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Abstract

Extreme value theory (EVT) has been applied in fields such as hydrology and insurance. It is a
tool used to consider probabilities associated with extreme and thus rare events. EVT is useful in
modelling the impact of crashes or situations of extreme stress on investor portfolios. Contrary to
value-at-risk approaches, EVT is used to model the behaviour of maxima or minima in a series
(the tail of the distribution). However, implementation of EVT faces many challenges, including
the scarcity of extreme data, determining whether the series is “fat-tailed,” choosing the threshold
or beginning of the tail, and choosing the methods of estimating the parameters. This paper
focuses on the univariate case; the approach is not easily extended to the multivariate case,
because there is no concept of order in a multidimensional space and it is difficult to define the
extremes in the multivariate case. Following a review of the theoretical literature, univariate EVT
techniques are applied to a series of daily exchange rates of Canadian/U.S. dollars over a 5-year
period (1995-2000).

JEL classification: CO, C4, C5, G1
Bank classification: Extreme value theory; Measure of risk; Risk management; Value at risk

Résumé

Appliquée dans des domaines aussi divers que I'hydrologie et I'assurance, la théorie des valeurs
extrémes permet d’estimer la probabilité associée a des événements extrémes, donc rares. Aussi
cet outil peut-il servir a modéliser I'incidence de krachs boursiers ou de tensions extrémes sur les
portefeuilles des investisseurs. Contrairement aux méthodes fondées sur la valeur exposée au
risque, la théorie des valeurs extrémes permet de reproduire le comportement des maxima ou des
minima d'une série (les queues de la distribution). Son application souléve cependant de
nombreuses difficultés : les occurrences extrémes sont par définition rares, et il faut établir des le
départ si les queues de la distribution sont épaisses ainsi que choisir le seuil (ou début de la queue)
et les méthodes d’estimation des parametres. L'auteur se limite au cas univari€, car la théorie en
guestion se préte mal a I'étude du cas multivarié en raison de I'absence de notion d’ordre dans un
espace multidimensionnel et du probleme que pose la définition des extrémes lorsqu’il y a
plusieurs variables. Apres avoir effectué une revue de la littérature, l'auteur applique des
techniques univariées s’inspirant de cette théorie a la série des taux de change quotidiens Canada/
Etats-Unis pour les années 1995-2000.

Classification JEL : CO, C4, C5, G1
Classification de la Banque : Théorie des valeurs extrémes; Mesure du risque; Gestion du risque;
Valeur exposée au risque






1. Introduction

The study of extreme events, like the crash of October 1987 and the Asian crisis, is at the centre of
investor interest. Until recently, the value-at-risk (VaR) approach was the standard for the risk-
management industry. VaR measures the worst anticipated loss over a period for a given
probability and under normal market conditions. It can also be said to measure the minimal
anticipated loss over a period with a given probability and under exceptional market conditions
(Longuin 1999). The former perspective focuses on the centre of the distribution, whereas the
latter models the tail of the distribution.

The VaR approach (see Jorion 1996) has been the subject of several criticisms. The most
significant is that the majority of the parametric methods use a normal distribution approximation.
Using this approximation, the risk of the high quantiles is underestimated, especially for the fat-
tailed series, which are common in financial data. Some studies have tried to solve this problem
using more appropriate distributions (such as the Student-t or mixture of normals), but all the VaR
methods focus on the central observations or, in other words, on returns under normal market con-
ditions. Non-parametric methods make no assumptions concerning the nature of the empirical dis-
tribution, but they suffer from several problems. For example, they cannot be used to solve for
out-of-sample quantiles; also, the problem of putting the same weight on all the observations
remains unsolved.

Investors and risk managers have become more concerned with events occurring under
extreme market conditions. This paper argues that extreme value theory (EVT) is a useful supple-
mentary risk measure because it provides more appropriate distributions to fit extreme events.
Unlike VaR methods, no assumptions are made about the nature of the original distribution of all
the observations. Some EVT techniques can be used to solve for very high quantiles, which is
very useful for predicting crashes and extreme-loss situations.

This paper is organized as follows. Section 2 introduces some theoretical results concern-
ing the estimation of the asymptotic distribution of the extreme observations. Section 3 describes
some data sampling problems, the choice of the threshold (or beginning of the tail), and parameter
and quantile estimation. Section 4 estimates an extreme VaR and Section 5 describes the limita-
tions of the theory. Section 6 provides a complete example of EVT techniques applied to a series
of daily exchange rates of Canadian/U.S. dollars over a 5-year period (1995-2000). Section 7
concludes.



