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Abstract

This paper proposes a class of linear signed rank statistics to test for a random walk with unk
drift in the presence of arbitrary forms of conditional heteroscedasticity. The class consi
includes analogues of the well-known sign and Wilcoxon test statistics. The exactness
proposed tests rests only on the assumption that the errors are symmetrically distributed. N
assumptions, such as normality or even the existence of moments, are required. Simu
confirm the reliability of the proposed tests, and their power is superior to that of the param
variance-ratio test. The inference methods developed are illustrated by a test of the random
hypothesis in exchange rates for five major currencies against the U.S. dollar.

JEL classification: C12, C22
Bank classification: Econometric and statistical methods

Résumé

L’auteur propose de se servir de tests des rangs de forme linéaire pour vérifier si une m
aléatoire avec dérive indéterminée est possible en présence de formes arbi
d’hétéroscédasticité conditionnelle. La catégorie de tests qu’il envisage comprend des ana
de deux tests bien connus : le test des signes et le test de Wilcoxon. Une seule hypothèse,
une distribution symétrique des erreurs, suffit pour assurer l’exactitude des tests proposés;
autre hypothèse, telle que la normalité ou même l’existence de moments, n’est requis
simulations confirment la fiabilité des tests, dont la puissance est supérieure à celle d
paramétrique du ratio des variances. À l’aide des méthodes d’inférence qu’il a mises au
l’auteur teste l’hypothèse que l’évolution du cours de cinq grandes monnaies par rapport au
américain s’apparente à une marche aléatoire.

Classification JEL : C12, C22
Classification de la Banque : Méthodes économétriques et statistiques





1. Introduction

The random walk hypothesis is important in the analysis of economic and �nancial

time series. Speci�cally, given a time series of random variables y1; :::; yT , the

random walk hypothesis corresponds to � = 1 in the �rst-order autoregressive

model

yt = �+ �yt�1 + "t; (1)

where � is an unknown drift parameter and the error terms "t will, in general, be

neither independent nor identically distributed.

Among the many ways proposed to test the random walk hypothesis, Cochrane's

(1988) variance-ratio methodology has become popular, especially in empirical �-

nance (see, for example, Poterba and Summers 1988, Lo and MacKinlay 1988,

Liu and He 1991, and Kim, Nelson, and Startz 1991). It exploits the fact that

the variance of uncorrelated increments is linear in the sampling interval. The

variance-ratio statistic at lag q is de�ned as the ratio of the variance of the q-

period di�erence to the variance of the one-period di�erence divided by q. Under

the null hypothesis of a random walk, this ratio is unity.

Lo and MacKinlay (1988) derive the asymptotic sampling theory for the variance-

ratio statistic. In recognition of the time-varying volatilities that characterize

�nancial time series, Lo and MacKinlay also derive a heteroscedastic-consistent

estimator of the variance-ratio's asymptotic variance. The accuracy of this estima-

tor depends on the relative homogeneity of the conditional variances. As Lo and

MacKinlay show, the variance ratio is approximately a linear combination of au-

tocorrelation coeÆcients similar to the Box-Pierce Portmanteau statistic. Hence,

the variance-ratio statistic depends on the asymptotic properties of the empirical

autocorrelations. Taylor (1984) argues that, to obtain accurate autocorrelation es-

timates, a series possessing reasonably homogeneous conditional variances should

be used. Such a series results when the returns are rescaled by their conditional
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standard deviation. As the simulation results of Kim, Nelson, and Startz (1998)

indicate, failure to properly rescale leads the variance-ratio test to have the wrong

size, rejecting the null too often, depending on the degree of heterogeneity in the

conditional variances. Moreover, it is well known that the kind of distributions

encountered in �nancial applications typically exhibit fat tails and in some cases

not even the second moment seems to exist. The simulation results described in

this paper further reveal that when moments do not exist, such as with the Cauchy

distribution, the variance ratio su�ers severe size distortions, again rejecting much

too often.

This paper proposes alternative methods of testing the random walk hypothesis

that overcome these diÆculties.1 The approach exploits results from the theory of

non-parametric statistics that show that the only tests about a median or mean

that are valid under suÆciently general distributional assumptions, allowing for

non-normal and possibly heteroscedastic observations, are based on sign statistics

(see Pratt and Gibbons 1981, 218). Such results have been exploited by Dufour

(1981) and Campbell and Dufour (1991, 1995, 1997), where several variants of

signed rank tests are considered to test orthogonality restrictions, including the

random walk hypothesis in time series.

