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Abstract

Diffusion functions in term-structure models are measures of uncertainty about future

movements and are directly related to the risk associated with holding financial securities. C

specification of diffusion functions is crucial in pricing options and other derivative securitie

contrast to the standard parametric two-factor models, we propose a non-parametric two

term-structure model that imposes no restrictions on the functional forms of the diffu

functions. Hence, this model allows for maximum flexibility when fitting diffusion functions in

data. A non-parametric procedure is developed for estimating the diffusion functions, bas

the discretely sampled observations. The convergence properties and the asymptotic distri

of the proposed non-parametric estimators of the diffusion functions with multivariate dimen

are also obtained. Based on U.S. data, the non-parametric prices of the bonds and bond

are computed and compared with those calculated under an alternative parametric mode

empirical results show that the non-parametric model generates significantly different pric

the derivative securities.

JEL classifications: C14, C22, G13.

Bank classification:  Econometric and statistical methods; Market structure and pricing

Résumé

Les fonctions de diffusion utilisées dans les modèles relatifs à la structure des taux d’i

constituent des mesures de l’incertitude entourant l’évolution future des prix et sont directe

liées au risque associé à la détention de titres financiers. La qualité de leur spécificati

cruciale pour l’évaluation des options et des autres produits dérivés. Les auteurs recoure

modèle non paramétrique à deux facteurs qui n’impose aucune restriction à la forme fonctio

de ces fonctions, contrairement aux modèles paramétriques à deux facteurs traditionn
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disposent ainsi d’un maximum de souplesse aux fins de l’estimation des fonctions de diffu

l’aide des données. La méthode non paramétrique que les auteurs ont mise au point pour

les fonctions de diffusion est fondée sur les observations tirées d’un échantillon discre

auteurs établissent aussi les propriétés de convergence et les distributions asymptotiqu

estimateurs non paramétriques des fonctions de diffusion à plusieurs variables. Ils calcul

prix des obligations du Trésor américain et des options qui s’y rapportent au moyen de

méthode non paramétrique et les comparent à ceux obtenus au moyen d’un modèle param

D’après les résultats empiriques qu’ils obtiennent, les prix des produits dérivés générés p

modèles paramétrique et non paramétrique diffèrent passablement.

Classifications JEL:  C14, C22, G13.

Classification de la Banque:  Méthodes économétriques et statistiques; Structure de marché et fixation des p



Non-Technical Summary

Daily observations suggest that default-free bonds of di�erent maturities have di�erent

prices. Economists and �nancial analysts have developed several theories to explain the

relative prices. The pure expectations hypothesis asserts that forward rates are equal to

expected future spot rates. Meanwhile, the liquidity premium hypothesis states that forward

rates should exceed the corresponding expected future spot rates by a liquidity premium,

which is required to compensate bondholders for greater capital risk inherent in long-term

bonds.

On the basis of both the pure expectations hypothesis and the liquidity premium hy-

pothesis, a two-factor term-structure model of interest rates is proposed by Brennan and

Schwartz (1984). In that model, the current long-term rate of interest contains information

about future dates of the spot rate. The short- and long-term interest rates are assumed to be

exogeneous. The model attempts to explain only the intermediate portion of the yield curve

in terms of its extremities (the short-end and long-end). The long rate and a spread (the

di�erence of the short rate and long rate) are assumed to follow a joint stochastic process.

To describe the process, a drift function (conditional mean) and a di�usion function

(conditional variance) need to be speci�ed for the long rate and the spread. Empirical

results suggest strong non-linearity in the di�usion terms. Thus, a variety of functional

forms have been used in the literature, for example, linear and square root. It is important

to note that the drift and di�usion functions cannot be assumed arbitrarily. In fact, the

joint parameterizations of drift and di�usion functions imply speci�c forms for the marginal

and transitional densities of the process that can be inferred from the data. (The marginal

density provides the probability of observing a particular long rate [or spread] regardless
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of the value of the spread [or long rate]. The transitional density provides the probability

of observing a particular combination of a long rate and a spread in a period given the

combination observed in the previous period.)

Parameterizing with a particular functional form can lead to misspeci�cation where the

implied densities derived from the particular functional form do not match the observed

distribution from the data. Recent research has employed the non-parametric approach to

tackle the problem. A non-parametric approach starts with non-parametric estimates of the

densities based on observed data and then constructs the drift and di�usion functions by

matching the densities.

Until now, non-parametric estimation has focused on one-factor models. Our paper ex-

tends the non-parametric approach to two-factor models. We illustrate the approach by

considering the particular two-factor model described above (a model with a long rate and

a spread). Since prices of interest rate derivatives depend crucially on correct speci�cation

and estimation of di�usion functions, we compare call option prices on 5-year discount gov-

ernment bonds from the parametric model and the non-parametric model we develop here,

and we �nd substantial di�erences.

The non-parametric two-factor model can be employed to analyze the e�ects of monetary

policy actions on the term structure. The standard view of the transmission mechanism of

monetary policy assigns a key role to medium- and long-term interest rates. According to

this view, a monetary policy tightening pushes up both medium- and long-term interest

rates, leading to less spending and slower growth. The empirical term-structure e�ects of

monetary policy actions (control over the overnight rate and its volatility) can be estimated

through the non-parametric technique developed in this paper.
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1 Introduction

In the exchange-traded and over-the-counter markets, the volume of trading in the interest

rate derivative securities has increased very quickly since the 1980s. Many new products

were developed to meet particular needs of end users. To evaluate the securities, a variety

of models and techniques have been developed. These models have characterized the term

structure using either a single factor or multiple factors in a general-equilibrium or a partial-

equilibrium framework. In a one-factor model, there is a single source of uncertainty driving

the evolution of the yield curve. Examples of one-factor models include the models in Merton

(1973), Vasicek (1977), Dothan (1978), Marsh and Rosenfeld (1983), Cox, Ingersoll, and

Ross (1985) (CIR thereafter), A��t-Sahalia (1996), and Jiang and Knight (1997). However, a

signi�cant de�ciency of one-factor models of the term structure is the unrealistic assumption

about the stochastic process for the interest rate. A number of theoretical studies (for

example, Stambaugh [1988], among others, argues that yields are driven by at least two risk

factors1) and empirical evidence (notably Dybvig [1989] on the U.S. data and Steeley [1991]

on the U.K. data) have concluded that the variability across rates of di�erent maturities can

better be explained by incorporating more than one source of uncertainty.

In view of the weakness of one-factor models, a number of authors have been proposing

models of the term structure that incorporate two factors. Examples include the models

in Richard (1978), Brennan and Schwartz (1979), Schaefer and Schwartz (1984), Longsta�

and Schwartz (1992), Heath, Jarrow, and Morton (1992), Hsin (1995), and Du�e and Kan

(1996). However, it should be noted that these models all rely on parametric speci�cations of

1Based on forward premiums with nonmatching maturities, the generalized methods latent-variable tests
reject a CIR single-variable speci�cation of the term structure for nominally default-free bonds and more
than two risk factors are accepted.
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the underlying processes and therefore may impose very strong restrictions on the di�usion

process. There are two main reasons for these restrictions. First, in order to derive the exact

pricing formula or the approximate analytical solution to the pricing equation, very speci�c

assumptions about the nature of the continuous-time di�usion process must be presupposed.

