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Abstract

There currently exists in the literature several continuous-time one-factor models for short

interest rates. This paper considers a wide range of these models that are nested into one

model. These models are approximated using both a discrete-time model and a mod

accounts for aggregation effects over time, and are estimated by both the method of max

likelihood and the general method of moments, for both Canadian and U.S. data. The estim

results are found to be independent of the approximation model used. However, the resu

dependent on the estimation technique, more so for Canada than the United States.

alternative check, the efficient method of moments is also employed. Hypothesis testing str

suggests these one-factor models do not provide a good description of the evolution of Ca

short-term interest rates. In contrast, these models perform better for short-term U.S. in

rates.

JEL classification:  C52, G10

Bank of Canada classification:  Financial markets; Interest rates

Résumé

On relève plusieurs modèles à un facteur formulés en temps continu dans les ouv

économiques pour décrire le comportement des taux d’intérêt à court terme. Les aute

l’étude examinent une large gamme de ces modèles constituant des cas particuliers d’un

plus général. Ils les représentent de façon approchée au moyen d’un premier modèle en

discret et d’un second qui tient compte des effets d’agrégation au fil du temps, qu’ils est

ensuite par la méthode du maximum de vraisemblance et la méthode des moments génér

l’aide de données canadiennes et américaines. Les résultats de l’estimation ne varient pa

l’approximation utilisée; ils varient toutefois en fonction de la méthode d’estimation, e

davantage dans le cas du Canada que pour les États-Unis. Les auteurs emploient aussi la

des moments efficaces pour contre-vérifier leurs résultats. Les tests d’hypothèse d

fortement à penser que les modèles à un facteur parviennent mal à décrire l’évolution des

court terme au Canada. Ces modèles arrivent mieux, en revanche, à expliquer celle de

comparables aux États-Unis.

Classification JEL:  C52, G10

Classification de la Banque du Canada:  Marchés financiers; Taux d’intérêt
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1. Introduction and overview

The short-term interest rate is important in many financial economics models, such as mod

the term structure of interest rates, bond pricing models, and derivative security pricing mo

Short-term interest rates are also important in the development of tools for effective

management and in many empirical studies analyzing term premiums and yield curves, wher

free short-term interest rates are taken as reference rates for other interest rates.

Short-term interest rates are also a crucial feature of the monetary transmission mech

Duguay (1994) describes the monetary transmission mechanism as starting with a mo

authority’s actions influencing short-term interest rates and the exchange rate, which then g

ultimately affect aggregate demand and inflation. Thus, to fully characterize the mon

transmission mechanism, it is imperative to have a good model of the behaviour of short

interest rates.

As a first step in modelling short-term interest rates, one-factor models of the term stru

of interest rates will be discussed and their applicability to Canada analyzed. These models

basic building blocks for more complicated models of the term structure where the short

interest rate represents the single factor. Thus, finding an adequate characterization of the

term interest rate will help determine if one-factor models of the term structure may be gain

applied to Canadian interest rates. If these models prove insufficient, the empirical analysi

indicate alternate paths of investigation for other factors that could characterize the term str

of interest rates in Canada.

Several models have been proposed for short-term interest rates, but until rela

recently, they had not been formally compared. Chan, Karolyi, Longstaff, and Sanders (

(hereafter CKLS) estimated and compared several models of short-term interest rates to e

U.S. 1-month Treasury bill yields. The results indicated that models that allowed the variabil

interest rates to depend upon the level of interest rates captured the dynamic behaviour of

term interest rates more successfully. The level effect was such that interest rate volatilit

positively correlated with the level of interest rates.

Tse (1995) and Dahlquist (1996) extended the analysis of CKLS to international short

interest rates.Their results indicated that in many countries the impact of the level of rates up

volatility of interest rates was also positive, though lower than in the United States. Tse (1

found that the impact of the level of interest rates on volatility was negative for Canada, the
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country where a negative impact was discovered. However, since the impact parameter w

statistically significant, Tse did not discuss the result in detail.

The main goal of this paper is to determine if Canadian short-term interest rates c

adequately modelled using a one-factor model. For comparative purposes, the appropriate

one-factor models for the U.S. short-term interest rate is also investigated. Attention is focus

the class of one-factor models proposed by CKLS that includes a wide range of notable one

models, though the class does not encompass all possible one-factor models.

The analysis of the CKLS models consists of choosing an analytic expression fo

evolution of the short-term interest rate and an estimation technique. Two alternative, but re

analytic expressions are considered. The first is a discrete-time approximation to the contin

time model. The second is an alternative discrete-time model that is formulated to reduce po

temporal aggregation bias from the discretization of the continuous-time process. There a

several techniques for estimating one-factor models. The above observations prompt seve

questions—which are addressed in this paper. Do the estimation results depend on the ch

analytic expression for the one-factor models? Are the results sensitive to the estimation tech

employed? And do the results depend on the data set analyzed? Are the results for Canada

United States different?

The analysis indicates that the estimation results tend to be independent of the an

approximation used to characterize the one-factor model. The discrete-time approach

estimates that are almost identical to the more exact time-aggregation approach, owing

relatively minor degree of mean reversion in short-term interest rates.

The estimation results are found to depend on both the country under consideration a

estimation technique employed.1 The results for Canadian short-term interest rates are unstable

differ quite considerably depending on the estimation technique employed. Evidence sugges

the evolution of Canadian short-term interest rates cannot be adequately described by the

class of one-factor models. On the other hand, the results for U.S. short-term interest rates ar

stable. One-factor models do a much better job of describing U.S. short-term interest rate da

similar Canadian data—although weak evidence against one-factor models for U.S. shor

interest rate data appears to exist.

1. The question of whether the estimation results are independent of the time frame of the data is
investigated in this paper.
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The paper is organized as follows: Section 2 presents the CKLS one-factor mode

short-term interest rates, describing both the discrete-time and aggregation models. Se

reviews standard estimation techniques, namely the maximum likelihood method and the g

method of moments. Section 4 discusses the data and the initial empirical results obtained b

both the maximum likelihood method and the general method of moments estimation techn

Sections 5 and 6 review the efficient method of moments, an alternative estimation tech

Section 7 presents the results of the efficient method of moments estimation. Section 8 con

the paper and discusses possible further work.