Following Campbell and Dufour (1997), a test of the random walk hypothesis

in the presence of an unknown drift parameter proceeds in two steps. First, one

establishes an exact con�dence interval for the drift parameter, �, that is valid

at least under the null hypothesis. Second, signed rank statistics based on the

products (yt � yt�1 � b)[yt�1 �medt�1], where medt is the sample median up to

1Other parametric tests have been proposed that do yield exact inference methods for �rst-

order autoregressive models, including the random walk hypothesis (see, for example, Dickey and

Fuller 1979, Dufour and Kiviet 1998, and Dufour and Torr�es 2000). However, the exactness of

those methods rests on speci�c parametric assumptions, such as normality of the errors. Breitung

and Gouri�eroux (1997) obtain an exact rank test for a random walk with drift; however, the

exactness rests on the assumption of independent and identically distributed errors.
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time t; are computed for each value b element of the con�dence interval. Campbell

and Dufour show that the sign and Wilcoxon tests apply in this context such that,

when combined using Bonferroni's inequality with the con�dence interval for �; a

�nite-sample bounds test can be performed.

As their simulation experiments reveal, the Campbell-Dufour approach can be

conservative in �nite samples such that power losses can result against certain

alternatives. The signed rank statistics proposed in this paper have the virtues

of those in Campbell and Dufour (1997): they have known �nite-sample distri-

butions, they are robust to departures from Gaussian conditions that underlie

many parametric tests, and they are invariant to unknown forms of conditional

heteroscedasticity. Additionally, Monte Carlo simulations show that the methods

proposed here are more powerful than the Campbell-Dufour approach.

Section 2 de�nes the model and the assumptions under which the test statis-

tics are developed. Section 3 derives the class of non-parametric test statistics

along with their null distributions. Section 4 presents the results of a Monte

Carlo study as evidence of the �nite-sample performance of the proposed meth-

ods. Size-corrected power comparisons are made with Lo and MacKinlay's (1988)

parametric variance-ratio statistics; the power of the non-parametric statistics

proposed here is shown to be superior to that of the parametric variance ratio.

Section 5 applies the methods to test the hypothesis of a random walk in exchange

rates for �ve major currencies against the U.S. dollar. Section 6 concludes.

2. De�nition of the Model

The observed process fytg is assumed to be generated according to

yt = �+ �yt�1 + "t; for t = 1; :::; T (2)

where � = c(1� �). This parameterization of the drift parameter � follows from

the framework in Andrews (1993) based on a latent AR(1) time series. Here it
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is assumed that c 6= 0 such that the autoregressive parameter may be expressed

as � = 1 � �=c. To understand the reason for this, suppose that yt = �yt�1 + "t

with j�j < 1, and that "t is symmetrically distributed about zero. In this case, the

procedures developed below, designed speci�cally against non-zero median alter-

natives, lose their usefulness, since the marginal distribution of yt is symmetric.2

Excluding this case is not too restrictive, since, as Andrews (1993) argued, one

rarely assumes that the drift parameter is known and equal to zero. In the frame-

work established here, � = 0 implies � = 1. Note that the set of admissible values

for the autoregressive parameter is unrestricted.

Let f("t; "t�1; :::; "0) denote the continuous multivariate density of the error

terms, let "t0 denote the vector ("t; :::; "0), and de�ne j"t0j to be (j"tj; :::; j"0j). As

in Taylor (1984), it is assumed that the multivariate density of the error terms is

symmetric, such that

f("t0) = f(j"t0j); (3)

for all "t0, t = 0; 1; :::; T .

Several popular models of time-varying conditional variance satisfy the multi-

variate symmetry assumption. Suppose that the errors are governed by "t = �t ��t,

where f�tg is an independent and identically distributed (i.i.d.) sequence drawn

from a symmetric distribution such as a standard Gaussian or Student-t distribu-

tion. For example, suppose that �t � i:i:d: N(0; 1) and

�2t = �0 +

qX
i=1

�i"
2
t�i +

pX
i=1

�i�
2
t�i: (4)

This is the Gaussian GARCH(p,q) model introduced by Bollerslev (1986), in which

�2t depends linearly on past squared realizations of "t: In this case, (3) is satis�ed,

since

("t j "
t�1
0 )

d
= (j"tj j j"t�10 j); (5)

2Also presented is a modi�cation of the procedures with discriminatory power against alter-

natives where � = 0. The non-parametric statistics based on this modi�cation are, however,

only exact in large samples.
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where
d
= stands for the equality in distribution. More generally, any speci�cation

in which the conditional variance of "t is given by a function of its past realizations,

such as

�2t = g("t�1; "t�2; :::; "0);

where g("t�1; "t�2; :::; "0) = g(j"t�1j; j"t�2j; :::; j"0j), will satisfy (5) and thus (3).

Of course, it is assumed that the function g(�) is strictly positive such that the

conditional variance is well-de�ned. The conditional variance need not be �nite

nor even follow a stationary process. In fact, other than (5), and a fortiori (3),

no restrictions are placed on the degree of heterogeneity and dependence of the

conditional variance process. Notice that if the �rst moment exists, then the

symmetry assumption in (5) implies the usual assumption of zero conditional

expectation E("tj"t�1; "t�2; :::; "0) = 0, which in turn implies E("t) = 0.

