

εt ∼ i.i.d. N (0, R) ,

ηt ∼ i.i.d. N (0, Q) ,

where [
yt

]
=

[
Pt

] [
Ht

]
=

[
1 t

]
,[

βt

]
=

[
φ1t

φ2t

] [
zt

]
=

[
1

Pt−1

]
,

A =
[

c1 c2

] [
ηt

]
=

[
v1t

v2t

]
,

F =

[
c3 0

0 c4

]
Q =

[
σ2

v1
0

0 σ2
v2

]
.

The prediction equations in the Kalman filter algorithm are given by:

βt|t−1 = Fβt−1|t−1, (2)

St|t−1 = FSt−1|t−1F
′ + Q, (3)

where βt|t−1 is the forecast value of βt on the basis of information available through

date t − 1, and St|t−1 is its conditional variance. The conditional forecast error and its

conditional variance can be obtained as:

et|t−1 = yt − Htβt|t−1 − Azt, (4)

ft|t−1 = HtSt|t−1H
′
t + R. (5)

These expressions can be used in the updating equations of the algorithm according to

βt|t = βt|t−1 + Ktet|t−1, (6)

St|t = St|t−1 − KtHtSt|t−1, (7)
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where the Kalman gain term is Kt = St−1|t−1H
′
tf

−1
t|t−1.

If, in addition to the error terms εt and ηit, the initial value of β is Gaussian, then the

distribution of yt conditional on information available through time t−1 is also Gaussian,

and its log-likelihood function is:

lnL = −(1/2)
T∑

t=1

ln(2πft|t−1) − (1/2)
T∑

t=1

e′t|t−1ft|t−1et|t−1. (8)

Therefore, given initial values for model parameters and state variables, the log-likelihood

function can be maximized over the sample to yield maximum-likelihood parameter esti-

mates. See Kim and Nelson (1999) for additional details.
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