2. EVT: Some Theoretical Results

EVT has two significant results. First, the asymptotic distribution of a series of maxima (minima)

is modelled and under certain conditions the distribution of the standardized maximum of the
series is shown to converge to the Gumbel, Frechet, or Weibull distributions. A standard form of
these three distributions is called the generalized extreme value (GEV) distribution. The second
significant result concerns the distribution of excess over a given threshold, where one is
interested in modelling the behaviour of the excess loss once a high threshold (loss) is reached.
This result is used to estimate the very high quantiles (0.999 and higher). EVT shows that the
limiting distribution is a generalized Pareto distribution (GPD).

2.1 The GEV distribution (Fisher-Tippett, Gnedenko result)

Let {X4.....,X} be a sequence of independent and identically distributed (iid) random variables.
The maximumXn=Max(X,....,%,) converges in law (weakly) to the following distribution:

1 VE[] 820
He o= EBXP L +E(X —p)/0] f|E
D eXp ( e (x - p)/c)

while 1+Z(x—uj/o>0

The parameterg ando correspond, respectively, to a scalar and a tendency; the third parameter,
&, called the tail index, indicates the thickness of the tail of the distribution. The larger the tail
index, the thicker the tail. When the index is equal to zero, the distribii@orresponds to a
Gumbel type. When the index is negative, it corresponds to a Weibull; when the index is positive,
it corresponds to a Frechet distribution. The Frechet distribution corresponds to fat-tailed
distributions and has been found to be the most appropriate for fat-tailed financial data. This result
is very significant, since the asymptotic distribution of the maximum always belongs to one of
these three distributions, whatever the original distribution. The asymptotic distribution of the
maximum can be estimated without making any assumptions about the nature of the original
distribution of the observations (unlike with parametric VaR methods), that distribution being
generally unknown.



2.2 The excess beyond a threshold (Picklands, Balkema-in Haan result)

After estimating the maximum loss (in terms of VaR or another methodology), it would be
interesting to consider the residual risk beyond this maximum. The second result of the EVT
involves estimating the conditional distribution of the excess beyond a very high threshold.

Let X be a random variable with a distributiénand a threshold givengxfor U fixes < x=

Fis the distribution of excessesXbver the thresholt)

Ri(X) = P(X=us ¥ X> 9, x20

Once the threshold is estimated (as a result of a VaR calculation, for example), the conditional
distributionF, is approximated by a GPD.

We can write:
Fu (X) = Geguy(X), U » o, x=0

where:

EXE 0. gz0
Ge.pu)(X) = %l uf|§= 0
1—e" X/B ]

Distributions of the typgH} are used to model the behaviour of the maximum of a series. The
distributions{G} of the second result model excess beyond a given threshold, where this threshold
is supposed to be sufficiently large to satisfy the condition. o (for a more technical
discussion, see Castillo and Hadi 1997)

The application of EVT involves a number of challenges. The early stage of data analysis
is very important in determining whether the series has the fat tail needed to apply the EVT
results. Also, the parameter estimates of the limit distributld@dG depend on the number of
extreme observations used. The choice of a threshold should be large enough to satisfy the condi-
tions to permit its applicationu(tends towards infinity), while at the same time leaving sufficient
observations for the estimation. Different methods of making this choice will be examined in Sec-
tion 3.3. Finally, until now, it was assumed that the extreme observations are iid. The choice of the
method for extracting maxima can be crucial in making this assumption viable. However, there
are some extensions to the theory for estimating the various parameters for dependent observa-
tions; see Embrechts, Kluppelberg, and Mikosch (1997).



3. Stepsin Applying EVT
3.1 Exploratory data analysis

The first step is to explore the data; see Bassi, Embrechts, and Kafetzaki (1997). Q-Q plots and the
distribution of mean excess are used. They are described below.

3.1.1 Q-Q plots

Usually, one starts by studying a histogram of the data. In most of the VaR methods, the
approximation by a normal distribution remains a basic assumption. However, most financial
series are fat-tailed. The graph of the quantiles makes it possible to assess the goodness of fit of
the series to the parametric model.

Let X;.....,%, be a succession of random variables iid, #d<.....<X; ,the order statis-
tics, F,, being the empirical distribution. Note thB(X ,n) = (n-k+1)/nandF the estimated par-
ametric distribution of the data.