Furthermore, the condition in (3) implies that E("t; "s) = 0; for t 6= s (see

Randles and Wolfe 1979, Lemma 1.3.28). This zero covariance condition forms

the basic building block of the variance-ratio statistic. However, the multivariate

symmetry assumption is much more general, since �nite covariances are not as-

sumed. In fact, the existence of any moments need not be assumed for the validity

of the procedures described next.

3. Description of the Test Statistics

The null hypothesis to be tested is H0 : � = 1 in the context of model (2) de�ned

above. To this end, consider the �rst-di�erence �yt = yt � yt�1 for t = 1; 2; :::; T:

The basic building block of the inference method proposed here is the following

quantity:

zt = �yt+m ��yt; (6)

de�ned for t = 1; 2; :::; m, where m = T=2. It will be assumed that T is even, so

that the midpoint m is an integer. De�ne the sign function as s[z] = 1 if z > 0;
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and s[z] = 0 if z � 0, and consider the class of linear signed rank statistics de�ned

by:

SRm =
mX
t=1

s[zt]am(R
+

t ); (7)

where R+
t is the rank of jztj when jz1j; jz2j; :::; jzmj are placed in ascending order and

the corresponding set of scores am(i); i = 1; :::; m satisfy 0 � am(1) � ::: � am(m)

with am(m) > 0:

At �rst, it would seem to be diÆcult to establish the null distribution of the test

statistics de�ned by (7), since the di�erences zt are not necessarily independent.

Despite this diÆculty, the exact null distribution of any statistic de�ned by (7) is

characterized next. Notice �rst that when � = 1; these statistics are a function

only of ("t+m � "t); t = 1; 2; :::; m.

Lemma 0.1 Let "0; "1; :::; "T be a sequence of continuously distributed random

variables that satisfy the symmetry condition (3). Then, s[("t+m�"t)] is distributed

like a Bernoulli variable Bt; such that Pr[Bt = 1] = Pr[Bt = 0] = 1=2 for t =

1; 2; :::; m:

Proof: Under the symmetry condition (3),

("1; "2; :::; "T )
d
= (�"1;�"2; :::;�"T ): (8)

De�ne Æ("1; "2; :::; "T ) = (("m+1 � "1); ("m+2 � "2); :::; ("T � "m)): Then it follows

that

Æ("1; "2; :::; "T )
d
= Æ(�"1;�"2; :::;�"T ); (9)

or

(("m+1 � "1); :::; ("T � "m))
d
= (�("m+1 � "1); :::;�("T � "m)); (10)

since X
d
= Y implies U(X)

d
= U(Y) for any measurable function U(�) de�ned on

the common support of X and Y (see Randles and Wolfe 1979, Theorem 1.3.7).

In turn,

E [s[("t+m � "t)]]
d
= E [s[�("t+m � "t)]] ; (11)
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or

Pr["t+m � "t > 0] = Pr["t+m � "t < 0] = 1=2; (12)

for t = 1; 2; :::; m, since ("t+m � "t) is continuous, QED.

This result is a slight generalization of the lemma on medians found in Theil

(1971, 618), in that here the marginal distributions are not assumed to be indepen-

dent. The lemma establishes that, under the null, the elements of (s[z1]; :::; s[zm])

are identically distributed. If they are also independent, then by exchangeabil-

ity we have (s[z1]; s[z2]; :::; s[zm])
d
= (s[zd1 ]; s[zd2 ]:::; s[zdm ]) for all permutations

(d1; d2; :::; dm) of the integers (1; 2; :::; m): The next result establishes that this is

indeed the case and that the null distribution, of any linear signed rank statistic

de�ned by (7), is identical to the null distribution that would result if z1; z2; :::; zm

were independent.

Theorem 0.1 Let "0; "1; :::; "T be a sequence of continuously distributed random

variables that satisfy the symmetry condition (3). Then, the null distribution of

any linear signed rank statistic de�ned by (7) has the property that

SRm =
mX
t=1

s[zt]am(R
+

t )
d
=

mX
i=1

Biam(i); (13)

where B1; :::; Bm are mutually independent uniform Bernoulli variables on f0; 1g:

Proof: Under the symmetry condition (3),

("1; "2; :::; "T )
d
= (�"1; "2; :::; "T )

d
= � � �

d
= (�"1;�"2; :::;�"T );

where all 2T such terms appear in this string of equalities in distribution. By

applying the function Æ(�) de�ned in the lemma, it is seen that

(("m+1 � "1); ("m+2 � "2); :::; ("T � "m))
d
=

(�("m+1 � "1); ("m+2 � "2); :::; ("T � "m))
d
=

(("m+1 � "1);�("m+2 � "2); :::; ("T � "m))
d
=

� � �
d
=

(�("m+1 � "1);�("m+2 � "2); :::;�("T � "m));