2. The model

CLKS proposed the following general model for short-term interest rates:

, (1)

wherer is the short-term interest rate andz is a geometric Brownian motion process. Thus, bo

the drift, , and the conditional variance of the interest rate process, , dep

upon the level of the interest rate. Several well-known one-factor models can be derived fro

above model through parametric restrictions. They are presented in the following table:

Model Specification Restrictions

Merton
(1973)

,

Vasicek
(1977)

Cox, Ingersoll, and Ross
(1985)

Dothan
(1978)

,

Geometric Brownian
Motion

,

Brennan and Schwartz
(1980)

Cox, Ingersoll, and Ross
(1980) ,

Cox
(1975)

dr t( ) α β r t( )+[ ] dt σr
γ
dz+=

α β r t( )+ σ2
r

2γ
dt

dr αdt σdz+= β 0= γ 0=

dr α βr+( )dt σdz+= γ 0=

dr α βr+( )dt σr
1 2⁄

dz+= γ 1 2⁄=

dr σrdz= α β 0= = γ 0=

dr βrdt σrdz+= α 0= γ 1=

dr α βr+( )dt σrdz+= γ 1=

dr σr
3 2⁄

dz= α β 0= = γ 3 2⁄=

dr βrdt σr
γ
dz+= α 0=
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The Merton (1973) model is a simple Brownian motion for short-term interest rates.

model of Vasicek (1977) is an Ornstein-Uhlenbeck process. The model of Cox, Ingersoll, and

(1985) is frequently referred to as the square-root process (CIR-SR). The Geometric Bro

Motion (GBM) was used by Black and Scholes (1973) to derive the prices of options, where

referred to as the implied volatility of the option. The model of Cox (1975) is often referred t

the Constant Elasticity of Variance (CEV) model. From the parametric restrictions, it is obv

that the models cannot generally be written as special cases of one another. That is, althoug

of the models is nested within (1), they are typically non-nested with respect to each other.

Typically the continuous-time model, (1), is discretized as follows:

(2)

where  and . (3)

The parameters of the model are then estimated using either maximum likelihood method

example Nowman (1997), or the general method of moments technique, for example CKLS (

and Tse (1995).

As Nowman pointed out, the discretized model (2) neglects errors introduced as a res

time aggregation. The discretized error arises because equation (1) is only shorthand nota

the stochastic differential equation (SDE),

, (4)

which is the correct representation of the stochastic process. The more formal approa

discretizing equation (4) is to first solve the SDE forr(t) and then to discretize the solution. Thu

the discretization of the model (1) should read

(5)

where the conditional mean and variance of the error term are approximated by

 and  . (6)

σ

r t 1+( ) r t( )– α β r t( )+ ε t 1+( )+=

Et ε t 1+( )[ ] 0= Et ε2
t 1+( )[ ] σ2

r t( )2γ
=

dr s( )
0

t

∫ α β r s( )+[ ] ds
0

t

∫ σr
γ

s( )dz s( )
0

t

∫+=

r t( ) =
α
β
--- e

β
1–[ ] e

β
r t 1–( ) ε t( )+ +

ε t( ) = e
β t s–( ) σr

γ
s( ) dz

t 1–

t

∫

Et 1– ε t( )[ ] 0= Et 1– ε2
t( )[ ] σ2

2β
------ e

2β
1–[ ] r t 1–( )2γ

=
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(See Bergstrom [1984], Nowman [1997], and the Appendix for details.) Note that equation

the exact solution of the general model (1). Furthermore, the disparity between the discret

approximation, equations (2) and (3), and the above solution, equations (5) and (6), lessens

mean-reversion parameter,β, tends to zero.

3. Standard estimation techniques

Two of the main techniques that are used in the literature to estimate one-factor interest rate m

are the method of maximum likelihood and the general method of moments.

3.1 Method of maximum likelihood

The method of maximum likelihood is a parametric estimation technique. Under the assum

that the probability density function of the data has a particular parametric form, the me

ascertains which parameter value would yield the greatest likelihood of obtaining the obs

data. In other words, the method chooses the probability density function under which the obs

data would have the highest likelihood of occurring. The likelihood function is simply the j

density function of the sample data. For computational convenience, the method focuses on

of the likelihood function—parameter estimates obtained from the likelihood function and th

of the likelihood function are identical.

The standard approach is to assume that the model errors, , are conditionally no

In this case, the log likelihood function (LLF) for (2) or (5) is given by

(7)

where is the conditional variance,n is the number of observations

and is the vector of model parameters. The LLF estimates of the m

parameters are then given by

, (8)

where  is the parameter vector that generates the largest value of the LLF.

ε t( )

LLF(ρ ) 1
2
---– 2π ht( )log ε2

t( )
ht

------------+
 
 
 

t 1=

n

∑=

ht Et 1– ε2
t( )[ ]=

ρ α β σ γ, , ,{ }=

ρ̂ arg max
ρ

LLF(ρ ){ }=

ρ̂
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3.2 General method of moments

The general method of moments (GMM) of Hansen (1982) is appealing in that no param

assumptions need be made about the distribution of the errors, and the GMM error

asymptotically consistent. GMM is closely related to the classical method of moments

instrumental variable estimation. The classical method of moments uses moment restricti

estimate model parameters. These restrictions can be written as population moments

expectation is zero when evaluated at the true parameter values. One of the key concepts

GMM is that there is a set of moment conditions involving the parameter vector such tha

expected value of these conditions at the true parameter vector is zero. In instrumental va

estimation, the key idea is to find a set of instruments that is correlated with the regresso

uncorrelated with the error terms. In other words, the instrument vector must be orthogonal

errors. Instrumental variable estimation can be cast in a GMM framework where the mome

conditions are given by the requirement that the instrument vector be orthogonal to the e

Consequently, the moment conditions are also referred to as orthogonality conditions.

More formally, the GMM estimation framework is as follows: Let f(r(t);ρ) be a

vector of disturbances that satisfy the following set ofqorthogonality conditions—these condition

are usually restrictions on the moments of the errors in the model:

 . (9)

Under standard technical conditions such that the law of large numbers holds (see H

[1982] and Hamilton [1994]), the sample average,

, (10)

is a good approximation for the orthogonality conditions (9) ifn is large. Now let

(11)

where Wn is a positive definite weighting matrix. The GMM estimate of the mod

parameters is given by

 . (12)

q 1×

E f(r(t);ρ )[ ] 0=

gn ρ( ) 1
n
--- f(r(t);ρ )

t 1=

n

∑=

Jn ρ( ) gn' ρ( ) Wn gn ρ( )=

q q×

ρ̂n arg min
ρ

Jn(ρ ){ }=
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Under fairly general conditions is a consistent estimator of the true parameter ve

Hansen (1982) showed that an efficient choice ofWn is given by  where

(13)

andρ0 is the true value ofρ. Thus, in order to implement GMM, an estimator for is required.

standard approach is to replace the true autocovariances with sample autocovariances. A

choice for the estimator of  is the Newey-West (1987) estimator,

, (14)

where

. (15)

The Newey-West estimator is both consistent and positive definite. In addition to this estim

several other estimators have also been proposed (see Ogaki [1992] and Hamilton [199

reviews).