The graph of quantiles (Q-Q plots) is defined by the set of the points,

“am—-k+ 17, _
%k,n": 0 n ak=1...n

(]|

If the parametric model fits the data well, this graph must have a linear form. Thus, the graph
makes it possible to compare various estimated models and choose the best. The more linear the
Q-Q plots, the more appropriate the model in terms of goodness of fit. Also, if the original
distribution of the data is more or less known, the Q-Q plots can help to detect outliers; see
Embrechts, Kluppelberg, and Mikosch (1997).

Finally, this tool makes it possible to assess how well the selected model fits the tail of the
empirical distribution. For example, if the series is approximated by a normal distribution and if
the empirical data are fat-tailed, the graph will show a curve to the top at the right end or to the
bottom at the left end.

3.1.2 The mean excess function

Definition: LetX be a random variable and given threshgigthen

e(u) = E(X=u X>1,0su<x



e(.)is called the mean excess functi@{u) is called the mean excess over the threshol8ee
Embrechts, Kluppelberg, and Mikosch (1997) for a discussion of the properties of this function.

If X follows an exponential distribution with a parameferthe function is equal to

e(u) = A1 for anyu > 0. For the GPD,

e(u) = %i_-éa—“,[3+§u>o
The mean excess function for a fat-tailed series is located between the constant mean excess
function of an exponential distributioe(u) = A™! and the GPD, which is linear and tends
towards infinity for high thresholds as u tends towards infinity; see Embrechts, Kluppelberg, and
Mikosch (1997).

A graphical test to establish the behaviour of the tail can be performed based on the form
of the distribution of mean excess. L¥{...,X, be iid with F,, the corresponding empirical distri-

bution andAy(u) = {iji =1,...,n, >u} . Then,

1

& (u) = mm (Xj—u),u=0

(u)

wherecard refers to the number of points in the Agi(u)

The sef{ (Xj,n.€n(Xk.n)), k =1, ,,,,n} forms the mean excess graph.

Fat-tailed distributions yield a functios(u) that tends towards infinity for high-threshold
u (linear shape with positive slope).

3.2 Sampling the maxima and some data problems

Two approaches can be considered in building the series of maxima or minima. The first consists
of dividing the series into non-overlapping blocks of the same length and choosing the maximum
from each block. The assumption that the extreme observations are iid is viable in this case.
Indeed, as financial data contain periods of high volatility followed by periods of low volatility
(clustering), sampling the maxima using this technique reduces this phenomenon as soon as the
size of the block is increased. However, the risk of losing extreme observations within the same
block is still present, making the choice of the size of the block problematic.



The second approach consists of choosing a given threshold (high enough) and consider-
ing the extreme observations exceeding this threshold. The choice of the threshold is subject to a
trade-off between variance and bias. By increasing the number of observations for the series of
maxima (a lower threshold), some observations from the centre of the distribution are introduced
in the series, and the index of tail is more precise (less variance) but biased. On the other hand,
choosing a high threshold reduces the bias but makes the estimator more volatile (fewer observa-
tions). The problem of dependent observations is also present. Some studies, such as by Resnick
and Starica (1996), suggest using standardized observations to fit the various parameters to deal
with this problem.

3.3 The choice of the threshold

3.3.1 The graph of mean excess

An immediate result of Section 3.2 enables us to provide a graphical tool to choose the threshold.
The mean excess function for the GPD is linear (tends towards infinity). According to the result of
Picklands, Balkema-in Haan, for a high threshold, the excess over a threshold for a given series
converges to a GPD. It is possible to choose the threshold where an approximation by the GPD is
reasonable by detecting an area with a linear shape on the graph.

Another graphical tool used to choose the threshold is the Hill graph.
3.3.2 Hill graph

Let X;>... >X,, be the ordered statistics of random variables iid. The Hill estimator of the tall
index§ usingk+1 ordered statistics is defined by:

The Hill graph is defined by the set of points

{(k Hy ) 1sksn-1}

The threshold is selected from this graph for the stable areas of the tail index. However, this
choice is not always clear. In fact, this method applies well for a GPD or close to GPD type
distribution. The Hill estimator is the maximum likelihood estimator for a GPD and since the
extreme distribution converges to a GPD over a high threshdlske the result of Picklands,



Balkema-in Haan), its use is justified. For other distributions, some researchers suggest
alternatives to the Hill graph to make this choice easier. Dress, de Haan, and Resnick (1998)
propose using the graph defined by the set of points:

{0, Hﬁ]eLn ),0<0<1}

In fact, they use a logarithmic scale for the axiskd[ne] integer less than or equal t@). This
gives more space on the graph for the small valueK.dbress, de Haan, and Resnick (1998)
found that the Hill graph is superior for the GPD type distribution, while the alternate graph
adapts better for a large variety of distributions. They quantify the superiority in terms of “time
occupation” around the true value of the tail index. The percere&RHILL of “time” that the
pointsH pass in a neighbourhoadf the true value of indeXis:
1 |
PERHILL(g, n, 1) = T z 1{\H(i,n) _§|<g)
i=1

The value ofPERHILLquantifies stability around a selected value of the index, and can be used to
choose among various values of the index (various stable areas of the graph).