7



where all 2m such terms appear in this string of equalities in distribution. Let

E = (("m+1�"1); ("m+2�"2); :::; ("T �"m)). It follows that the 2
m di�erent values

that the vector s(E) = (s["m+1�"1]; s["m+2�"2]; :::; s["T�"m]) may take in f0; 1gm

have the same probability (1=2)m: Therefore, the elements of s(E) are mutually

independent. De�ne di to be the position of the integer i in the realization of the

vector (R+

1 ; R
+

2 ; :::; R
+
m); i = 1; :::; m: Thus

mX
t=1

s[zt]am(R
+

t ) =
mX
i=1

s[zdi ]am(i): (14)

Now, conditionally on jEj = (j"m+1 � "1j; j"m+2 � "2j; :::; j"T � "mj); the vector of

scores is a �xed permutation of (am(1); am(2); :::; am(m)): Under the null, condi-

tionally on jEj, it follows that
mX
i=1

s[zdi ]am(i)
d
=

mX
i=1

Biam(i); (15)

since (s[zd1 ]; s[zd2 ]; :::; s[zdm ])
d
= (B1; B2; :::; Bm), where B1; :::; Bm are mutually

independent uniform Bernoulli variables on f0; 1g: Moreover, given the symmetry

established in the lemma, we have under the null that s[zt] is independent of R
+
t

and thus of am(R
+
t ) (see Randles and Wolfe 1979, Lemma 2.4.2). Therefore, under

the null, it is the case also unconditionally that

SRm =
mX
t=1

s[zt]am(R
+

t )
d
=

mX
i=1

Biam(i); (16)

since the distribution of
Pm

i=1Biam(i) does not depend on jEj, QED.

For similar extensions of the theory of linear signed rank tests, see Dufour

(1981) and Campbell and Dufour (1991, 1995, 1997). Within the class of statistics

de�ned by (7), consider the sign statistic, which is obtained from the constant score

function am(i) = 1:

Sm =
mX
t=1

s[zt]; (17)

and the Wilcoxon signed rank statistic

Wm =
mX
t=1

s[zt]R
+

t ; (18)
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obtained with am(i) = i. The following result, which is an immediate corollary

to the theorem, establishes that the statistics de�ned in (17) and (18) have the

usual distributions.

Corollary 0.1 Let the model given by (2) hold with assumption (3). Then, when

� = 1; we have:

(i) The statistic Sm de�ned by (17) is distributed according to B(m; 1=2) a

binomial distribution with number of trials m = T=2 and probability of success

1=2:

(ii) The statistic Wm de�ned by (18) is distributed like W (m) =
Pm

i=1 iBi,

where B1; :::; Bm are mutually independent uniform Bernoulli variables on f0; 1g:

The null distribution of the Wilcoxon variate has been tabulated for various

values of m; see Table A.4 in Hollander and Wolfe (1973) for m � 15. For larger

values, the standard normal distribution provides a very good approximation. In

fact, following standard results found in Randles and Wolfe (1979, Section 10.2),

it can be shown that under the null, the standardized statistic

SR�

m =

"
SRm �

1

2

mX
t=1

am(t)

#,vuut1

4

mX
t=1

a2m(t) (19)

has a limiting standard normal distribution.

If the error distribution were known, it would be possible to select a set of

scores to obtain a locally most powerful signed rank test (see Randles and Wolfe

1979, Theorem 10.1.19). Since in most applications the distribution of the errors

is unknown, optimal scores are diÆcult to choose.

Besides the obvious dependence on sample size, the power of the proposed test

statistics depends by construction on the value of the drift parameter. Power can

be improved by modifying the basic building block to ~zt = zt(yt+m�1� yt�1). The

modi�ed building block,

~zt = (�� 1)(yt+m�1 � yt�1)
2 + ("t+m � "t)(yt+m�1 � yt�1); (20)
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has a median shifted to the left or right, depending on the sign and magnitude of

(�� 1). Furthermore, the statistics based on ~zt will have power to detect � = 0,

an alternative against which the statistics based on zt only have trivial power.

This modi�cation follows one proposed in Campbell and Dufour (1997) to resolve

similar problems. However, owing to the presence of the term "tyt+m�1 in (20), the

statistics based on this modi�cation are only approximately exact. As the sample

size increases, the e�ect of this term becomes negligible. In the next section,

numerical evidence is presented that shows that the approximately exact versions

reject at their nominal level, even with relatively small samples, and outperform

in some cases the exact signed rank statistics.

4. Comparison with the Variance Ratio

There have been some Monte Carlo comparisons between parametric and non-

parametric tests of the random walk hypothesis. For instance, Campbell and

Dufour (1997) report evidence on the size and power of their non-parametric

bounds procedures compared with the t-statistic based on the OLS estimate of

�1 in a regression of the form yt = �0 + �1yt�1 + ut. Under various distributions

of the error terms, they �nd that the non-parametric procedures based on signs

and ranks outperform the parametric tests in terms of power, especially when the

error distribution is fat-tailed.