Second, from an econometric and statistical point of view, little progress has been made with

the identi�cation and estimation of a multivariate continuous-time di�usion process. Thus,

most researchers have constrained their models to be simple in order to use the available

estimation methods. It is worth noting that these restrictions on the di�usion functions can

lead to serious misspeci�cation even though they can constitute a convenient and simple

formula to price �nancial assets.

In this paper, as in Schaefer and Schwartz (1984) and B�uhler, Uhrig-Homburg, Walter,

and Weber (1998), we express our model in terms of a long rate and the spread between

the long rate and a short rate. Because the precise forms of the di�usion functions of the

two factors are crucial to price derivative securities, and it is impossible to form a prior

idea of the functional form of the di�usion functions, we impose no restrictions on the

functional forms of the di�usion functions. Hence, the model allows for maximum 
exibility

in di�usion functions. To achieve identi�cation and estimation, the drift term of spread is

speci�ed as a mean-reverting function while we leave the drift term of the long rate process

unrestricted. Estimation of the di�usion functions is based on a non-parametric estimation

procedure. Under regularity conditions, we prove that the estimators of di�usion functions

have a standard asymptotic behaviour. The estimation of parameters in the drift term of

the spread utilize a semi-parametric procedure to correct heteroskedasticity in the residuals

from the regression. Prices of interest rate derivative securities based on the non-parametric
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model are investigated through comparison with the alternative parametric model in Schaefer

and Schwartz (1984). The empirical results show that the non-parametric model generates

signi�cantly di�erent prices of interest rate derivative securities.

This paper is organized as follows. In Section 2, we present a non-parametric two-factor

term-structure model for pricing derivative securities. The non-parametric estimators of

the di�usion functions are proposed in Section 3, without imposing any restriction on the

drift functions. The asymptotic distributions of the non-parametric estimators of di�usion

functions are also derived. In Section 4, based on the estimator of the di�usion function of the

spread process, we construct the semi-parametric estimators of parameters in the drift term

of the spread process. In Section 5, we suggest two approaches for computing the prices of

derivative securities in our two-factor term-structure model, namely the partial-di�erential

equation approach and the Monte Carlo simulation approach. In Section 6, an empirical

examination of the model is carried out. Based on the U.S. data, the non-parametric prices

of bonds and bond options are also computed and compared with those calculated under

the alternative parametric model. Section 7 draws conclusions. Finally, the mathematical

proofs of the theorems are given in the Appendix.

2 A non-parametric two-factor term-structure model

In parametric two-factor models, di�erent functional forms of di�usion functions have been

suggested. Table 1 lists several models that have factors either observable or estimable.

Brennan and Schwartz (1979) consider a short rate and a long rate as the underlying vari-

ables. They specify a constant di�usion function for both the log of the short rate and

the log of the long rate. Schaefer and Schwartz (1984) consider a consol rate and a spread
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between a short rate and the consol rate. They specify a constant di�usion function for

the spread and a square root di�usion function for the consol rate. Longsta� and Schwartz

(1992) extend the one-factor CIR (1985) model to a two-factor model, the factors being

the short rate and its volatility. They assume that di�usion functions can be expressed as

square root functions of the two factors. Balduzzi, Das, and Foresi (1998) consider a short

rate and its central tendency and the di�usion functions are also square root functions of

the corresponding factors.

In these models, the speci�cations of the di�usion functions are mainly for pure simplicity

and tractability to price �nancial assets. For example, in the Longsta� and Schwartz (1992)

model, they derive closed-form expressions for discount bonds based on the square root

speci�cations of di�usion functions.

In this section, we develop a non-parametric two-factor term-structure model. Empir-

ical �ndings are the guideline for the choice of the two factors in our two-factor model,

which uses both a consol rate and the spread between the consol rate and the short rate

as factors.2 The non-parametric speci�cations of di�usion functions in our model are based

on two important facts in the �nance literature. First, it has long been recognized that

one of the most important features for derivative security pricing is the speci�cation of the

di�usion function because (i) it is a measure of uncertainty about future price movements;

(ii) it is directly related to the risk associated with holding �nancial securities and hence

a�ects consumption/investment decisions and portfolio choice; and (iii) the di�usion func-

tion is the key component in the pricing of options and other derivative securities. Second,

2Principal component analyses in combination with the regression analyses reveal that the �rst component
can be identi�ed with the level of the yield curve, while the second is closely related to the spread between
the long and the short rate. These empirical �ndings refer to Ayres and Barry (1979; 1980), Nelson and
Schaefer (1983), and Litterman and Scheinkman (1991).
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it is di�cult to form a prior functional form of the di�usion function. Together, these two

properties motivate us to leave the di�usion functions unrestricted and try to estimate them

non-parametrically.

In our model, we assume the two factors, the spread s and the consol rate l, follow the

system of stochastic di�erential equations:

dst = �(�� st)dt+ �1(st; lt)dW1; (1)

dlt = �2(st; lt)dt+ �2(st; lt)dW2; (2)

where t denotes the calendar time and � and � are constants; �1(�; �); �2(�; �); and �2(�; �) are

unknown functions;W1 andW2 are standard Wiener processes with E (dW1) = E (dW2) = 0,

dW 2
1 = dW 2

2 = dt, dW1�dW2 = �dt; � is the instantaneous correlation between the processes.

The speci�cation implies mean reversion of the spread level as in Schaefer and Schwartz

(1984) and non-parametric speci�cations of the di�usion functions in the consol rate and the

spread. In modelling term-structure dynamics in �nance, it is common to specify interest

rates as mean-reverting processes with levels that oscillate around a constant central value.

Some of the most widely studied one-factor models - such as the model in Vasicek (1977) that

is expressed by the Ornstein-Uhlenbeck process, the model in CIR (1985) that is expressed

by a square root process, and the semi-parametric model in A��t-Sahalia (1996) - have been

using a mean-reverting process to model the short-term rate. However, as mentioned in

Schaefer and Schwartz (1984), it is more reasonable to assume that the spread rather than

the short rate follows a process with mean-reversion because this kind of process may allow

negative values. In addition, the mean-reverting speci�cation of the drift term is also used

to identify and estimate the spread process.
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3 Non-parametric estimation of the di�usion func-

tions

Given the speci�cation of the term-structure model, the process has to be identi�ed and

estimated. The estimation of stochastic di�erential equations has been considered in the

statistics and �nancial economics literature for many years. However, very few estimate

techniques have been developed for a multivariate di�usion process because it is much more

di�cult to identify and estimate a multivariate di�usion process than to identify and estimate

a univariate di�usion process. In this section, we propose non-parametric estimators for

di�usion functions in our model. Under regularity conditions, we prove that the estimators

have a standard asymptotic behaviour.

We de�ne here non-parametric estimators of the di�usion functions �1(s; l) and �2(s; l)

based on observing (st; lt) at (t = t0; t1; t2; :::; tn) of the �nite time interval [0; T ].
3 Without

loss of generality, we assume that T = 1; ti = i=n.

We need to impose some regularity conditions on the drift and di�usion functions to

guarantee the existence and uniqueness of a strong solution to our two-factor model, to

guarantee the stochastic processes de�ned in (1) and (2) to be applied with Itô stochastic

integration, and also to guarantee that its underlying process is a regular Markov process.