Note that, if the number of parameters is equal to the number of orthogonality condit

then the system is said to be just-identified and the estimate ofρ is independent ofWn . In this case,

the parameter estimates are given by simply solving .

In the case where the number of orthogonality conditions,q, is greater than the number o

model parameters, , diagnostic testing can be conducted using Hansen’s J-test (also know

over-identification test). The restrictions implied by the model can be tested using Hansen’s

which states that

. (16)

ρ̂n

Wn Ω 1–
=

Ω n
n ∞→
lim E gn ρ0( ) gn ρ0( )′[ ] E f(r(t);ρ0) f' r t j–( ) ρ0;( )[ ]

j ∞–=

+∞

∑
j ∞→
lim= =

Ω

Ω

Ω̂n Φ̂0
s j–

s
---------- Φ̂ j Φ̂

′
j+( )

j 1=

s

∑+=

Φ̂ j
1
n
--- f(r(t); ρ̂ ) f' r t j–( ) ρ̂;( )

t j 1+=

n

∑=

gn ρ( ) 0=

lρ

nJn ρ̂( ) a χ2
q lρ–( )∼
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Expanding upon the work of CKLS, choose the vector f(r(t);ρ) to be

(17)

where and is a vector of

instruments, and represents the Kronecker product.

4. The data and initial empirical results

The present study uses 90-day commercial paper rates for Canada and 3-month Treasury bi2

for the United States. The data are recorded at a weekly frequency for the period 1975 to 19

consist of 1095 observations. Wednesday closing observations are used; Thursdays are us

Wednesday was unavailable; and Tuesdays are used if both the Wednesday and the Thursd

unavailable.

Two main questions are addressed in this section: Is there a difference between the

obtained by estimating the discrete model, (2)-(3), and those obtained by estimating the agg

model, (5)-(6)? Do the results depend on estimation technique?

Table 1 contains the results of estimating both the discrete model and the aggregate

via LLF and GMM methods. As shown in the table, there is virtually no difference between

estimates of the discrete and aggregate models for the Canadian 90-day commercial pape

for the 3-month U.S. Treasury bill rate series using either technique. Thus, it would appear th

results are not driven by aggregation effects. The results are quite similar as estimates ofβ—the

rate of adjustment towards the long-run mean of the short-term interest rate—are small a

aggregate model reduces to the discrete model in the limit thatβ tends to zero. Thus, the higher

order aggregation effects are quite small and can be neglected from all practical purposes.

all further discussion in this section will focus on the results of the discrete model.

For Canadian commercial paper rates, neitherα norβ are significant, although the LLF and

the GMM methods yield similar point estimates. In particular, the LLF and GMM methods y

estimates of the long-run mean, -α/β, of 8.97 per cent and 8.89 per cent, respectively. Both th

2. Treasury bill rates are used, as opposed to eurodollar rates, to allow direct comparison of the results w
earlier studies.

f(r(t);ρ )
ε t 1+( )

ε2
t 1+( ) σ2

2β
------ e

2β
1–[ ] r t( )2γ

–
Zt⊗=

ε t 1+( ) r t 1+( ) e
β

r t( ) α
β
--- e

β
1–[ ]––= Zt 1 r t( ),[ ] ′

=

⊗
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values are below the sample mean of the data series, which is 9.90 per cent. The methods d

on the estimates ofσ and γ. The LLF estimates areσ = 0.108 and γ = 0.441 while the GMM

estimates areσ = 0.029 andγ = 0.998. Bothσ andγ are significant for the LLF estimation. Howeve

only γ is significant for the GMM estimation. The discrepancies in the estimates will be fur

investigated later in the paper.

For U.S. Treasury bills, neitherα nor β are significant. Furthermore, the LLF and GMM

methods yield different estimates of the long-run mean, -α/β, of 8.50 per cent and 6.61 per cen

resepectively. These values lie either side of the sample mean, which is 7.71 per cent. Bo

estimates ofσ andγ are significant. The LLF estimates areσ = 0.012 andγ = 1.532 while the GMM

estimates areσ = 0.007 andγ = 1.761. The estimates ofσ andγ for Treasury bills appear to be

robust; they agree within standard error. Furthermore, the estimates are similar to pre

empirical findings. For example, Tse (1995) foundγ = 1.728 for 3-month U.S. money market rate

using monthly data from August 1976 to May 1994; and Brenner, Harjes, and Kroner (1996) f

γ = 1.559 for 13-week Treasury bill yields using weekly data from 9 February 1973 to 6 July 19

As a further robustness check on the different GMM estimates, different instrument

were used. In addition to , the instruments sets a

Table 1: One-factor models: LLF and GMM estimates

CP-CAN TB-US

Discrete
LLF

Aggregate
LLF

Discrete
GMM

Aggregate
GMM

Discrete
LLF

Aggregrate
LLF

Discrete
GMM

Aggregate
GMM

0.0332
(0.0254)

0.0332
(0.0248)

0.0311
(0.0482)

0.0341
(0.0499)

0.0102
(0.0121)

0.0102
(0.0122)

0.0435
(0.0417)

 0.0435
(0.0367)

-0.0037
(0.0027)

-0.0037
(0.0027)

-0.0035
(0.0053)

-0.0036
(0.0056)

-0.0012
(0.0024)

-0.0012
(0.0025)

-0.0061
(0.0069)

-0.0061
(0.0063)

0.108*
(0.012)

0.108*
(0.001)

0.029
(0.021)

0.027
(0.020)

0.012*
(0.001)

0.012*
(0.001)

0.007*
(0.003)

0.007*
(0.003)

0.441*
(0.048)

0.442*
(0.004)

0.998*
(0.288)

1.019*
(0.293)

1.532*
(0.048)

1.532*
(0.047)

1.761*
(0.161)

1.761*
(0.179)

8.97 8.97 8.89 9.47 8.50 8.50 6.61 6.61

Corrected standard error appear in parentheses. (*) indicates that the coefficient is statistically signifi
the 5 per cent level.

α

β

σ

γ

α– β⁄

Zt 1 r t( ),[ ] ′
= Zt 1 r t( ) r t 1–( ),,[ ] ′

=
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were employed. The results for Canadian commercial paper

U.S. Treasury bills are reported in Tables 2 and 3, respectively. The estimates for Can

commercial paper appear to be unstable, with estimates ofγ ranging from to 0.229 to 0.998.

Furthermore, Hansen’s J-test rejects the model for two of the intrument sets. The estimates f

Treasury bills are remarkably robust to the choice of instruments. Furthermore, the discrete m

(2)-(3), cannot be rejected using Hansen’s J-test. A final observation is that it appears

extremely difficult to estimateσ andγ independently. For the same data set, high estimates ofγ are

typically associated with lower estimates ofσ. The difficulty of estimation may be a symptom o

the conditional standard deviation being misspecified.