Similar power gains from using non-parametric tests are reported in Wright

(2000). He compares his non-parametric versions of the variance-ratio test statis-

tic based on signs and ranks with the conventional variance-ratio test. The Monte

Carlo simulations are performed in the context of a stochastic volatility model

which di�ers from that used in Lo and MacKinlay (1989) by the alternative dis-

tributional assumptions for the error term. Wright �nds that his non-parametric

tests dominate even the heteroscedastic-robust version of the parametric variance-

10



ratio test.

Similarly, the Monte Carlo simulations in this section compare the size and

power of the signed rank test statistics introduced in the previous section with

the parametric variance-ratio test. Speci�cally, the comparison is with Lo and

MacKinlay's (1988) variance-ratio statistic, computed as:

V R(q) =
�2(q)

�2
; (21)

where

�̂2(q) =
1

M

TX
t=q

(yt � yt�q � q�̂)2; (22)

M = q(T � q + 1)(1� q=T ): (23)

and

�̂2 =
1

T � 1

TX
t=1

(yt � yt�1 � �̂)2; (24)

�̂ =
1

T

TX
t=1

yt � yt�1: (25)

Lo and MacKinlay show that the following test statistic is asymptotically standard

normal under the null hypothesis:

V R1(q) = (V R(q)� 1)

�
2(2q � 1)(q � 1)

3qT

�
�1=2

(26)

They further derive the following version of the variance-ratio statistic, which is

consistent for certain forms of conditional heteroscedasticity:3

V R2(q) = (V R(q)� 1)

 
q�1X
j=1

�
2(q � j)

q

�2
Æ̂(j)

!
�1=2

(27)

where

Æ̂(j) =

PT
t=j+1(yt � yt�1 � �̂)2(yt�j � yt�j�1 � �̂)2hPT

t=1(yt � yt�1 � �̂)2
i2 : (28)

3To ensure consistency, restrictions must be placed on the maximum degree of dependence

and heterogeneity allowable while still permitting a law of large numbers and a central-limit

theorem to hold. See Lo and MacKinlay (1988, 48-50) for more details.
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The presence of the unknown drift parameter in the null hypothesis distinguishes

this study from that of Wright (2000), which assumes for the validity of his sign-

based statistics that the drift is known to be identically zero. In this respect, the

results reported here are comparable with those of Campbell and Dufour (1997),

who explicitly allow for an unknown drift parameter. Campbell and Dufour's

approach ensures that the probability of a Type I error is bounded from above by

the desired level �. As the simulations in Campbell and Dufour (1997) show, the

bounds tests can be quite conservative in �nite samples, such that power losses

may result against certain alternatives.

The size and power comparisons made here are couched in terms of the fol-

lowing models:

Model 1: yt = �+ �yt�1 + "t.

Model 2: yt = �+ �yt�1 + exp(ht=2)"t with ht = �ht�1 + �t.

As in Campbell and Dufour (1997), "t are i.i.d. according to either a N(0; 1),

a t(3), or a Cauchy distribution. The intercept is � = 2 such that the results

pertaining to Model 1 are directly comparable with those in Campbell and Dufour

(1997). The initial value is generated as y0 = �+ "0 under both the null and the

alternative hypotheses. Model 2 is a stochastic volatility model similar to that in

Lo and MacKinlay (1989) and Wright (2000). The persistence parameter is set

as � = 0:99 and the innovations to volatility �t are i.i.d. N(0; 1) independent of

"� for all t and � . Samples of size T = 100; 200 are simulated, and � = 1 is also

considered, to contrast the power of the tests based on zt with those based on ~zt.

At the 5 per cent signi�cance level, each test of the random walk null hypothesis

H0 : � = 1 is applied as two-sided. The empirical rejection probabilities reported

in Tables 1 through 6 are based on 1000 replications of each data-generating

process. In each case, the models were �rst simulated under the null hypothesis.

The results of this �rst round are found in the rows where � = 1. Using the same

sequences of error terms, data were generated under the alternative hypotheses
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considered such that the di�erences are entirely attributable to the change in �.

Each test was size-corrected using the empirical critical values obtained in the

�rst round of simulations.

The results for model 1 are reported in Tables 1 through 3. The results in Table

1 are for the case where � = 1 and T = 100. Under Cauchy distributed error terms,

the variance ratio behaves better than its heteroscedastic-robust version, which

rejects in some cases at more than �ve times its nominal level. On the other hand,

the non-parametric tests are seen to be robust, rejecting at the nominal level under

the null. Holding the value of the drift �xed, Table 2 reports the results when

the sample size is doubled to T = 200. In some cases, such as under normally

distributed errors, power is nearly doubled. As � tends to zero, the median of

zt also tends toward zero. For this reason, power is seen to decrease somewhat

when � = 0:98 compared to � = 0:99.4 As Table 7 shows, the modi�cation to ~zt

overcomes this problem.

Comparing the results of Table 3, where � = 2 and T = 100, with those of

Campbell and Dufour (1997, Table 6), the non-parametric tests proposed here

display superior power. Again, they also dominate the variance-ratio tests. It

appears that, for thin-tailed error distributions, power increases more when the

drift increases than when the sample size increases. When the errors are fat-

tailed, power gains seem to be more appreciable when the sample size increases

than when the drift increases.