Let (
; F; P ) be a probability space, (Ft; t � 0) a non-decreasing family of sub �-algebra of

F and (W1(�);W2(�)) is two-dimensional Brownian motion on (
; F; P ). We assume that,

(A) �2(s; l); �1(s; l); �2(s; l): R
2 �! R are measurable functions and there exist constants

C1 and C2 such that for any (s; l) and (s; l) 2 R2,

j �2(s; l)� �2(s; l) j + j �1(s; l)� �1(s; l) j + j �2(s; l)� �2(s; l) j
3Here we suppose that we cannot observe the continuous trajectory, only a discrete sample.
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� C1

q
((s� s)2 + (l � l)2);

j �2(s; l) j + j �1(s; l) j + j �2(s; l) j� C2(1 +
q
(s2 + l2)):

(B) �1(s; l) and �2(s; l) are bounded by some positive constants. The initial random vector

� = (s0; l0) is F0 measurable and satis�es E[s20 + l20] <1:

(C) �1(�; �) and �2(�; �) are continuously di�erentiable, with bounded derivatives and the

solution of stochastic di�erential equation is a stationary process.

Conditions (A) and (B) ensure that the stochastic process de�ned in (1) and (2) has a

unique strong solution and a time-homogeneous transitional probability function.4 Condi-

tions (A), (B), and (C) guarantee the existence and uniqueness of a solution to the Kol-

mogorov backward equation with initial condition.

We estimate �21(s; l) and �
2
2(s; l) by

�̂21(s; l) =
n
Pn�1
i=0 K[

(si=n;li=n)�(s;l)
hn

]:[s(i+1)=n � si=n]
2Pn�1

i=1 K[
(si=n;li=n)�(s;l)

hn
]

(3)

�̂22(s; l) =
n
Pn�1
i=0 K[

(si=n;li=n)�(s;l)
hn

]:[l(i+1)=n � li=n]
2Pn�1

i=0 K[
(si=n;li=n)�(s;l)

hn
]

(4)

where hn is a positive sequence which converges to zero when n goes to in�nity and K(�; �) is

a non-negative kernel function on R2. It should be noted that the non-parametric estimators

of di�usion functions are developed without imposing any restrictions on the drift terms so

that it captures the true volatilities over di�erent levels of the process. In the following

theorem, we show that under conditions (A) and (B), the estimators �̂21(s; l) and �̂21(s; l)

converge in probability to �21(s; l) and �
2
2(s; l). Furthermore, under conditions (A), (B) and

(C), the estimators are asymptotic normalities.

4Compared to the semi-parametric di�usion function estimator suggested by A��t-Sahalia (1996) in which
the non-parametric estimator of the di�usion function is derived by a stationary-matching approach, we do
not impose the stationary restriction on the density function. We only require the transition probability
function to be time-homogeneous to consistently estimate parameters in the drift term of spread.
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Theorem 1. Denote the hitting time to (s; l) by T(s;l) and suppose T(s;l) < 1; then we have

(a) Under conditions (A) and (B), if nh4n=(ln(hn))
2 goes to in�nity when n goes to in�n-

ity, and the kernel function K(�; �) satisfying (i)K(�; �) is a nonnegative function on R2 and

(ii)K(�; �) � �IB for some � > 0 and some closed sphere B entered at the origin and having

positive radius r, where I is the indicator function, then the estimators �̂21(s; l) and �̂
2
2(s; l)

converge to �21(s; l) and �
2
2(s; l) in probability respectively.

(b) Under conditions (A), (B) and (C), if the kernel function K(�; �) is a non-negative,

bounded, and symmetric function on R2, then as nh2n �!1 and nh4n �! 0;q
nh2n [(�̂

2
1(s; l)=�

2
1(s; l))� 1] and

q
nh2n [(�̂

2
2(s; l)=�

2
2(s; l))� 1] converge respectively in dis-

tribution to [�(s; l)]�1=2 [
R R

K2(s; l)dsdl]N and [�(s; l)]�1=2 [
R R

K2(s; l)dsdl]
1=2

Z; where N

and Z are two standard normal random variables, and �(�; �) is the marginal density function

of the solution process of (1) and (2).

Proof: See Appendix.

Remark 1. In the one-dimensional case, Jiang and Knight (1997) show that their estimators

converge in distribution to the di�usion coe�cient under certain conditions, but for this the

local time is used. However, the corresponding result for the multivariate case of di�usion

process is not available. Our result provides that the asymptotic distribution is available for

our estimators in the multivariate case when the observations are from stationary processes

(1) and (2). The asymptotic variance in our result depends not only on the marginal density

function but also on the integration of the square of the kernel function.

Remark 2. The estimator developed in this paper is di�erent from that in Brugiere (1991)

in two aspects. First, the estimator in Brugiere (1991) is constructed from the indicator

function rather than a general kernel function. According to Kumur and Markman's (1975)
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Monte Carlo studies, the kernel estimator with a standard normal kernel or the optimal

kernel of Epanechnikov performs better than the naive estimator of Rosenblatt (1975) and

the orthogonal series estimator of Kronmal-Tartr. A well-known serious drawback of the

naive method is that it is by de�nition not a continuous function, but has jumps at the

endpoints of the window and zero derivative everywhere else. The discontinuity of the naive

method could cause extreme di�culty when constructing the non-parametric drift function

estimator of the di�usion process. Second, unfortunately, Brugiere (1991) did not obtain the

asymptotic distributions of the estimators of di�usion functions because there does not exist

the de�nition of local time for a multivariate di�usion process. However from Theorem 1, we

know that, under the assumption of stationary process, the non-existence of the notion of

local time in the multi-dimensional case is not an obstacle to derive the convergence property

and asymptotic distribution of the estimator.

Remark 3. Part (a) of Theorem 1 can be extended to a more general speci�cation of the

stochastic di�erential equations. Suppose (st; lt) satisfy the following stochastic di�erential

equations,

dst = �1(st; lt)dt+ �1(st; lt)dW1(t) + �12(st; lt)dW2(t);

dlt = �2(st; lt)dt+ �21(st; lt)dW1(t) + �2(st; lt)dW2(t):

We de�ne �̂n(s; l) =0BBBB@
n
Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]:[s(i+1)=n�si=n]2Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]

n
Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]:[s(i+1)=n�si=n][l(i+1)=n�li=n]Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]

n
Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]:[s(i+1)=n�si=n][l(i+1)=n�li=n]Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]

Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]:[l(i+1)=n�li=n]2Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]

1CCCCA :

It can be veri�ed that �̂n(s; l) is a consistent estimator of

�(s; l) =

 
�1(s; l) �12(s; l)
�21(s; l) �2(s; l)

!0  
�1(s; l) �12(s; l)
�21(s; l) �2(s; l)

!
:
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4 A semi-parametric estimator of the drift term

This section presents a semi-parametric estimation procedure for the parameters in the drift

term of the spread. In Theorem 1, we proposed non-parametric estimators for the di�u-

sion functions based on discrete sampling observations. In particular, the estimation of the

di�usion functions places no restrictions on the functional form of the drift terms. In a

single-factor di�usion model, Jiang and Knight (1997) identify the drift term by using in-

formation contained in the marginal density function of the single factor, along with the

estimated di�usion function. However, without other constraints, the identi�cation proce-

dure in the single-factor di�usion model does not work in the multivariate di�usion model.5

Therefore, to identify and estimate the drift terms, we have to impose restrictions on the

form of the drift functions. An identifying restriction on the drift of the spread is the linear

mean-reverting speci�cation. The speci�cation restriction is consistent with that used in

Schaefer and Schwartz (1984) and this makes comparisons with their model possible.

