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Abstract

There currently exists in the literature several continuous-time one-factor models for short-term
interest rates. This paper considers a wide range of these models that are nested into one general
model. These models are approximated using both a discrete-time model and a model that
accounts for aggregation effects over time, and are estimated by both the method of maximum
likelihood and the general method of moments, for both Canadian and U.S. data. The estimation
results are found to be independent of the approximation model used. However, the results are
dependent on the estimation technique, more so for Canada than the United States. As an
alternative check, the efficient method of moments is also employed. Hypothesis testing strongly
suggests these one-factor models do not provide a good description of the evolution of Canadian
short-term interest rates. In contrast, these models perform better for short-term U.S. interest
rates.

JEL classification: C52, G10
Bank of Canada classification: Financial markets; Interest rates

Résumeé

On reléve plusieurs modeles a un facteur formulés en temps continu dans les ouvrages
économiques pour décrire le comportement des taux d'intérét a court terme. Les auteurs de
I'étude examinent une large gamme de ces modéles constituant des cas particuliers d’'un modele
plus général. lls les représentent de facon approchée au moyen d’'un premier modéle en temps
discret et d’'un second qui tient compte des effets d’agrégation au fil du temps, qu'’ils estiment
ensuite par la méthode du maximum de vraisemblance et la méthode des moments généralisés a
l'aide de données canadiennes et américaines. Les résultats de I'estimation ne varient pas selon
'approximation utilisée; ils varient toutefois en fonction de la méthode d’estimation, et ce
davantage dans le cas du Canada que pour les Etats-Unis. Les auteurs emploient aussi la méthode
des moments efficaces pour contre-vérifier leurs résultats. Les tests d’hypothese donnent
fortement & penser que les modeéles a un facteur parviennent mal & décrire I'évolution des taux a
court terme au Canada. Ces modeles arrivent mieux, en revanche, a expliquer celle des taux
comparables aux Etats-Unis.

Classification JEL: C52, G10
Classification de la Banque du Canada: Marchés financiers; Taux d'intérét






1. Introduction and overview

The short-term interest rate is important in many financial economics models, such as models of
the term structure of interest rates, bond pricing models, and derivative security pricing models.
Short-term interest rates are also important in the development of tools for effective risk
management and in many empirical studies analyzing term premiums and yield curves, where risk-
free short-term interest rates are taken as reference rates for other interest rates.

Short-term interest rates are also a crucial feature of the monetary transmission mechanism.
Duguay (1994) describes the monetary transmission mechanism as starting with a monetary
authority’s actions influencing short-term interest rates and the exchange rate, which then go on to
ultimately affect aggregate demand and inflation. Thus, to fully characterize the monetary
transmission mechanism, it is imperative to have a good model of the behaviour of short-term
interest rates.

As a first step in modelling short-term interest rates, one-factor models of the term structure
of interest rates will be discussed and their applicability to Canada analyzed. These models are the
basic building blocks for more complicated models of the term structure where the short-term
interest rate represents the single factor. Thus, finding an adequate characterization of the short-
term interest rate will help determine if one-factor models of the term structure may be gainfully
applied to Canadian interest rates. If these models prove insufficient, the empirical analysis may
indicate alternate paths of investigation for other factors that could characterize the term structure
of interest rates in Canada.

Several models have been proposed for short-term interest rates, but until relatively
recently, they had not been formally compared. Chan, Karolyi, Longstaff, and Sanders (1992)
(hereafter CKLS) estimated and compared several models of short-term interest rates to explain
U.S. 1-month Treasury bill yields. The results indicated that models that allowed the variability of
interest rates to depend upon the level of interest rates captured the dynamic behaviour of short-
term interest rates more successfully. The level effect was such that interest rate volatility was
positively correlated with the level of interest rates.

Tse (1995) and Dahlquist (1996) extended the analysis of CKLS to international short-term
interest rates.Their results indicated that in many countries the impact of the level of rates upon the
volatility of interest rates was also positive, though lower than in the United States. Tse (1995)
found that the impact of the level of interest rates on volatility was negative for Canada, the only



country where a negative impact was discovered. However, since the impact parameter was not
statistically significant, Tse did not discuss the result in detail.

The main goal of this paper is to determine if Canadian short-term interest rates can be
adequately modelled using a one-factor model. For comparative purposes, the appropriateness of
one-factor models for the U.S. short-term interest rate is also investigated. Attention is focused on
the class of one-factor models proposed by CKLS that includes a wide range of notable one-factor
models, though the class does not encompass all possible one-factor models.