The good performance of the non-parametric tests is repeated in Tables 4

through 6 for the stochastic volatility model. The results in these tables indicate

that the conventional variance-ratio test is not robust to conditional heteroscedas-

ticity. The robust version performs much better with empirical rejections closer

to the nominal level. However, as in Tables 1 to 3, even the heteroscedastic-robust

4The proposed statistics have non-trivial power against non-stationary alternatives j�j > 1,

regardless of the value of the drift parameter.
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version of the variance-ratio test su�ers from size distortions when the errors are

Cauchy distributed. Although hardly surprising, considering that the central-

limit theorem does not apply in this case, such results warn that the variance

ratio should not be applied blindly without consideration for the conditions under

which such parametric procedures are valid.

Table 7 reports the size and power of the approximately exact versions of the

standardized sign and Wilcoxon statistics for various values of the drift parameter.

These results are based on 10,000 replications. The tests behave well, rejecting at

their nominal level in a manner similar to that of the exact signed rank statistics.

The power results are remarkable. In particular, the performance of the Wilcoxon

statistic is clearly superior to that reported in Tables 1 and 2 under the same

generating con�guration.

5. Application to Exchange Rates

Several authors, such as Meese and Singleton (1982) and Baillie and Bollerslev

(1989), provide evidence to support the conjecture that the process generating

the natural logarithm of nominal exchange rates is well approximated by random

walks. This suggests that foreign exchange markets are informationally eÆcient5

(see also Cornell and Dietrich 1978, Corbae and Ouliaris 1986, and Hsieh 1988).

This view is challenged by Liu and He (1991), who found evidence to reject the

random walk hypothesis when they applied the Lo-MacKinlay variance-ratio test

to �ve major weekly nominal exchange rates: the Canadian dollar, French franc,

German mark, Japanese yen, and British pound, all vis-�a-vis the U.S. dollar. This

challenge is further supported in the conclusions of Wright (2000). This section

re-examines the random walk hypothesis for these nominal foreign exchange rates

5In the sense that if markets are informationally eÆcient then the best forecast of the future

price is the current price. See Campbell, Lo, and MacKinlay (1997, Section 2.1) for more on

market eÆciency and the random walk hypothesis.
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with the non-parametric tests proposed above.

The data consist of daily spot exchange rates for the �ve aforementioned cur-

rencies for the period covering 7 August 1974 to 29 May 1996. The foreign ex-

changes and the time period considered are the same as in Wright (2000), although

the data source is di�erent. These data were collected by the Federal Reserve Bank

of New York and are the noon buying rates in New York.6

The exchange rate observed on Wednesday (or the next trading day if the

market was closed on Wednesday) was used to construct the weekly returns. These

were taken to be the �rst di�erences of the natural logarithm of the rates retained

each week.

The values of the variance-ratio test statistic and its heteroscedastic consistent

version, V R1 and V R2; for aggregation values q = 2, 5, 10, and 30, are reported

in Table 8. Also reported is the value of the sign and Wilcoxon statistics based

on ~zt. This version is preferable given high-frequency returns where the drift is

relatively small.

Except for the Canadian dollar, the random walk hypothesis cannot be re-

jected on the basis of the proposed non-parametric statistics. The results from the

variance-ratio tests are in stark contrast with those based on the non-parametric

statistics. On the basis of the parametric variance ratios,7 the random walk hy-

pothesis is rejected for some values of q. The case of the Japanese yen is particu-

larly striking.

The results for the foreign exchange rates considered here provide evidence

that is contrary to that obtained by Liu and He (1991) and Wright (2000). In

6The data are available on the Board of Governors of the Federal Reserve System Web site.
7The inference ignores the joint implications of the variance ratios for the various values of

q. Chow and Denning (1993) and Cecchetti and Lam (1994) have proposed methods for testing

multiple variance ratios. Fong, Koh, and Ouliaris (1997) found, contrary to Liu and He (1991),

that once the joint implications of the variance-ratio statistics are taken into account, there is

much weaker evidence against the random walk hypothesis.
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general, it is found on the basis of non-parametric procedures, which are valid

in �nite-samples under suÆciently general assumptions, that the random walk

hypothesis cannot be rejected.8

6. Concluding Remarks

This paper's main motive was to provide a generalization of the non-parametric

bounds tests for a random walk with unknown drift proposed in Campbell and

Dufour (1997). Their approach ensures that the probability of a Type I error is

bounded from above by the desired level �. These bounds tests, however, can

be quite conservative in �nite samples such that power losses might occur. The

distinguishing feature of the non-parametric tests proposed in this paper is that,

while they retain the virtues of those proposed in Campbell and Dufour (1997),

the probability of a Type I error is exactly �.