Given the mean-reversion speci�cation of the drift term of the spread process, we pro-

pose a semi-parametric weighted least-squares estimator of the drift term. The weighted

least-squares approach is a natural extension of the conditional least-squares approach. The

concept of conditional least squares, which is a general approach for estimation of the param-

eter involved in the conditional mean function of a stochastic process, was given a thorough

treatment by Klimko and Nelson (1978).

The �rst step of estimating the parameters in the drift term of the spread process consists

5In the one-dimensional case, there exists a relationship between the drift, the di�usion, and the stationary
density function such that given any two of these functions, we can determine the third by the simple
relationship.
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of deriving the conditional mean function for si=n

E[st+� j st; lt] = 
0 + 
1st; (5)

where 
0 = �(1� e���); 
1 = e���.

The proof of (5) as follow: let v(s; l; t) be the solution of the Kolmogorov backward equa-

tion @v(s;l;t)
@t

= 1
2
�21(s; l)

@2v(s;l;t)
@2s

+ 1
2
�22(s; l)

@2v(s;l;t)
@2l

+ �1(s; l)
@v(s;l;t)
@s

+ �2(s; l)
@v(s;l;t)

@l
with initial

condition v(s; l; 0) = s. Under conditions (A) and (B), the uniqueness solution of the partial-

di�erential equation is v(s; l; t) = E[st j s0 = s; l0 = l]. Furthermore, by using the fact that

the transition density function of the stochastic process has the property of being time-

homogeneous, it is easy to verify directly that E[st+� j st = s; lt = l] = E[s� j s0 = s; l0 = l].

It is also easy to check that the function g(s; t) = � + e��=n(s � �) satis�es the equation

with the same initial condition. Therefore we have that v(s; l; t) = g(s; t). By letting t = �

in this equation we have that (5) holds. The estimator of �1(s; l) is used to correct for

heteroskedasticity in the residuals from the regression.

Theorem 2. Under conditions (A), (B) and (C), the estimators:

�̂ = b
0=(1� e��̂=n); (6)

�̂ = �n log(
̂1); (7)

are consistent, where


̂0 =

Pn�1
i=0 s(i+1)=nwi=n

Pn�1
i=0 s

2
i=nwi=n �

Pn�1
i=0 si=nwi=n:

Pn�1
i=0 s(i+1)=nsi=nwi=nPn�1

i=0 wi=n:
Pn�1
i=0 s

2
i=nwi=n � (

Pn�1
i=0 si=nwi=n)

2
;


̂1 =

Pn�1
i=0 wi=n:

Pn�1
i=0 s(i+1)=nsi=nwi=n �Pn�1

i=0 s(i+1)=nwi=n:
Pn�1
t=0 si=nwi=nPn�1

i=0 wi=n:
Pn�1
i=0 s

2
i=nwi=n � (

Pn�1
i=0 si=nwi=n)

2
;

wi=n =
1

�̂1(si=n; li=n)
:

Proof: See Appendix.
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5 Approaches to price derivative securities

Given the non-parametric estimators of �1(s; l) and �2(s; l) in (1) and (2), and the semi-

parametric estimator of � and � in (6) and (7), the prices of derivatives can be computed

by numerical approaches. In this section, we suggest two numerical approaches for com-

puting the prices of derivative securities in our two-factor term-structure model, namely the

partial-di�erential equation approach and the Monte Carlo simulation approach. The partial-

di�erential equation approach can handle American-style as well as European-style derivative

securities. At the expense of a considerable increase in computer time, the partial-di�erential

equation method can also be used when there are several state variables. Compared with the

partial-di�erential equation approach, one limitation of the Monte Carlo simulation approach

is that it can be used only for European-style derivative securities. However, the Monte Carlo

simulation approach is relatively more e�cient with respect to the partial-di�erential equa-

tion approach as the number of underlying variables increases. This is because the time taken

to carry out a Monte Carlo simulation increases approximately linearly with the number of

variables, whereas the time taken for the partial-di�erential equation approach increases

exponentially with the number of variables.

5.1 The partial-di�erential equation approach

Given the underlying stochastic processes (1) and (2) for st and lt, using the standard

arbitrage arguments, we can derive the price B(s; l; t) of any derivative security that depends

on the spread s and consol rate l with time-to-maturity t. Let � be the market price of spread

risk, c(s; l) the cash 
ow rate paid by the security per unit of time, and f(s; l) the payo� of the

derivative security at maturity. Using Itô's lemma on B(s; l; t) and the absence of arbitrage
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opportunities, it is easy to show that B(s; l; t) must satisfy the following partial-di�erential

equation,

1

2
�21(s; l)Bss +

1

2
�22(s; l)Bll + ��1(s; l)�2(s; l)Bsl +Bs(�1(s; l; t)� �(s; l)�1(s; l))

+Bl(�
2
2=l � sl)� Bt �B(s + l) + c(s; l) = 0 (8)

To derive equation (8), we have used the fact that the consol rate is inversely related to the

price of the consol bond that must also satisfy the di�erential equation. It is interesting

to note that the partial-di�erential equation is not only independent of the market price of

the long-term interest rate risk, it is also independent of the drift function for the long-term

interest rate, so that the solution is independent of the expected rate of return on the consol

bond. This result is analogous to the �nding within the simple Black-Scholes (1973) model

for the pricing of stock options that the function expressing the equilibrium price of the

option in terms of the price of the underlying stock is independent of the expected rate of

return on the underlying stock. Actually, the reason for these two results is the same: There

exists an asset for which the partial derivatives of its value with respect to all of the state

variables is known, in this case the consol bond, and in the Black-Scholes case, the stock. In

addition, we now take into account the empirical regularity that the spread is uncorrelated

with the consol rate; therefore we can set � = 0.

Since the partial-di�erential equation (8) is valid for all types of default-free derivative

securities, it may be applied to the corresponding pricing of these securities by the introduc-

tion of the appropriate initial conditions de�ning the payo�s on the securities and boundary

conditions depending on the particular security considered.

Since there is no closed solution available to the di�erential equation (8), it has to be

solved numerically. In one-factor models, A��t-Sahalia (1996) suggests the use of the Crank-
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Nicolson scheme to solve numerically the partial-di�erential equation. However, the Crank-

Nicolson scheme is inappropriate for the two-dimensional program (Smith 1985). In two-

factor models, we suggest using the line-hopscotch method recommended by Gourlay and

Mckee (1977). The advantage of implementating the line-hopscotch method is that it leads

to a stable and consistent solution for the parabolic partial-di�erential equation. The idea of

the line-hopscotch method is to solve alternative points explicitly and then employ an implicit

scheme to solve for the remaining points. In practice, the block-wise bootstrap technique

proposed in K�unsch (1989) can be used to compute the standard errors. The bootstrap

estimation procedure consists of the following three steps: (i) Redraw from the original

data. The resampling procedure redraws from blocks of continuous observations to preserve

the serial correlation existing in the original data. (ii) Estimate the di�usion functions, the

drift function, and the market price of risk from resampled data. Then compute the bond

prices B̂(s; l; t). (iii) The standard error of the bond price is the sample standard deviation

of B̂(s; l; t).