One of the drawbacks of the GMM technique is that a set of orthogonality conditions

to be specified. This entails both deciding on moment conditions and choosing a set of instrum

Thus, the rejection of the model for Canadian commercial paper could possibly be due to th

Table 2: One-factor models: Robustness to GMM instruments

CP-CAN

0.0311
(0.0482)

0.0533
(0.0448)

0.0331
(0.0417)

-0.0035
(0.0053)

-0.0064
(0.0048)

-0.0041
(0.0045)

0.0290
(0.0206)

0.1260
(0.1123)

0.1497
(0.1176)

0.9981*
(0.2883)

0.3167
(0.3852)

0.2286
(0.3478)

0 2 4

— 8.606** 11.770**

Corrected standard error appear in parentheses. (*) indicates that the coefficient is
statistically significant at the 5 per cent level. (**) indicates rejection at the 5 per
cent level. Standard errors are computed with a Newey-West estimator with s = 3.
The number of degrees of freedom, , is equal to the number of orthogonality
conditions minus the number of parameters to be estimated. The value refers to
Hansen’s J-test.

Zt 1 r t( ) r t 1–( ) r t 2–( ),,,[ ] ′
=

Zt
′ 1 r t,[ ] 1 r t r t 1–, ,[ ] 1 r t r t 1– r t 2–, , ,[ ]

α

β

σ

γ

q lρ–

χ2
q lρ–( )

q lρ–

χ2
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that a poor set of instruments was chosen. For example, Kogure (1997) and Gouriérou

Monfort (1996) considered the more general SDE,

, (18)

whereρ represents a vector of unknown parameters. They noted that moment conditions fo

are given by

, (19)

where is any twice continuously differentiable function such that

How does one go about deciding which orthogonality conditions to use from the above infini

of moment conditions?

Gallant and Tauchen (1996) addressed the problem of which orthogonality conditio

choose in their paper entitled, “Which Moments to Match?” There, they formulated a system

approach to generating moment conditions, which they called the efficient method of mom

Table 3: One-factor Models: Robustness to GMM instruments

TB-US

0.0435
(0.0417)

0.0252
(0.0401)

0.0243
(0.0398)

-0.0061
(0.0069)

-0.0027
(0.0066)

-0.0027
(0.0065)

0.0072*
(0.0027)

0.0071*
(0.0029)

0.0079*
(0.0028)

1.761*
(0.161)

1.750
(0.172)

1.706
(0.156)

0 2 4

— 2.633 3.019

Corrected standard error appear in parentheses. (*) indicates that the coefficient is
statistically significant at the 5 per cent level. (**) indicates rejection at the 5 per
cent level. Standard errors are computed with a Newey-West estimator with s = 3.

dr t( ) a r t( ) ρ[ , ] dt b r t( ) ρ[ , ] dz+=

E h
′

r t( )[ ] a r t( ) ρ[ , ]
1
2
---h

″
r t( )[ ] b

2
r t( ) ρ[ , ]+ 0=

h:IR IR→ E h r t( )[ ][ ] ∞<

Zt
′ 1 r t,[ ] 1 r t r t 1–, ,[ ] 1 r t r t 1– r t 2–, , ,[ ]

α

β

σ

γ

q lρ–

χ2
q lρ–( )
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(EMM). The remainder of the paper concentrates on using the EMM technique to further exa

the validity of the one-factor model, (1), for Canadian commercial paper and U.S. Treasury

5. Efficient method of moments (EMM)

The efficient method of moments specifically addresses the question of which set of mo

conditions to match. A systematic approach to choosing the orthogonality conditions for the G

estimator is given. The general idea is to first formulate a good statistical description of the

and then test if the structural model could possibly yield a similar description of the data

structural model is the data-generating process that is postulated to have generated the o

data. EMM was initially proposed by Bansal, Gallant, Hussey, and Tauchen (1994; 1995)

further developed by Gallant and Tauchen (1996). Good overviews can be found in Tau

(1995), and Gallant and Tauchen (1997a).

First, start with an auxiliary model that gives a good statistical description of the d

Suppose that the conditional density ofrt [  ] is given by

, (20)

where andθ is a vector of parameters, of length , tha

characterizes the auxiliary model. The parametersθ are estimated by quasi-maximum likelihoo

using the scores of the auxiliary model (hence, the auxiliary model is also referred to as the

generator):

 . (21)

Now consider the structural model forrt that depends on a vector of parameters , of length

Define the moment criterion,

 , (22)

where the expectation is with respect to the true density of the structural model. The expec

can be calculated by Monte Carlo methods, namely, averaging over a long simulation,

r t( )≡

f r t xt 1– θ,( )

xt 1– r t L– … r t 2– r, t 1–, ,( )= lθ

θ̂n arg max
θ

1
n
--- f r t xt 1– θ,( )[ ]log

t L 1+=

n

∑=

ρ lρ

m ρ θ,( ) E
∂

∂θ
------ f r t ρ( ) xt 1– ρ( ) θ,( )[ ]log=
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where is a simulation generated from the structural model. If the observed da

generated by the structural model, then one would expect that the moment criterion would be

to zero. More formally, the EMM estimator for the parameters of the structural model is give

, (24)

where

 . (25)

The above choice of the weighting matrix is valid under the assumption that the auxiliary m

yields a good statistical description of the data generator process, which is assumed to be th

Note that the weighting matrix depends only on the observed data and is independent

parameters of the structural model.

The validity of the structural model can be tested by noting that

(26)

under the null hypothesis that the structural model is correct. If the null hypothesis is rejected

diagnostic testing can be carried out to see where the model fails. The t-statistics,

 , (27)

where

 with , (28)

contain information about how well the structural model fits the scores of the auxiliary mode

computationally less intensive diagnostic test is given by the quasi–t-statistic. The quasi–t-statistic

is given by equation (27) with . The quasi–t-statistic has a downward bias

relative to 2 compared to the adjustedt-statistic.) Thus, larget-statistics, typically greater than 2

indicate those characteristics of the data that not satisfactorily explained by the structural m

m ρ θ̂n,( ) 1
N
---- ∂

∂θ
------ f r̂ τ ρ( ) x̂τ 1– ρ( ) θ̂n,( )[ ]log

τ 1=

N

∑=

r̂ t ρ( ){ }τ 1=
N

ρ̂n arg min
ρ

m ρ θ̂n,( ) ′ Ĩ n( ) 1–
m ρ θ̂n,( )=

Ĩ n
1
n
--- ∂

∂θ
------ f r t xt 1– θ̂n,( )[ ]log

∂
∂θ
------ f r t xt 1– θ̂n,( )[ ]log

′

t L 1+=

n

∑=

n m ρ θ̂n,( )′ Ĩ n( ) 1–
m ρ θn

ˆ,( ) a χ2
lθ lρ–( )∼

T̂n Sn( ) 1–
nm ρ θ̂n,( )=

Sn diag Ĩ n M̂n M̂n
′

Ĩ n( ) 1–
M̂n[ ]