3.4 Parameters and quantiles estimation

The parameters of the extreme distribution can be estimated under different assumptions. First,
we can assume that the extreme observations follow exactly the GEV distribution. Second, and
possibly more realistically, we can assume that the observations are roughly distributed like the
GEV distribution. More specifically, the distribution of the observations belongs to the maximum
domain of attraction (MDA) oHg; for more details, see Embrechts, Kluppelberg, and Mikosch
(1997). From there, the quantiles estimators can differ. Last, the parameters and quantiles are
estimated for the distribution of excess over a threshold.

3.4.1 Estimate the distribution of extremes

Parametric methodsAssuming that the extreme observations follow exactly the GEV
distribution, maximum likelihood estimation (MLE) can be used. Unfortunately, there is no
closed form for the parameters, but numerical methods provide good estimates. For other
estimation methods, see Embrechts, Kluppelberg, and Mikosch (1997). The p-quantile is defined

o -1
ask, = HE,ﬁ,c‘r (p) .- Then,



0 Rl
In(p) = {1 +&(%,-f)/6] "B
0 0

(n(p)) = [1+&(%,—f)/8] "

%y = i+ () -1

[l Rl

2 A ~ Aq—1/8
p = exp H1+&(x,-1)/6]"'F
U U

MLE offers the advantage of simultaneous estimation of the three parameters, and it applies well
to the series of maxima per block (see Section 3.2). Also, MLE seems to give good estimates for
the cas€>-1/2. As the majority of financial series have a positive tail inge8, it offers a good

tool for estimation in our field of interest.

Semi-parametric method3.he assumption that the extreme observations converge or are
distributed exactly asl; seems very strong. By relaxing this assumption, the observations are
roughly distributed like the GEV distribution; thénthe distribution of the observations, belongs

to the MDA of Hg. Thus, the parameters and quantiles estimation differs from that of the
Parametric methodsection.

Let X;...,X%, be random variables that are iid, with a distributiénl MDA(Hg). This is

equivalent to

lim F(ox+p,) = =In(Hg(X))

n - oo
In this caseX 0):
F(x) = x Y& (x),x>0

with L a slow variation function, or more exactly,

. L(AX) _
OA>0, lim ——= =
X - 00 L(X)

Therefore, for a highi such asu = o, x+, , we have



nF(U) = [1+E(u—1,)/0,] "

The p-quantile is defined éc% = H:A 5 (p) ;then,

n~n

A~ _ - Gn -z
X, = P+ = L(n(1-p)*-1]

§
Usually we are more interested in very high quantiles beyond the series or, in other words, out-of-
sample estimation. For this purpose,ueiX, , whereu is a very high threshold/nits associated
probability (probability from the empirical distribution of a series of lenytandu is theK order
statisticX;>.. >Xp)), andp is the associated probability of the p-quantjjethen,

=~

F(Xg n) = X¥EL(X ) = (1)

n
F(%p) = X3H2L(%) =1-p (2

Dividing (2) by (1), and¢,>Xy, we havel (X p)/ L(Xg ) =1 ;then,

N €
Xp = D?(l_p)g— Xk‘n
The tail index, is chosen from a stable area on the Hill graph.

3.4.2 Fitting excesses over a threshold

The GPD estimation involves two steps:

1. The choice of the threshold The mean excess graph can be used whereho-
sen such that(x)is approximately linear fax >u (e(u)is linear for a GPD).

2. The parameter estimations &oand can be done using MLE.

Once the distribution of excesses over a threshold is estimated, an approximation of the
unknown original distribution (that generates the extreme observations) and an estimation of the
p-quantile from it can be used to estimate the extreme VaR.