5.2 The Monte Carlo simulation approach

The commonly used Monte Carlo simulation procedure for pricing derivative securities can

be brie
y described as follows. First, sample paths are simulated for the state variables. The

paths of each state variable must be sampled on each simulation run. Second, the payo� of

the derivative security is calculated on each simulation run from the sample paths. If the

instantaneous risk-free interest rate, r, is a function of the state variables, the average value

of r must also be calculated on each simulation run. The payo� is discounted at the average

value of r before the next simulation run is begun. The price of derivative security can

be obtained by averaging the simulated discount payo�s. However, for the purpose of the
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simulation, it should be noted that the di�usion processes for all state variables must be the

processes that the variables would follow in a risk-neutral world. Particularly, in our two-

factor term-structure model, the sample paths are simulated by the following risk-neutral

dynamics:

dst = �(�� ��1
�
� st)dt+ �1(st; lt)dW1(t); (9)

dlt = (�22(st; lt)=lt � stlt)dt+ �2(st; lt)dW2(t): (10)

The sample paths, all starting at st = s; lt = l at date t and �nishing at date T , can

be simulated with the risk-neutral drifts and di�usions replaced by their estimates. The

conditional expectation under the risk-neutral dynamics gives the prices

B(s; l; T � t) = Etff(sT ; lT )expf�
Z T

t
(su + lu)dug

+
Z T

t
expf�

Z �

t
(su + lu)dugc(s� ; l� ; �)d� jst = s; lt = lg; (11)

where f(�; �) is the payo� of the security at maturity time T . The price B(s; l; T � t)

can then be obtained by averaging the argument of the conditional expectation over the

simulated sample paths. The standard deviations of the estimates can also be calculated

by the simulation method. The simulations of the sample path can be performed using the

following Euler scheme method (Talay [1996]) with a discretization step T=n over the time

interval [0; T ];

sj(k+1)T=n = sjkT=n + �(�� ��1
�
� sjkT=n)T=n

+�1(s
j
kT=n; l

j
kT=n)(W

j
1;(k+1)T=n �W j

1;kT=n); (12)

lj(k+1)T=n = ljkT=n + (�22(s
j
kT=n; l

j
kT=n)=l

j
kT=n � sjkT=nl

j
kT=n)T=n

+�2(s
j
kT=n; l

j
kT=n)(W

j
2;(k+1)T=n �W j

2;kT=n); (13)
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with (sj0; l
j
0) = (s; l); where j is the index for the simulation run (j = 1; 2; :::; m) and k is

the index for the step during each run (k = 0; 1; :::; n � 1). Each simulation run involves

obtaining a sample of (W1;T=n;W1;2T=n �W1;T=n; :::;W1;T �W1;T ) and of (W2;T=n;W2;2T=n �

W2;T=n; :::;W2;T �W2;T ) from independent Gaussian random variables. These are substituted

into (12) and (13) to produce simulated paths for the spread and the consol rate and enable

a sample value for the derivative security to be calculated.

In �nancial applications of the Monte Carlo simulation methods, a number of variance re-

duction methods have been proposed, e.g., the control variate approach, the antithetic variate

method, the moment matching method, the importance sampling method, the conditional

Monte Carlo methods, and the quasi-random Monte Carlo methods (see, for example, Boyle,

Broadie, and Glasserman [1997]). Also it should be mentioned that the Monte Carlo sim-

ulation approach is one of the approaches most often used to solve the partial-di�erential

equation when the usual methods are relatively di�cult to implement.

6 Empirical pricing of discount bonds and options

In this section, we carry out an empirical analysis of the non-parametric two-factor model

and report the prices of bonds and bond options based on our non-parametric model and

the Schaefer and Schwartz (1984) model. The time series used in this paper are daily yields

of 30-day U.S. Treasury bills and 10-year-above bonds from January 1988 to August 1999.

The consol rate is approximated by a long rate, the 10-year-and-above bond yield, and the

spread is the yield di�erence between the 30-day U.S. Treasury bill and the 10-year-above

bond. The time series daily data and its �rst di�erence are plotted in Figures 1 and 2.

The summary statistics of the data and the stationary test results are given in Table 2.
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The autocorrelations of the long rates and the spreads decay very slowly. The augmented

Dickey-Fuller non-stationarity tests indicate that the null hypothesis of non-stationarity is

rejected at a 10 per cent signi�cance level for both the long rates and the spreads. The

non-parametric kernel density estimation results are plotted in Figures 3 and 4.

6.1 Estimation results of di�usion functions

We apply the non-parametric estimation technique of di�usion functions in the two-factor

model to the U.S. data. The non-parametric estimators of the di�usion functions are reported

in Figures 5 to 8. Figure 5 and Figure 7 plot the three-dimensional graphs of the non-

parametric estimators of the di�usion functions of the spread and long rate, while Figure

6 and Figure 8 plot the two-dimensional graphs. First, the di�usion function of the spread

process exhibits noticeable variations from low to high values of both the long rate and

spread. This may suggest the model with a constant di�usion function of the spread as in

Schaefer and Schwartz (1984) is misspeci�ed. Second, the non-parametric di�usion function

of the long rate is obviously not an increasing function of the long rate, which also contradicts

the model with a squared-root speci�cation of the di�usion function for the long rate as in

Schaefer and Schwartz (1984) in which the long rate at a high level is expected to vary more

than at a low level, namely, the "level-e�ect" speci�cation of the long rate. Third, both

di�usion functions of the spread and the long rate depend on both state variables.

6.2 Estimation of drift functions and market price of spread risk

Given the non-parametric estimators of the di�usion function of the spread process, we

apply the estimation method for the drift in Theorem 2 to get the semi-parametric weighted

least-square estimate of the drift term of the spread process. The estimates of � and � are

19



reported in Table 2.

In the same table, we also report the estimates from the Schaefer and Schwartz (1984)

model. The estimates of �; � are obtained by the unweighted conditional least-squares

method, i.e., simply taking the weight function as 1 in Theorem 2. We can estimate 
2

by 
̂2 =
Pn�1
i=0 (s(i+1)=n � si=n)

2=n (see e.g. Dohnal (1987)). As we have already mentioned

that any drift term of the long-rate process would be compatible with equation (8), we

specify the drift term of the long rate as �l(�l � l). To estimate �2, we �rst estimate

�l and �l by following the same way as we estimate � and � for the spread equation.

Then we obtain the conditional second moment function (see Overbeck and Ryden (1997)):

E[(lt+��E[ltjlt])2jlt = l] = �2(�0+�1l) with �0 =
�l
2�l
(e��l��1) and �1 = � 1

� l
e��l�(e��l��1).

By standard linear regression, we can estimate �2 by �̂2 = 1
n

Pn�1
i=0

[l(i+1)=n�(�̂0+�̂1li=n)]2
�̂0+�̂1li=n

where

�̂0 = ��̂l(e��̂l� � 1), �̂1 = e��̂l� and �̂0 and �̂1 are evaluated at �̂l and �̂l. The standard

errors are calculated by the block-wise bootstrap method.

From Table 3, we see that the estimates of � are similar, with -0.0266 in the non-

parametric model and -0.0227 from the parametric model. The estimates of � are not

signi�cant but with expected signs.