The robustness of the proposed tests to unknown forms of heterogeneity and

dependence in the conditional variance has been contrasted against the parametric

variance-ratio test. The results of simulation experiments further reveal that the

power of the proposed tests is superior to that of the variance-ratio test for the

alternatives considered here. A comparison of these results with those in Campbell

and Dufour (1997) highlights the power gains of the non-parametric tests proposed

in this paper.

Although the proposed methods have been illustrated with �nancial time se-

ries, they have general applicability. The methods will have high discriminatory

power in the context of macroeconomic time series, for example, where the drift

term is usually large.

8Implicitly, this is also a non-rejection of the hypothesis of symmetrically distributed in-

novations. This suggests that models of foreign exchange volatility that assume symmetric

distributions, such as Gaussian or Student-t GARCH models, might not be misspeci�ed at least

in this respect.
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Table 1
Size and Power comparisons for Model 1 with � = 1, T = 100

q = 2 q = 5 q = 10
� V R1 V R2 V R1 V R2 V R1 V R2 S�m W �

m

"t � N(0; 1)
1.00 5.1 5.5 4.8 5.3 5.3 5.8 5.8 6.3
0.99 7.2 6.9 12.9 12.5 15.6 16.1 17.6 34.1
0.98 9.1 8.3 18.2 17.5 24.2 24.5 27.8 50.3

"t � t(3)
1.00 4.9 5.7 4.9 7.4 4.4 6.5 4.9 5.3
0.99 5.4 4.3 6.0 6.2 7.8 6.0 19.5 25.0
0.98 5.4 4.9 7.1 7.9 10.0 7.3 27.5 35.1

"t � Cauchy
1.00 3.8 11.4 4.7 16.7 3.7 22.4 5.5 4.2
0.99 5.5 4.3 5.3 4.1 5.2 4.5 25.1 30.8
0.98 5.6 3.2 5.4 3.6 5.5 3.6 34.1 38.0

Note: Entries are the empirical rejection probabilities (in percentage) of the
random walk hypothesis H0 : � = 1 in the model yt = � + �yt�1 + "t for
t = 1; :::; T , where "t are independent and identically distributed.

Table 2
Size and Power comparisons for Model 1 with � = 1, T = 200

q = 2 q = 5 q = 10
� V R1 V R2 V R1 V R2 V R1 V R2 S�m W �

m

"t � N(0; 1)
1.00 5.7 6.2 5.8 6.1 4.7 5.1 3.8 4.0
0.99 11.8 10.6 27.2 27.1 44.8 44.6 62.6 86.4
0.98 10.7 9.4 25.1 24.4 40.9 40.8 53.6 83.6

"t � t(3)
1.00 5.0 4.8 4.2 4.3 4.7 5.8 4.7 5.0
0.99 6.0 6.5 9.4 10.0 13.0 13.8 44.2 57.9
0.98 5.3 5.6 7.8 7.7 10.1 10.8 39.0 48.9

"t � Cauchy
1.00 3.4 10.6 5.1 14.3 4.7 18.9 4.4 4.6
0.99 5.2 3.4 4.6 2.7 5.2 2.9 52.2 49.3
0.98 4.7 2.8 4.5 2.4 4.5 2.4 56.6 56.7

Note: See Table 1.
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Table 3
Size and Power comparisons for Model 1 with � = 2, T = 100

q = 2 q = 5 q = 10
� V R1 V R2 V R1 V R2 V R1 V R2 S�m W �

m

"t � N(0; 1)
1.00 5.0 4.7 4.1 4.1 4.4 5.1 5.0 4.3
0.99 19.5 20.8 49.5 49.8 62.9 62.7 72.0 90.1
0.98 42.1 43.5 79.2 80.0 89.0 89.2 90.6 98.7

"t � t(3)
1.00 4.9 5.3 5.8 7.0 4.1 6.1 4.8 5.1
0.99 9.0 11.0 16.6 17.4 26.2 26.0 52.8 61.4
0.98 13.6 15.5 27.9 28.3 42.8 41.4 71.6 82.9

"t � Cauchy
1.00 3.3 10.0 3.7 15.4 2.9 21.2 6.1 4.6
0.99 5.2 3.6 5.3 4.3 6.1 4.8 32.2 38.6
0.98 5.4 3.3 5.4 3.2 6.1 3.8 41.7 45.8

Note: See Table 1.
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Table 4
Size and Power comparisons for Model 2 with � = 1, T = 100

q = 2 q = 5 q = 10
� V R1 V R2 V R1 V R2 V R1 V R2 S�m W �

m

"t � N(0; 1)
1.00 39.0 5.2 35.6 5.5 26.3 5.3 6.1 5.1
0.99 19.4 21.6 23.3 24.6 24.1 24.5 41.3 40.0
0.98 21.0 23.7 24.9 25.5 26.0 26.2 46.3 43.6

"t � t(3)
1.00 33.4 6.3 31.8 7.9 24.5 6.7 5.9 5.6
0.99 14.3 18.2 18.5 18.6 20.8 20.8 38.9 36.8
0.98 16.5 20.2 20.1 20.8 21.2 21.9 44.0 39.5