Thus, letu be a thresholdx,...,X, the random variables exceeding this threshold (follow-
ing a distributiorF0 MDA(Hs)), andY;...,Y, the series of exceedand@é=X;-u). The distribution

of excesses beyondis given by:
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Fu(Y) = P(X=ug y| X> ) = P(Y2 y| X> ),y=20
and the distributionF;, of the extreme observations, is given by:
F(u+y) = P(Xzu+y) = P((X=u+ yX>u) [P(X>u)
F(u+y) = P(X=u2y|X>u) [P(X>u)

F(u+y) = Fu(y) [F(u)

This result makes it possible to estimate the tail of the original distribution, by separately
estimatingF and F,. According to the result of Picklands, Balkema-in Haan, and for a high
thresholadu:

(Fu()) = Gt iy ()

F(u) can be estimated from the empirical distribution of the observations:

n

~ 1 _ I\Iu

(F(u)) = r‘]z I{Xi>U} -
i=1

and
_ - Ny - ym-l/i
(F(u+y)) = W%HEED
The estimation of the p-quantile for a given threshaldysing this distribution is straightforward:

X,=u+

) Ra- pg 1]

SO

4. Extreme VaR

By definition, VaR is the p-quantile of the distribution of the log change in price. EVT makes it
possible to model the empirical distribution of the extreme observations. Extreme VaR is defined
as the p-quantile estimated from the extreme distribution. Various estimators are available,
depending on the estimation method and the assumptions (as discussed in Section 3.4).
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VaR is estimated assuming that the extreme observations follow exactly the GEV distribu-
tion (seeParametric methodsn Section 3.4.1):

VaR.ireme= A+ g[(_ln( p))_E —1]

VaR is estimated assuming that the observations follow approximately the GEV distribution (see
Semi-parametric methodm Section 3.4.1).

VaR in-sample:

A

N

o -
VaRextremé iR ample = Myt ?n[(n(l_ P)) - 1]

and VaR out-of-sample:

‘3
VaRextremez ouwt 6—sample = EE(]-_ p)g— Xk, n

The approximation of excesses over a threshold by a GPD leads to the following estima-
tor:

A

€
VaF%xtremeGPD: u+ %[ENLU(:L_ p)Er B 1:|

Usually, the estimation using a GPD is repeated several times to have a graph of quantiles.
Various results might be presented: quantiles for a stable area of the graph and a quantile
corresponding to the pessimistic version (peak). This method is called peak over threshold (POT);
McNeil and Saladin (1997) discuss this method in detail.

5. The Limitations of the EVT

As stated earlier, the approaches described here relate to aggregate positions. Most of the articles
in the literature use the same approach. The application of the EVT results in a multivariate case
faces a basic problem. There is no standard definition of order in a vectorial space with
dimensions greater than 1 and thus it is difficult to define the extreme observations for n-
dimension vectorgn>1); see Embrechts, de Haan, and Huang (1999).

To solve this problem, Longuin (1999) proposes estimation of the extreme marginal distri-
bution for each asset (use the maxima for the short positigrsd the minima for the long
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positions), solving for the extreme p-quantilaR, computing the correlations; between the

series of maxima and minima, and calculating the extreme VaR of a portfdliassets:

n n
VaRextreme= Jz Z p;; L, [w; DvaR VaR,
i=1j=1
Unfortunately, the joint distribution of the extreme marginal distributions is not necessarily the
distribution of the extremes for the aggregate position. In other words, extreme movements of the
log change in prices for the different assets do not necessarily result in extreme movements for the
whole portfolio. This will depend on the composition of the portfolio (position on each
instrument) and on the relations (dependencies or correlations) between the various assets. For an
interesting discussion of the potential and limitations of EVT, see Embrechts (2000).

6. Applying EVT Techniques to a Series of Exchange Rates of
Canadian/U.S. Dollars

In this section, EVT techniques are applied to a series of daily exchange rates of Canadian/U.S.
dollars over a 5-year period (1995-2000) using EVIS software (www.math.ethz.ch/~mcneil).

Table 1 lists VaR results for different distributions. The VaR listed is the maximum loss
that can not be exceeded over a one-day horizon with a given confidence level (probability). A
dollar VaR is given for US$10 billion. The VaR is in Canadian dollars.
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Table 1: VaR in Can$ million assuming different distributions

Confidence level VaR_Normal®  VaR_HS®  VaR_GEV® VaR_GPD¢
95% (in-sample) 22 20 72 NA
97.5% (in-sample) 26 25 89 NA
99% (out-of-sample) 31 37 116 70
99.9% (out-of-sample) 42 61 NA 136
99.99% (out-of-sample) 50 70 NA 257
99.999% (out-of-sample) 584 71 NA 479

a. VaR assuming a normal distribution.