The market price of spread risk, �, is estimated for both the parametric model and

the non-parametric model by minimizing the sum of squared deviations across maturities

between a given target yield curve and the yields produced by the respective models. The

target yield curve is obtained by averaging the yield curves over the sample period, January

1988 to August 1999. The estimates of the market prices of spread risk are also reported in

Table 3.
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6.3 Pricing discount bonds

With the parameter estimates, we can price discount bonds by the two methods mentioned

in Section 5. In this paper, we use the Monte Carlo simulation approach. In Table 3, the

bond prices are computed under parametric and non-parametric models by the Monte Carlo

simulation approach. All prices correspond to a face value of the bond equal to $100. The

three elements of each cell from top to bottom in Table 3 are the bond prices for the non-

parametrically speci�ed model, the standard deviations, and bond prices for the parametric

model. In performing the Monte Carlo simulations, 500 risk-neutral paths for the long rate

and the spread are simulated based on the Euler scheme. The standard errors of the non-

parametric prices are also calculated through the simulations. For the short-, mid-, and

long-term bond prices, the parametric model generates signi�cantly di�erent bond prices

from the non-paremetric model as most parametric prices fall outside of the two-standard-

deviation ranges of the non-parametric prices. This implies that bond prices not only re
ect

the di�erences in the risk-neutral �rst-moment of the underlying processes (i.e., similar

speci�cations for two models), but also re
ect the di�erences in the second moments of the

underlying processes. This suggests that the misspeci�cation of volatilities of the underlying

processes can lead to signi�cantly di�erent prices of interest rate derivative securities.

6.4 Pricing bond options

Tables 5, 6, and 7 report the prices for in-the-money, at-the-money, and out-of-the-money call

options, computed under the non-parametric model and the alternative parametric model,

on a 5-year discount bond with face value of $100. The exercise prices, 0.98, 1.00 and

1.02, are expressed as proportions of the corresponding bond price for non-parametric and

parametric models respectively. The three elements of each cell from top to bottom are the
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non-parametric price, the standard deviation, and the parametric price. It should be noted

that it is never optimal to exercise early an American call option because the underlying

bond pays no coupon, so call option values, which are reported in Tables 4, 5, and 6, express

both American and European call option values. The valuation of a call option on a pure

discount bond based on the two-factor term-structure model is a two-step procedure. First,

the equilibrium value of the underlying bond at the maturity data of the option is estimated

by the Monte Carlo simulation method subject to certain initial conditions. Then the value of

the bond is substituted into the payo� function for the option as speci�ed in previous section

and the simulations are performed for option prices. Since derivative prices rely mostly on the

second moments of the underlying processes, di�erent estimates of the di�usion functions

will lead to di�erent call option prices. The estimates suggest substantial and signi�cant

di�erences of the prices based on the non-parametric model and the alternative parametric

model. The di�erences vary over di�erent values of the spread and long rate, the maturities

of the options, and the moneyness of the options.

7 Conclusion

In this paper, we have proposed a non-parametric two-factor term-structure model with

non-parametric speci�cations of the di�usion functions. The consistent non-parametric es-

timators of the di�usion functions have been obtained based on the discrete sampling ob-

servations. The estimators have been developed without imposing any restriction on the

functional form of the drift terms, so that it can capture the true volatilities over di�er-

ent levels of the process. Under the condition that the processes are stationary, we obtain

the asymptotic distribution of the proposed non-parametric kernel estimators of the multi-
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dimensional di�usion process. In view of the fact that the multivariate di�usion process

is much more desirable in some important practices, for instance, the theory of stochastic

control and modelling the term-structure movements of interest rate, the theoretical result

obtained in this paper is very important.

The implementation of the model, based on performing Monte Carlo simulations of the

sample paths of the risk-neutral process that is developed in this paper, provides evidence

for rejecting the parametric speci�cation of di�usion functions. This implies that it will be

worthwhile to use the non-parametric technique to estimate the underlying multi-dimensional

di�usion process of asset prices or interest rates in order to price more precisely derivative

securities, to evaluate the value of contingent claims and other �nancial instruments, or to

design optimal hedging strategies.
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Appendix

In this appendix, we present proofs of the main results of this chapter. For simplicity,

we assume that the drift functions are bounded functions. However, by a usual localization

argument, we can extend all the results from the hypothesis of boundedness of drift functions

to the Lipschitzian character of the drift functions.

To prove Theorem 1, we �rst state the notations. For any � 2
�
0; 1

e

i
, we de�ne ' (�) =r

2� ln
�
1
�

�
. The inverse of ' is denoted by  . Therefore  can be de�ned by: for any

y 2 '
��
0; 1

e

i�
, any y0 2

�
0; 1

e

i
, ' (y0) = y () y0 =  (y). Let Xt = (st; lt)

0 and x = (s; l).

Then the Levy's Modulus of a di�usion is de�ned as 4" = supt;s2[0;1];jt�sj�" k Xt �Xs k.

Proof of Theorem 1: Denote 4Xi = X(i+1)=n �Xi=n,

�̂n(x) =0BBBB@
n
Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]:[si+1=n�si=n]2Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]

n
Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]:[si+1=n�si=n][li+1=n�li=n]Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]

n
Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]:[si+1=n�si=n][li+1=n�li=n]Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]

n
Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]:[li+1=n�li=n]2Pn�1

i=0
K[

(si=n;li=n)�(s;l)

hn
]

1CCCCA :

On fTx < 1g we write

�̂n(x)� � (x) = An (x) +Bn (x) ;

where

�(x) =

 
�1(s; l) �12(s; l)
�21(s; l) �2(s; l)

!0  
�1(s; l) �12(s; l)
�21(s; l) �2(s; l)

!
;

and

An (x) =
n
Pn�1
i=0 K

�
Xi=n�x
hn

� �
4Xi4X 0

i �
R (i+1)=n
i=n � (Xs) ds

�
Dn

;

Bn (x) =
n
Pn�1
i=0 K

�
Xi=n�x
hn

� �R (i+1)=n
i=n � (Xs) ds� (�(x)=n)

�
Dn

;

Dn =
n�1X
i=0

K

 
Xi=n � x

hn

!
:
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To prove (a) of Theorem 1, we only need to prove that An (x) and Bn (x) converge in

probability to zero. This can be proved by the following three Lemmas. The structure of

proofs follows Brugiere (1991).

Lemma 1. There exists constant " > 0; such that

Lim
1

n (hn)

n�1X
i=0

K

 
Xi=n � x

hn

!
� ":

Proof of Lemma 1:

We de�ne


0 =

(
! 2 
 j Lim 4"

' (")
= max

0�t�1

q
� (Xt)

)
:

Following Brugiere (1991), we have P (
0) = 1: Let ! 2 
0 \ fTx < 1g ; then there exists

s! 2 [0; 1) such that Xs! (!) = x and by the de�nition of Levy's modulus of continuity of a

di�usion, for any given positive constant r; there exists N! > 0; when n > N! we have

k Xi=n (!)�Xs! (!) k� (1 +
p
�2)'

"
 

 
rhn

1 +
p
�2

!#
; j i

n
� s! j�  

 
rhn

1 +
p
�2

!
;

which means k Xi=n�x
hn

k � r: Thus, when n > N!; we have K
�
Xi=n�x
hn

�
� � because

Xi=n�x
hn

2 B. Using the similar discussion as in Brugiere (1991), we have at least n 
�
rhn=

�
1 +

p
�2
��

observations available. Therefore, Dn(!)

n (rhn=(1+p�2)) � �:

By the de�nition of  and the fact that  
�

rhn
1+

p
�2

�
� 1

2(1+p�2)2
 (rhn) when n is su�-

ciently large, we can select " as " = �

2(1+p�2)2
#

Lemma 2. On fTx < 1g ; Bn (x) convergences in probability to zero.