"t � Cauchy
1.00 14.1 8.6 15.8 12.5 10.1 16.8 4.2 6.2
0.99 9.8 11.3 11.0 10.6 12.9 11.4 52.5 41.2
0.98 10.9 11.0 11.9 11.4 13.2 11.9 58.3 47.1

Note: Entries are the empirical rejection probabilities (in percentage) of the
random walk hypothesis H0 : � = 1 in the model yt = � + �yt�1 + exp(ht=2)"t
with ht = �ht�1 + �t for t = 1; :::; T , where � = 0:99, and �t is i.i.d. N(0; 1)
independent of "t, which also are independent and identically distributed.
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Table 5
Size and Power comparisons for Model 2 with � = 1, T = 200

q = 2 q = 5 q = 10
� V R1 V R2 V R1 V R2 V R1 V R2 S�m W �

m

"t � N(0; 1)
1.00 52.4 4.1 49.4 4.8 42.7 5.8 3.7 5.0
0.99 12.0 14.2 15.4 15.7 16.3 17.1 59.3 46.5
0.98 12.2 14.3 15.2 15.6 15.5 16.1 61.5 48.5

"t � t(3)
1.00 46.4 4.3 46.5 5.8 40.7 6.5 4.2 3.7
0.99 11.8 13.4 14.2 14.8 15.0 15.7 58.2 49.0
0.98 12.1 13.3 14.2 14.5 14.5 15.0 61.6 51.7

"t � Cauchy
1.00 17.3 6.8 18.7 9.6 18.2 11.6 4.0 5.5
0.99 6.7 7.1 7.2 7.7 7.1 7.4 72.0 61.1
0.98 6.8 6.9 7.1 6.8 6.9 6.9 73.1 65.8

Note: See Table 4.

Table 6
Size and Power comparisons for Model 2 with � = 2, T = 100

q = 2 q = 5 q = 10
� V R1 V R2 V R1 V R2 V R1 V R2 S�m W �

m

"t � N(0; 1)
1.00 39.2 5.5 34.3 5.7 27.2 5.5 5.3 5.0
0.99 24.0 26.6 28.5 30.0 32.1 31.2 50.0 49.5
0.98 27.0 28.9 31.1 32.5 34.6 34.3 54.2 51.6

"t � t(3)
1.00 32.0 4.4 28.0 5.1 20.3 5.5 3.4 4.6
0.99 20.5 23.4 23.3 25.1 26.3 25.8 49.7 46.1
0.98 22.0 24.0 24.9 27.2 28.5 28.2 54.4 49.2

"t � Cauchy
1.00 13.3 8.4 14.0 13.3 11.7 15.8 4.7 4.6
0.99 12.4 14.2 14.1 14.5 16.1 14.4 59.7 51.7
0.98 14.0 14.0 14.9 14.5 16.6 14.6 65.2 57.2

Note: See Table 4.
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Table 7
Size and power of the approximately exact test statistics

� = 0:25 � = 0:5 � = 0:75 � = 1

� eS�m fW �

m
eS�m fW �

m
eS�m fW �

m
eS�m fW �

m

T = 100
1.00 5.46 7.10 5.01 5.52 5.02 5.32 5.03 5.19
0.99 8.08 13.05 11.15 18.11 17.21 27.92 26.16 41.47
0.98 9.34 15.20 15.33 27.53 24.78 43.19 38.03 61.43

T = 200
1.00 4.22 5.62 4.11 4.90 4.13 4.85 4.16 4.78
0.99 9.91 18.26 21.18 38.61 40.05 65.47 62.70 87.71
0.98 10.04 19.46 19.67 42.71 37.23 70.40 58.01 89.74

Note: Entries are the empirical rejection probabilities (in percentage) of the
random walk hypothesis H0 : � = 1 in the model yt = � + �yt�1 + "t for
t = 1; :::; T , where "t � i:i:d: N(0; 1).

Table 8
Tests for a random walk in weekly exchange rates

q = 2 q = 5 q = 10 q = 30

V R1 V R2 V R1 V R2 V R1 V R2 V R1 V R2
eS�m fW �

m

Can$/US$
2.69? 2.12? 1.74 1.43 0.60 0.51 0.47 0.43 -2.68? -2.71?

FF/US$
1.69 1.54 2.21? 1.88 1.87 1.60 2.89? 2.59? 0.08 -0.24

DM/US$
1.53 1.40 2.04? 1.74 1.92 1.64 2.07? 1.86 1.59 1.00

Yen/US$
2.42? 1.92 4.87? 4.03? 4.83? 4.10? 4.10? 3.63? 0.75 0.94

Pound/US$
1.64 1.15 1.68 1.25 2.62? 2.01? 2.41? 1.97? 1.08 1.81

Note: Entries are the values of variance-ratio test statistics for various values of
q and of the sign and Wilcoxon test statistics (see text for details). The star
indicates a rejection at the 5 per cent level.
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