1–
M̂n

′
–[ ]

 
 
 

1 2⁄

= M̂n
∂

∂ρ
------m ρ̂n θ̂n,( )=

Sn diag Ĩ n[ ]{ }
1 2⁄

=
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6. Semi–non-parametric (SNP) model

EMM estimation relies on choosing an auxiliary model that yields a good statistical descripti

the data. The conditional density of the interest rate process is estimated by the sem

parametric (SNP) approach. The SNP approach was developed by Gallant and Tauche

method for describing the properties of time series data. The conditional density of a multiv

process can be approximated by a Hermite polynomial series expansion around the st

normal density. The approach yields a non-linear, non-parametric model that nests severa

known models. For example, the model nests the Gaussian VAR model, the semi-parametri

model, the Gaussian ARCH model, and the semi-parametric ARCH model. In the SNP app

the conditional density for the interest rate process, rt, is

 , (29)

where  is the standard normal density and

 , (30)

 , (31)

 , (32)

 , (33)

 , (34)

and . (35)

 is anLp -vector, , such that  are non-negative integers and

f r t xt θ,( )
P zt xt 1–,( )[ ]2φ zt( )

P u xt 1–,( )[ ]2φ u( ) ud∫
--------------------------------------------------------- 1

Rt
-----=

φ •( )

xt 1– r t L– … r t 2– r, t 1–, ,( )=

zt

r t µt–

Rt
---------------=

µt φ0 φ j r t j–
j 1=

Lu

∑+=

Rt θ0 θ j zt j–
j 1=

Lr

∑+=

P zt xt 1–,( ) aαβ xt 1–
β

β 0=

Kx

∑
 
 
 

zt
α

α 0=

Kz

∑= where a00 1=

aαβ xt 1–
β

aα β, r t j–
β j

j 1=

Lp

∏
β s.t. β β=

∑≡

β β β1 … βLp
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The possible classes of auxiliary models can classified by the parmetersLu , Lr , Lp,Kz , and

Kx. Lu is the number of lags in the linear part of the SNP model;Lr is the number of lags in the

ARCH part;Lp is the number of lags ofrt that are included in thex part ofP(z,x); Kz is the degree

of the polynomialP(z,x)in z; andKx is the degree of the polynomialP(z,x)in x. (By convention,

Lp = 1 if Kx= 0.) The various SNP models can be classified according to whether the param

Lu, Lr, Lp, Kz, andKx are zero or non-zero. Some of the possible SNP models are outline

Table 4.

Model selection is determined by examining the Schwarz Bayes (BIC), Hannan-Q

(HQ), and Akaike (AIC) information. Thus the model that yields the lowest criteria values

selected. The BIC, HQ, and AIC information criteria are as follows:

 . (36)

Each of the criteria has two components: the first is the value of the objective function that rew

for goodness of fit; the second is an adjustment that penalizes for too many parameters. Th

tends to overparameterize the model while the BIC offers a sparser selection. The HQ criteria

models between the BIC and AIC. Model selection is based on the BIC information criteria bu

HQ and AIC values are listed for comparison. The valuesLu, Lr, Kz, Kx, andLp are determined

sequentially. This approach is not necessarily optimal; however, it has the desirable prope

sequentially refining the conditional density.

Table 4: Classification of SNP models

SNP Model Lu Lr Lp Kz Kx

Gaussian VAR ≥ 1 = 0 ≥ 0 = 0 = 0

Semi-parametric VAR ≥ 1 = 0 ≥ 0 ≥ 1 = 0

Gaussian ARCH ≥ 0 ≥ 1 ≥ 0 = 0 = 0

Semi-parametric ARCH ≥ 0 ≥ 1 ≥ 0 ≥ 1 = 0

Non-linear, non-parametric ≥ 0 ≥ 0 ≥ 1 ≥ 1 ≥ 1

BIC = sn θ̂n( ) 1
2
--- pθ n⁄( ) nlog+

HQ = sn θ̂n( ) pθ n⁄( ) nlog( )log+

AIC = sn θ̂n( ) pθ n⁄+
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For the CP-Can series, the SNP model withLu = 2, Lr = 7, Lp = 1, Kz = 8, andKx = 0 is

optimal under the BIC criteria. This model has 19 degrees of freedom. For the TB-US serie

SNP model withLu = 2, Lr = 9, Lp = 1, Kz = 4, andKx = 0 is optimal under the BIC criteria. This

model has 17 degrees of freedom. Hence, semi-parametric ARCH models appear to be ade

describe both sets of data.

The one-step-ahead conditional mean and conditional standard deviation for the abov

fits are plotted in Figures 1 and 2, along with the raw data sets. The conditional means app

track the series quite well and the conditional standard deviations also appear to track move

in the series.
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Table 5: SNP estimation of the conditional density of CP-CAN