Proof of Lemma 2:

The proof directly follows Lemma 2 of Brugiere (1991) by replacing the indicator function

by the kernel function K(�): The proof simply makes use of the Levy's modulus of conti-

nuity of a di�usion process. #
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Lemma 3. On fTx < 1g ; An (x) convergences in probability to zero.

Proof of Lemma 3:

let u be a unit vector in R2, we can write, as a consequence of the Itô formula,

u0
"
(4X)

0

i(4X)i �
Z (i+1)=n

i=n
�(Xs)ds

#
u = 2

Z (i+1)=n

i=n
u0(Xs �Xi=n)u

0dXs:

We can decompose u0An (x) u in two terms as u0An (x) u = Cu
n + F u

n ; where

Cu
n = 2n

Pn�1
i=0 K

�
Xi=n�x
hn

� R (i+1)=n
i=n u0(Xs �Xi=n)u

0� (Xs) ds

Dn

;

F u
n = 2n

Pn�1
i=0 K

�
Xi=n�x
hn

� R (i+1)=n
i=n u0(Xs �Xi=n)u

0�1=2 (Xs) dW1(s)

Dn
:

Then the following results hold: (i)Cu
n converges in probability to zero, (ii)F u

n converges in

probability to zero. The two results can be shown by following Lemma 3 and Lemma 4 of

Brugiere (1991) and noting that �n =
Pn�1
i=0 	i;n is a martingale with quadratic variation of

over n�2;where 	i;n = K
�
Xi=n�x
hn

� R (i+1)=n
i=n u0(Xs �Xi=n)u

0� (Xs) dW1(s): #

Denoting Ei;n the conditional expectation with respective to F s;l
i=n = � [(su; lu); u � i=n]

and setting for any 0 < t � 1.

mi+1 =
q
n=h2nK(

(si=n; li=n)� (s; l)

hn
)
�
(si+1=n � si=n)

2 � 1

n
�21(s; l)

�
:

Mn
t =

[nt]�1X
i=0

mi+1:

To prove part (b) of Theorem 1, we need to prove the following results:

(i)
P[nt]�1
i=0 Ei;n(mi+1) converges in probability to zero,

(ii)
P[nt]�1
i=0 Ei;n(m2

i+1) converges in probability to t�41(s; l)�(s; l)
R R

K2(s; l)dsdl,

(iii)
P[nt]�1
i=0 Ei;nj(mi+1)j3 converges in probability to zero.
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Proof of (i) An application of Itô's forma gives

jEi;nmi+1j =

s
n

h2n
jEi;nK(

(si=n; li=n)� (s; l)

hn
)(
Z (i+1)=n

i=n
2(su � si=n)�1(su; lu)du

+
Z (i+1)=n

i=n
(�21(su; lu)� �21(s; l))du)j:

By using the Burkholder-Davis-Gundy inequality, we can obtain that

jEi;nmi+1j = O(1)

s
n

h2n
(
1

n3=2
+
hn
n
)K(

(si=n; li=n)� (s; l)

hn
):

Thus

j
[nt]�1X
i=0

Ei;nmi+1j = O(1)(hn + h2nn
1
2 )

24 1

nh2n

[nt]�1X
i=0

K(
(si=n; li=n)� (s; l)

hn
)

35 ;
which approaches to zero in probability because 1

nh2n

P[nt]�1
i=0 K(

(si=n;li=n)�(s;l)
hn

) converges to

t�(s; l) and nh4n tends to zero.

Proof of (ii) Using Itô's formula and the Burkholder-Davis-Gundy inequality, we have

[nt]�1X
i=0

Ei;nm2
i+1 =

[nt]�1X
i=0

Ei;n(
n

h2n
)K2(

(si=n; li=n)� (s; l)

hn
)f4

Z (i+1)=n

i=n
(su � si=n)

3�1(su; lu)du

+6
Z (i+1)=n

i=n
(su � si=n)

2(�21(su; lu)� �21(s; l))du

�4�
2
1

n
(s; l)

Z (i+1)=n

i=n
(su � si=n)�1(su; lu)du

+12
Z (i+1)=n

i=n
du
Z i=n

u
(sv � si=n)�1(sv; lv)dv

+6�21(s; l)
Z (i+1)=n

i=n
du
Z i=n

u
(�21(sv; lv)� �21(s; l)dv

�2�
2
1

n

Z (i=1)=n

i=n
(�21(sv; lv)� �21(s; l))dvg

= op(1) + (
�41(s; l)

nh2
)
[nt]�1X
i=0

K2(
(si=n; li=n)� (s; l)

hn
): (14)

However it can be shown that the last term of (14) approaches to t�41(s; l)�(s; l)
R R

K2(s; l)dsdl.

Proof of (iii)

[nt]�1X
i=0

Ei;njmi+1j3 = O(
1

hnn
1
2

)

24( 1

nh2n
)
[nt]�1X
i=0

K(
(si=n; li=n)� (s; l)

hn
)

35 ;
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which approaches to zero in probability because of nh2n �! 0 and ( 1
nh2n

)
P[nt]�1
i=0 K(

(si=n;li=n)�(s;l)
hn

)

approaches �(s; l) in probability.

From (i),(ii), and (iii), we know thatMn
t converges to the martingaleMt with increasing

process < Mt >= t�41(s; l)�(s; l)
R R

K2(s; l)dsdl:Then we can writeMt = Bt�41(s;l)�(s;l)
R R

K2(s;l)dsdl

where Bt is Brownian motion. Thus we have that Mn
1 converges in distribution toq

�41(s; l)�(s; l)
R R

K2(s; l)dsdlN; where N is a standard normal variable. Since we can write

q
nh2n

"
(
�̂21(s; l)

�21(s; l)
)� 1

#
=

Mn
1

�21(s; l)(
1
nh2n

)
Pn�1
i=0 K(

(si=n;li=n)�(s;l)
hn

)

thus
q
nh2n

h
(
�̂21(s;l)

�21(s;l)
)� 1

i
approaches to

r
(
R R

K2(s;l)dsdl

�(s;l)
)N: #

Proof of Theorem 2:

It is easily derived by using standard method of proving consistent about weighted condi-

tional least-square estimate. Therefore we omit the detailed proof here. #
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Table 1: Selected two-factor parametric models

Model Factors Drift term Di�usion term
Brennan and Schwartz (1979) lnr �(lnl � lnr � lnp) �1

lnl q � k1lnr + k2lnl �2
Schaefer and Schwartz (1984) s �(�� s) 


l �2(s; l; t) �
p
l

Longsta� and Schwartz (1992) r linear fn of (r; V ) sqrt of linear fn of r; V
V linear fn of (r; V ) sqrt of linear fn of r; V

Balduzzi, Das and Foresi (1998) r �(�� r) sqrt of linear fn of r
� linear fn (�) sqrt of linear fn of �

Table 2: Summary statistics of the data and stationary test

st st � st�1 lt lt � lt�1
N 1919 1918 1919 1918

Mean -0.0250 1.19E-5 0.0669 7.24E-6
Standard deviation 0.0128 0.0012 0.0077 0.0005