VaR assuming an empirical distribution (historical simulation).

c. VaR assuming a GEV distribution: the maxima are sampled from non-overlapping blocks of 90 observations.
The GEV distribution was estimated using MLE; the parametersué®d€02865304), 6(0.000961009), and
£(0.274717).

d. VaR using the GPD. Usually, for very high confidence levels, the approximation by the GPD is used. The GPD

was estimated using 90 observations over the threshold u(0.001836343). The GPD paramé&f@2648934)
and(0.00068409).

=

Figures 1 to 13 illustrate the graphical techniques and describe the goodness of fit of the
different models.

7. Conclusions

EVT can be used to supplement VaR methods, which have become a standard for measuring
market risk. VaR methods present two problems. First, most VaR methods use the normal
distribution approximation, which underestimates the risk of the high quantiles because of the fat-
tail phenomenon. Some studies have tried to solve this problem by using more appropriate
distributions (like the Student-t). Second, VaR methods use all the data of the series for the
estimation. However, because most of the observations are central, the estimated distribution
tends to fit central observations, while falling short on fitting the extreme observations because of
their scarcity. However, it is these extreme observations that are of greater interest for investors
and risk managers.

EVT techniques make it possible to concentrate on the behaviour of these extreme obser-
vations. Also, the loss over a very large threshold can be estimated. While these results apply well
to the univariate case, the multivariate one seems to define the limits of this theory. Indeed, the
joint distribution of the marginal extreme distributions is not necessarily an extreme distribution.
However, the joint distribution can be used to estimate the probability associated with an extreme
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scenario, but incorporating this information in the market risk framework remains an open ques-
tion (see Berkowitz 1999). The majority of the results were presented assuming that the observa-
tions are independent and identically distributed. The sampling of maxima can make this
assumption viable, but it is also possible to estimate an index of dependency to incorporate it in
the calculation of the extreme VaR.

Asset allocation is usually conducted by using the variance (Markowitz) or VaR (paramet-
ric normal) as measures of risk, implicitly giving the same weights to the positive and negative
returns (see Huisman, Koedijk, and Pownall 1999). Some studies try to concentrate on the down-
side risk by using the variance of negative returns as a measure of risk, but focusing on the central
observations in their model. The allocation of capital using an extreme VaR as a risk measure will
lead to a more conservative allocation, because the resulting portfolio is designed to hedge against
worst-case market conditions.
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Figure 1: Histogram of the tail of the empirical distribution.
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Figure 2: The Hill plot; the tail index is stable around
values from 3 to 4, which is typical for the financial series
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Figure 3: The average function of excess: for an adequate graph, certain
extreme observations at the end of the tail were omitted (the value of the func-
tion for these points is the average of all the extreme observations). Note the
linear shape of the graph around certain thresholds (0.0020, 0.0026), and that
the function tends to infinity like a GPD.

Mean Excess
0.0012 0.0013 0.0014

0.0011

0.0010

o
:
..'.,...:‘

0.0009

0.0018 0.0020 0.0022 0.0024 0.0026 0.0028 0.0030
Threshold

Figure 4: Q-Q plot for EVDistribution, maxima from blocks of 28 observations.
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Figure 5: Q-Q plot for EVDistribution, maxima from blocks of 60 observations.
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Figure 6: Q-Q plot for EVDistribution, maxima from blocks of 90 observations.
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Figure 7: To estimate the GPD, start with the distribution of
excesses. The shape of the graph corresponds exactly to the shape
of a GPD (see Embrechts, Kluppelberg, and Mikosch 1997, p. 164).
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Figure 8: Q-Q plot GPD with 90 exceedances.
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Figure 9: Tail of the underlying distribution using a GPD.
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Figure 10: Q-Q plot from a normal distribution. While comparing
this plot with a Q-Q plot from a normal distribution, one must
remember that the empirical distribution presents a fat-tail.
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Figure 11: The 0.999(0.001%) quantile for different thresholds. The graph of the
guantiles is presented for various thresholds. Usually, it is not satisfactory to have
only one result (one extreme VaR); one can choose the threshold from a stable area
of the graph of the quantiles and present a pessimistic version for an area of peak.
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Figure 12: The 0.9999(0.01%) quantile for different thresholds (GPD).
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Figure 13: The 0.99999(0.001%) quantile for different thresholds (GPD).
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