SNP tuning parameters Objective function

Lu Lr Lp Kz Kx lθ sn BIC HQ AIC

1 0 1 0 0 3 -0.9732 -0.9635 -0.9678 -0.9704

2 0 1 0 0 4 -0.9822 -0.9822 -0.9879 -0.9914

3 0 1 0 0 5 -0.9982 -0.9820 -0.9892 -0.9935

4 0 1 0 0 6 -0.9982 -0.9820 -0.9892 -0.9935

2 1 1 0 0 5 -1.1300 -1.1138 -1.1210 -1.1254

2 2 1 0 0 6 -1.1954 -1.1760 -1.1846 -1.1898

2 3 1 0 0 7 -1.2258 -1.2032 -1.2132 -1.2193

2 4 1 0 0 8 -1.2383 -1.2124 -1.2239 -1.2309

2 5 1 0 0 9 -1.2477 -1.2186 -1.2315 -1.2394

2 6 1 0 0 10 -1.2489 -1.2165 -1.2309 -1.2396

2 7 1 0 0 11 -1.2557 -1.2201 -1.2359 -1.2455

2 8 1 0 0 12 -1.2558 -1.2170 -1.2342 -1.2447

2 7 1 4 0 15 -1.3792 -1.3307 -1.3522 -1.3653

2 7 1 5 0 16 -1.3787 -1.3270 -1.3496 -1.3639

2 7 1 6 0 17 -1.4014 -1.3464 -1.3708 -1.3856

2 7 1 7 0 18 -1.4022 -1.3440 -1.3698 -1.3855

2 7 1 8 0 19 -1.4109 -1.3495 -1.3767 -1.3933

2 7 1 9 0 20 -1.4101 -1.3455 -1.3741 -1.3916

2 7 1 8 1 25 -1.4220 -1.3315 -1.3716 -1.3961

2 7 1 8 2 34 -1.4270 -1.3075 -1.3605 -1.3928

2 7 2 8 1 34 -1.4296 -1.3101 -1.3630 -1.3954

2 7 3 8 1 43 -1.4334 -1.2848 -1.3507 -1.3909

Lu is the number of lags in the linear part of the SNP model;Lr is the number of lags in the
ARCH part;Lp is the number of lags in the polynomial part,P(z,x). The polynomialP(z,x)is of
degreeKz in zandKx in x; by convention,Lp =1 if Kx = 0. The number of SNP parameters islθ.
The value of the objective function is sn.The BIC, HQ, and AIC information criteria are listed.
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Figure 1: Canadian commercial paper rates
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Table 6: SNP estimation of the conditional density of TB-US

SNP tuning parameters Objective function

Lu Lr Lp Kz Kx lθ sn BIC HQ AIC

1 0 1 0 0 3 -0.7661 -0.7565 -0.7608 -0.7634

2 0 1 0 0 4 -0.7702 -0.7573 -0.7630 -0.7665

3 0 1 0 0 5 -0.7711 -0.7550 -0.7621 -0.7665

2 1 1 0 0 5 -1.0782 -1.0620 -1.0692 -1.0735

2 2 1 0 0 6 -1.1761 -1.1567 -1.1653 -1.1706

2 3 1 0 0 7 -1.2368 -1.2142 -1.2242 -1.2303

2 4 1 0 0 8 -1.2718 -1.2459 -1.2574 -1.2644

2 5 1 0 0 9 -1.2781 -1.2490 -1.2619 -1.2697

2 6 1 0 0 10 -1.2929 -1.2606 -1.2750 -1.2837

2 7 1 0 0 11 -1.2979 -1.2624 -1.2782 -1.2878

2 8 1 0 0 12 -1.3014 1.2627 -1.2798 -1.2903

2 9 1 0 0 13 -1.3069 -1.2649 -1.2835 -1.2949

2 10 1 0 0 14 -1.3069 -1.2617 -1.2817 -1.2940

2 9 1 4 0 17 -1.3556 -1.3007 -1.3250 -1.3399

2 9 1 5 0 18 -1.3562 -1.2981 -1.3239 -1.3396

2 9 1 4 1 19 -1.3645 -1.2934 -1.3249 -1.3441

2 9 1 4 2 24 -1.3706 -1.2834 -1.3221 -1.3457

2 9 2 4 1 27 -1.3700 -1.2828 -1.3215 -1.3451

2 9 3 4 1 32 -1.3700 -1.2697 -1.3156 -1.3435

Lu is the number of lags in the linear part of the SNP model;Lr is the number of lags in the
ARCH part;Lp is the number of lags in the polynomial part,P(z,x). The polynomialP(z,x)is of
degreeKz in zandKx in x; by convention,Lp =1 if Kx = 0. The number of SNP parameters islθ.
The value of the objective function is sn.The BIC, HQ, and AIC information criteria are listed.
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Figure 2: U.S. Treasury bill rates

0 200 400 600 800 1000 1200
0

5

10

15

20
Three Month US T−Bill Rates: weekly 1975−1995

0 200 400 600 800 1000 1200
0

5

10

15

20
Conditional Mean (SNP:2914000)

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2
Conditional Standard Deviation (SNP:2914000)



21

rate a

using

into

s

d in the

the

was

two

rvals,

s, the

quite

and

EMM

mates

tes.

g an

nerator

able

l). In

ntly

ta.

ing
7. Efficient method of moments estimation

The first step in the EMM method is to estimate the auxiliary model. The second is to gene

simulated time series for the SDE. Given the results of Section 4, the SDE (1) was simulated

a simple discrete-time Euler scheme,3

(37)

whereε(t) is a random draw from the standard normal distribution. Each week was divided

50 subintervals of equal length,h = 1/50. A simulation of weekly data of length 77,000 wa

generated. The first 2,000 generated observations were discarded so that the simulation use

EMM estimation would be independent of the initial conditions. Thus, the simulation used in

EMM estimation had 75,000 observations at a weekly frequency. The simulation length

deemed to be long enough so that Monte Carlo errors become negligible.

For robustness, the estimation was conducted using different initial conditions,

different random number seeds for the simulation series, different numbers of weekly subinte

and different simulation lengths. The results are fairly robust to the random number seed

number of subintervals, and the length of the simulation. However, the estimations were

sensitive to the initial conditions. Robust results were found by using the results for the LLF

GMM estimations as initial conditions. Only the LLF and GMM estimates forα, β, andσ were

used. In addition, a wide range of initial values forγ was also used to prevent biasing the EMM

estimates ofγ towards the LLF and GMM estimates ofγ.

For Canadian 90-day commercial paper rates, none of the structural model parameter

estimates are statistically significant (Table 7). The point estimates ofα = 0.03143 andβ =

–0.007615 are smaller than the corresponding LLF and GMM estimates. The other EMM esti

areσ = 0.0000255 andγ = 2.6459. Theγ estimate is much larger than any of the previous estima

Not surprisingly, the -test overwhelmingly rejects the one-factor model, (1), as offerin

adequate description of the evolution of 90-day Canadian commercial rates. The score ge

diagnostics listed in Table 8 pinpoint the problem with the model. The one-factor model is un

to fit the scores associated with the Hermite polynomial coefficients (of the auxiliary mode

particular, thet-statistics of all the even-power Hermite polynomial coefficients are all significa

greater than 2. Thus, the model is unable to explain the non-Gaussian deviations of the da

3. A weak order two scheme (see Kloeden and Platen [1992]) for the SDE was also implemented, yield
similar results. However, this method increased the estimation time by a factor of six.

r t h+( ) r t( ) α βr t( )+[ ]h σ r t( )γ
h ε t( )+ +=

χ2
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The one-factor model does a much better job of modelling the evolution of the 3-m

U.S. Treasury bill rates. The EMM estimates areα = 0.0314,β = -0.00762,σ = 0.00280, andγ =

2.425. Only the estimates ofα andγ are statistically significant. Furthermore, the EMM estima

of γ agrees with the GMM estimate within error bounds. However, the insignificance of thσ

estimate casts some doubt on the validity of theγ estimate. The -test is unable to reject the nu

hypothesis that the structural model, (1), gives a valid description of 3-month U.S. Treasur

rates. However, the score generator diagnostics listed in Table 9 indicate that the one-factor

is unable to fit the score associated with the quartic term of the Hermite polynomial. Over

would appear that the one-factor model, (1), is better able to describe the 3-month U.S. Tre

bill rate series than the Canadian 90-day commercial paper series, althought the fit is fa

perfect.