Test statistics -2.74 372.85 -5.86 -462.63
(H0:Nonstationary) (Reject) (Reject) (Reject) (Reject)

Note: N is the number of observations. The stationary test is the augumented Dickey-Fuller
test. The testing results are based on a 10 per cent sign�cance level.
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Table 3: Parameter estimates of the two-factor models

Non-parametric Model Parametric Model
� 1.1711 (2.1469) 1.3029 (1.2657)
� -0.0266 (0.0024) -0.0227 (0.0027)

 Non-parametric di�usion (Figure 5) 0.0204 (0.0002)
� Non-parametric di�usion (Figure 7) 0.0316 (0.0007)
� -1.3982 (0.2575) -0.7310 (0.0987)

Note: For the non-parametric model, di�usion functions are estimated by (3) and (4).
The drift estimators are estimated by (6) and (7). The numbers in brackets are standard
errors which are obtained by the blockwise bootstrap method. The market price of spread
risk � is estimated by minimizing the squared deviations between the respective
model's bond yields and the average yield curve.
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Table 4: Discount bond prices under alternative models

Maturity (Years) Spread s Long rate l
5.92 6.69 7.46 8.23

0.5 -3.79 98.4741 98.3064 97.7265 97.3530
(0.0444) (0.0207) (0.0330) (0.0267)
98.6001 98.2184 97.8381 97.4593

-2.50 97.8377 97.6178 97.2101 96.9224
(0.0602) (0.0279) (0.0393) (0.0265)
98.1218 97.7427 97.3652 96.9891

-1.21 97.4826 97.2228 96.8698 96.4644
(0.0243) (0.0168) (0.0099) (0.0149)
97.6457 97.2694 96.8945 96.5211

1 -3.79 96.2272 96.0341 94.7446 94.0758
(0.1025) (0.0531) (0.0571) (0.0408)
96.6640 95.9118 95.1656 94.4251

-2.50 95.2516 94.8967 94.1482 93.5539
(0.1024) (0.0457) (0.0528) (0.0384)
95.9749 95.2313 94.4934 93.7613

-1.21 94.7887 94.4172 93.7714 92.9856
(0.0401) (0.0285) (0.0159) (0.0261)
95.2906 94.5554 93.8258 93.1019

5 -3.79 76.3494 74.7017 71.8303 69.9700
(0.1367) (0.1267) (0.1041) (0.0821)
78.2278 75.1381 72.1705 69.3201

-2.50 75.3619 73.8589 71.4331 69.6461
(0.1345) (0.1453) (0.0676) (0.0828)
77.6608 74.6187 71.6958 68.8874

-1.21 74.9888 73.7051 71.2086 69.0096
(0.0741) (0.1389) (0.0468) (0.0739)
77.0963 74.1011 71.2223 68.4553

Note: The face value of the underlying bond is $100. The top element of each cell
is the non-parametric price. The standard errors are in parentheses. The bottom
element is the parametric price.
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Table 5: In-the-money call option prices on a 5-year discount bond (X=0.98)

Maturity (Years) Spread s Long rate l
5.92 6.69 7.46 8.23

0.5 -3.79 3.0360 3.1132 3.0185 2.9516
(0.0199) (0.0088) (0.0067) (0.0085)
3.0884 3.1105 3.1135 3.1001

-2.50 2.9442 2.9979 2.9900 2.9293
(0.0147) (0.0092) (0.0077) (0.0073)
3.0233 3.0459 3.0500 3.0382

-1.21 2.8760 2.9443 2.9484 2.8966
(0.0107) (0.0108) (0.0059) (0.0081)
2.9596 2.9827 2.9878 2.9773

1 -3.79 5.0312 5.2763 5.2077 5.1559
(0.0277) (0.0185) (0.0126) (0.0153)
5.0808 5.2557 5.3855 5.4754

-2.50 4.9086 5.0745 5.1460 5.0873
(0.0267) (0.0205) (0.0125) (0.0119)
4.9639 5.1365 5.2655 5.3556

-1.21 4.8140 4.9579 5.0783 5.0541
(0.0197) (0.0236) (0.0098) (0.0134)
4.8495 5.0200 5.1480 5.2383

Note: The underlying 5-year discount bond has a face value of $100. The strike
price X is a proportion of the current bond price for each model. The top
element of each cell is the non-parametric price. The standard errors are in
parentheses. The second element is the parametric price.
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Table 6: At-the-money call option prices on a 5-year discount bond (X=1.00)

Maturity (Years) Spread s Long rate l
5.92 6.69 7.46 8.23

0.5 -3.79 1.8261 1.9605 1.9502 1.9384
(0.0185) (0.0096) (0.0059) (0.0083)
1.8290 1.9437 2.0326 2.0988

-2.50 1.7671 1.8701 1.9334 1.9178
(0.0131) (0.0110) (0.0073) (0.0069)
1.7824 1.8956 1.9837 2.0497

-1.21 1.7189 1.8123 1.8962 1.9057
(0.0111) (0.0130) (0.0059) (0.0078)
1.7370 1.8487 1.9359 2.0017

1 -3.79 3.7853 4.0852 4.1006 4.1038
(0.0260) (0.0199) (0.0120) (0.0153)
3.7853 4.0506 4.2645 4.4327

-2.50 3.6961 3.9097 4.0513 4.0378
(0.0252) (0.0228) (0.0123) (0.0118)
3.6879 3.9489 4.1600 4.3267

-1.21 3.6221 3.7899 3.9883 4.0253
(0.0204) (0.0261) (0.0098) (0.0135)
3.5928 3.8495 4.0579 4.2231

Note: The underlying 5-year discount bond has a face value of $100. The strike
price X is a proportion of the current bond price for each model. The top
element of each cell is the non-parametric price. The standard errors are in
parentheses. The second element is the parametric price.
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Table 7: Out-of-the-money call option prices on a 5-Year discount bond (X=1.02)

Maturity (Years) Spread s Long rate l
5.92 6.69 7.46 8.23

0.5 -3.79 0.6161 0.8079 0.8818 0.9252
(0.0177) (0.0116) (0.0063) (0.0087)
0.5695 0.7769 0.9517 1.0974

-2.50 0.5899 0.7424 0.8769 0.9064
(0.0126) (0.0138) (0.0075) (0.0074)
0.5415 0.7453 0.9174 1.0613

-1.21 0.5619 0.6803 0.8439 0.9148
(0.0120) (0.0157) (0.0062) (0.0079)
0.5145 0.7147 0.8840 1.0260

1 -3.79 2.5395 2.8940 2.9935 3.0518
(0.0247) (0.0218) (0.0120) (0.0156)
2.4899 2.8456 3.1435 3.3899

-2.50 2.4836 2.7449 2.9566 2.9883
(0.0243) (0.0256) (0.0124) (0.0123)
2.4119 2.7612 3.0546 3.2978

-1.21 2.4301 2.6219 2.8984 2.9965
(0.0214) (0.0288) (0.0100) (0.0139)
2.3361 2.6791 2.9678 3.2079

Note: The underlying 5-year discount bond has a face value of $100. The strike
price X is a proportion of the current bond price for each model. The top
element of each cell is the non-parametric price. The standard errors are in
parentheses. The second element is the parametric price.
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