Table 7: EMM estimates

CP-CAN TB-US

Score generator s2718000 s2914000

0.00807
(0.00724)

0.0314*
(0.0150)

-0.000710
(0.000673)

-0.00762
(0.00570)

0.0000255
(0.0000881)

0.00280
(0.00247)

2.646
(1.441)

2.425*
(0.185)

15 13

78.481 15.472

Corrected standard error appear in parentheses. (*) indicates that the coefficient is
statistically significant at the 5 per cent level. The number of degrees of freedom,

, is equal to the number of auxiliary model parameters minus the number of
parameters to be estimated. Some comparison probabilities that are helpful in
interpreting the above tests are as follows: ,

 and .

α

β

σ

γ

lθ lρ–

χ2
lθ lρ–( )

lθ lρ–

χ2

χ2
Prob χ2

15( ) 37.7≥[ ] 0.001=

Prob χ2
13( ) 16.0≥[ ] 0.25= Prob χ2

13( ) 19.8≥[ ] 0.10=

χ2
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Table 8: CP-CAN score generator diagnostics

Score
generator eqn.

Quasi-t-stat T-stat

 Mean -0.405 -1.226

 VAR 0.801 1.063

0.939 1.227

 Var 0.939 1.840

 ARCH 0.370 0.413

-0.996 -1.167

-0.809 -0.909

-1.102 -1.330

0.948 1.088

0.43 0.451

0.592 0.643

 Hermite 0.864 1.149

3.040 5.842

1.612 1.794

4.890 6.006

0.955 0.991

4.959 5.329

0.685 0.695

4.595 4.740

See equations (28)-(29) for a description of the
calculation of the abovet-statistics.

φ0

φ1

φ2

θ0

θ1

θ2

θ3

θ4

θ5

θ6

θ7

a10

a20

a30

a40

a50

a60

a70

a80
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Table 9: TB-US Score generator diagnostics

Score
generator eqn.

Quasi-t-stat T-stat

 Mean 0.724 0.779

 VAR -0.391 -1.132

-0.408 -1.122

 Var 0.655 1.379

 ARCH 0.842 1.357

0.830 1.126

0.799  1.004

-0.228 -0.334

-0.590 -0.845

0.621 0.736

0.462 0.534

0.305 0.438

0.553 0.809

 Hermite -0.368  -0.380

 0.917 1.714

-0.903 -0.928

 1.955  2.721

See equations (28)-(29) for a description of the
calculation of the abovet-statistics.

φ0

φ1

φ2

θ0

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

a10

a20

a30

a40
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8. Conclusion and discussion

A broad class of one-factor models for the short-term interest rate in Canada and the United

was examined. The model parameter estimates were found to be independent of whe

discretized version or a more accurate aggregation version of the continuous-time model wa

Furthermore, the parameter estimates for the U.S. Treasury bill interest series are more

independent of the estimation technique employed—the study compares results from the

GMM, and EMM estimation methods. However, the results for the Canadian commercial p

rates series vary with the estimation technique. Hypothesis testing suggests that the class

factor models for the short-term interest rate, (1), are inadequate as models for the evolution

Canadian commercial paper rate. The evidence against the model for U.S. Treasury bill r

only marginal. Thus, the one-factor model, (1), appears to offer a much better description o

data than similar Canadian data. This result casts doubt on the usefulness of one-factor m

such as the CIR square root model, for providing an adequate basis for analyzing the ri

Canadian-dollar fixed-income portfolios.

It is conceivable that the inconsistent results for Canada stem from the possibility tha

estimation techniques (LLF, GMM, and EMM) are unable to correctly identify time series data

adhere to the one-factor model, (1). However, the analysis presented in Appendix B indicate

the difference is probably not due to the estimation techniques. Monte Carlo experiments s

that the various estimation techniques are all able to correctly identify a time series whose

generating process is truly given by equation (1). Thus, the discrepancies in the estimations

a symptom of the estimation techniques but rather an indication that the class of one-factor in

rate models given by (1) is inadequate to describe the observed interest rate series.

Several authors have tried to patch up the class of one-factor models, (1), by replaci

parameterσ by a time-varying parameter,ht (for examples, see Brenner, Harjes, and Kron

[1996], Andersen and Lund [1997], and Brailsford and Mahesweran [1998]). For examp

GARCH(1,1) specification for the time varying volatility parameter could be achieved by repla

equation (3) by where . Note tha

modelling volatility as a GARCH process allows volatility to be time varying but volatility is n

modelled as separate random process. Thus, the GARCH extension would still be classifie

one-factor model. However, preliminary research indicates that even these models do not p

an adequate characterization of the process driving short-term interest rates in Canada.

Principal component analysis suggests that three factors are necessary to de

movements in the yield curve (Litterman, Scheinkman, and Weiss [1991] and Han [1997]). T

Et εt 1+
2[ ] σ2

t 1+ h
2
t 1+ r t

2γ
= = h

2
t 1+ ω φ h

2
t δ εt

2
+ +=
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factors are commonly referred to as shift, tilt, and twist factors and are associated with the

slope, and curvature of the yield curve, respectively. Han (1997) found that these three factor

able to explain 94 per cent of the movements in the Canadian yield curve. Hence, in addition

short-term interest rate, at least two other factors are necessary. One possibility for an appr

second factor is stochastic volatility. Another possibility is a factor related to a time-varying l

run mean of short-term interest rates, which may more adequately capture mean-reversion o

term interest rates.

Affine models of the term-structure of interest rates incorporating stochastic volatility,

a time-varying long-run mean for the short-term interest rates (which is a three-factor model

term structure of interest rates) have been discussed by Dai and Singleton (1997). Balduzz

Foresi and Sundaram (1996), Chen (1996) and Gong and Remolona (1996) also discuss

three-factor models for the term structure of interest rates. The authors intend to employ

techniques to investigate whether Chen’s three-factor model offers a good description

evolution of the Canadian term structure.
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then

(38).

tional
Appendix A: Solving the stochastic differential equation

Consider the stochastic differential equation

. (38)

The above equation can be solved by first introducing the variable and

using Ito’s lemma to notice that the following equation must hold

. (39)

Equation (39) is simply shorthand notation for

. (40)

Simplifying equation (40) yields the general solution

. (41)

The solution can also be written in an iterative form, namely:

. (42)

Thus, equation (42) is the correct discretization model for the stochastic differential equation

Equation (42) explicitly takes care of the aggregation over time issues. Note that the condi

mean and variance of the error term are given by

(43)

and

dr t( ) α β r t( )+[ ] dt φ r t( , ) dz+=

Y t( ) α β r t( )+=

d e
βt–

Y t( )[ ] βe
βt– φ r t( , ) dz=

e
βs–

Y s( )[ ]
0

t
βe

βs– φ r s( , )dz
0

t

∫=

r t( ) α
β
---–

1
β
--- e

βt α β r 0( )+[ ] e
βt βe

βs– φ r s( , )dz
0

t

∫+ +=

r t( ) =
α
β
--- e

β
1–[ ] e

β
r t 1–( ) ε t( )+ +

ε t( ) = e
β t s–( )φ r s( , )dz

t 1–

t

∫

Et 1– ε t( )[ ] 0=
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e

. (44)

To proceed further, let and approximate by . Th

conditional variance of the error term can then be approximated by

. (45)

Et 1– ε2
t( )[ ] = Et 1– e

β t s–( )φ r s( , )dz
t 1–

t

∫ 
 
 

2

= Et 1– e
2β t s–( )φ2

r s( , )ds
t 1–

t

∫ By Ito Isometry

= e
2β t s–( )

Et 1– φ2
r s( , )[ ] ds

t 1–

t

∫

φ r t( , ) σ r t( )γ
= Et 1– φ2

r s( , )[ ] σ2
r t 1–( )2γ

Et 1– ε2
t( )[ ] σ2

2β
------ e

2β
1–[ ] r t 1–( )2γ

=
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Appendix B: Monte Carlo experiment

A Monte Carlo experiment was conducted in order to gain some insight into the discrepa

between the LLF, GMM, and EMM estimation techniques that were noted in Sections 4 and

weekly frequency interest series was generated using the SDE (1), with known parameter v

as the data-generating process. A simple discrete-time Euler scheme, with each week divid

50 equally spaced subintervals, was employed to generate a simulation of a short-term i

series of weekly observations and total length 1095 observations. The following model param

were chosen:α = 0.08,β = -0.01,σ = 0.01, andγ = 1.5. Hence, the generated series should hav

long-run mean of 8 per cent and a conditional volatility that is dependent on the level of the s

The simulated time series is graphed in the upper panel of Figure 3. The middle and

panels of Figure 3 show the one-step-ahead condition mean and conditional standard dev

The lower panel shows a clear dependence of the conditional volatility on the level.

The results of the LLF, GMM, and EMM estimations4 are presented in Table 10. All thre

methods give similar, statistically significant estimates ofσ andγ. The GMM method yields the

best estimates ofσ andγ in terms of both closeness to the true parameter values and smallne

the standard deviations of the estimates. In terms of mean absolute percentage error (MAPE5, the

relative ranking of the three estimation techniques is: first, LLF; second, EMM; and third, GM

(It is not too surprising that the LLF method wins out since the data were generated using nor

distributed errors.) However, the LLF estimates ofα and β have relatively large standard

deviations, which are comparable to the EMM standard deviations. The GMM me

overestimates the values ofα andβ. The GMM estimates are roughly twice the size of the tr

values. The EMM estimates ofα andβ are statistically indistinguishable from the true values.

4. The GMM estimate presented is for the just-identified system with the instrumental vector
(see Section 3.2). The EMM estimate uses a simulation of weekly data of length 77,000 observations
which the first 2,000 observations are discarded. As before, each week is divided into 50 subintervals. A S
auxiliary model with Lu = 1, Lr = 5, Lp = 1, K z=5, and Kx = 0 best describes the statistical properties of the
Monte Carlo time series.

5. MAPE = where are the parameter estimates, are the true parameter values, andN is

the number of parameters.

Zt 1 r t[ , ]
′

=

1
N
----

ρ̂i ρi–

ρi
----------------

i 1=

N

∑ ρ̂i ρi
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Furthermore, the EMM -test is unable to reject the structural model (1), and the score gen

diagnostics (see Table 11) only offer extremely marginal evidence against the model.6

The above results suggest that all three estimation techniques, LLF, GMM and EMM

able to identify the one-factor model (1) when it is the true data-generating process. Of cours

result is only indicative since it is based on a single Monte Carlo trial.

6. More weight is given to the -test since it is a joint hypothesis test for all the score generator equations. T
t-statistic tests are singular hypothesis tests that do not use the full information set, i.e., the information in

off-diagonal elements of  is not used in thet-statistic test (see Section 5).

Table 10: Simulation results

Simulation

 LLF GMM EMM

0.0825*
(0.0385)

0.1592*
(0.0140)

0.1176*
(0.0310)

-0.0084
(0.0046)

-0.0173*
(0.0014)

-0.0134*
(0.0039)

0.00926*
(0.00161)

0.00998*
(0.00126)

0.00824*
(0.00149)

1.536*
(0.077)

1.504*
(0.048)

1.575*
(0.091)

9.82 9.20 8.78

- - 15.978

Corrected standard error appear in parentheses. (*) indicates that
the coefficient is statistically significant at the 5 per cent level.
The simulated data was generated using the data generating
process (1) with parameter values , ,
and . Some comparison  probabilities that are helpful
in interpreting the above  tests are as follows:

 ,  and
.

χ2

χ2

Ŝn

α

β

σ

γ

α– β⁄

χ2
15( )

α 0.08= β 0.01–= σ 0.01=

γ 1.5= χ2

χ2

Prob χ2
15( ) 14.3≥[ ] 0.50= Prob χ2

15( ) 18.2≥[ ] 0.25=

Prob χ2
15( ) 25.0≥[ ] 0.05=



31
Figure 3: Simulated data: Input to SNP
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Figure 4: SNP Output: s1514010.fit
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Table 11: Simulation Score generator diagnostics

Score
generator eqn.

Quasi-t-stat T-stat

 Mean 0.981 1.017

 VAR -0.414 -0.419

 Var 0.353 0.495

 ARCH 1.476 1.610

0.447 0.532

0.401 0.511

0.509 0.544

-0.112 -0.126

 Hermite -0.948 -1.031

1.198 1.312

-0.223 -0.226

0.293 0.433

-0.331 -0.362

1.847 2.025

0.592 0.631

0.955 1.536

0.724 0.824

1.564 1.738

0.613 0.641

See equations (28)-(29) for a description of the
calculation of the abovet-statistics.

φ0

φ1

θ0

θ1

θ2

θ3

θ4

θ5

a10

a20

a30

a40

a50

a60

a70

a80

a90

a10 0,

a11 0,
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