The analysis of the CKLS models consists of choosing an analytic expression for the
evolution of the short-term interest rate and an estimation technique. Two alternative, but related,
analytic expressions are considered. The first is a discrete-time approximation to the continuous-
time model. The second is an alternative discrete-time model that is formulated to reduce potential
temporal aggregation bias from the discretization of the continuous-time process. There are also
several techniques for estimating one-factor models. The above observations prompt several key
guestions—which are addressed in this paper. Do the estimation results depend on the choice of
analytic expression for the one-factor models? Are the results sensitive to the estimation techniques
employed? And do the results depend on the data set analyzed? Are the results for Canada and the
United States different?

The analysis indicates that the estimation results tend to be independent of the analytic
approximation used to characterize the one-factor model. The discrete-time approach yields
estimates that are almost identical to the more exact time-aggregation approach, owing to the
relatively minor degree of mean reversion in short-term interest rates.

The estimation results are found to depend on both the country under consideration and the

estimation technique employéd:he results for Canadian short-term interest rates are unstable and
differ quite considerably depending on the estimation technique employed. Evidence suggests that
the evolution of Canadian short-term interest rates cannot be adequately described by the CKLS
class of one-factor models. On the other hand, the results for U.S. short-term interest rates are fairly
stable. One-factor models do a much better job of describing U.S. short-term interest rate data than
similar Canadian data—although weak evidence against one-factor models for U.S. short-term
interest rate data appears to exist.

1. The question of whether the estimation results are independent of the time frame of the data is not
investigated in this paper.



The paper is organized as follows: Section 2 presents the CKLS one-factor models for
short-term interest rates, describing both the discrete-time and aggregation models. Section 3
reviews standard estimation techniques, namely the maximum likelihood method and the general
method of moments. Section 4 discusses the data and the initial empirical results obtained by using
both the maximum likelihood method and the general method of moments estimation techniques.
Sections 5 and 6 review the efficient method of moments, an alternative estimation technique.
Section 7 presents the results of the efficient method of moments estimation. Section 8 concludes
the paper and discusses possible further work.

2. The model

CLKS proposed the following general model for short-term interest rates:

dr(t) = [a+Br(t)]dt+or’dz , 1)

wherer is the short-term interest rate amts a geometric Brownian motion process. Thus, both
the drift, a + B r(t) , and the conditional variance of the interest rate proce%s?ydt , depend
upon the level of the interest rate. Several well-known one-factor models can be derived from the
above model through parametric restrictions. They are presented in the following table:

Model Specification Restrictions
Merton
- =0,y=0
(1973) dr = adt+ odz B =0,y
Vasicek -
= y =0
(1977) dr = (a +pr)dt+odz
Cox, Ingersoll, and Ross _ 1/2 - 1/2
(1985) dr = (a+pr)dt+or™ “dz Y
Dothan —
= o= =0,vy=0
(1978) dr = ordz B
Geometrig Brownian dr = Brdt + ordz a=0, y=1
Motion
Brennan and Schwartz
= =1
(1980) dr = (a +Pr)dt+ordz Y
Cox, Ingersoll, and Ross _3/2 —n — —
(1980) dr = or™ "dz a=pf =0,y =3/2
Cox

dr = Brdt+or'dz

Q
1
o

(1975)




The Merton (1973) model is a simple Brownian motion for short-term interest rates. The
model of Vasicek (1977) is an Ornstein-Uhlenbeck process. The model of Cox, Ingersoll, and Ross
(1985) is frequently referred to as the square-root process (CIR-SR). The Geometric Brownian
Motion (GBM) was used by Black and Scholes (1973) to derive the prices of options, where  was
referred to as the implied volatility of the option. The model of Cox (1975) is often referred to as
the Constant Elasticity of Variance (CEV) model. From the parametric restrictions, it is obvious
that the models cannot generally be written as special cases of one another. That is, although each
of the models is nested within (1), they are typically non-nested with respect to each other.

Typically the continuous-time model, (1), is discretized as follows:
rit+1)—r(t) = a+pr(t) +e(t+1) 2)

where E[e(t+1)] = 0 and E[e*(t+1)] = o°r(t)? . 3)

The parameters of the model are then estimated using either maximum likelihood methods, for
example Nowman (1997), or the general method of moments technique, for example CKLS (1992)
and Tse (1995).

As Nowman pointed out, the discretized model (2) neglects errors introduced as a result of
time aggregation. The discretized error arises because equation (1) is only shorthand notation for
the stochastic differential equation (SDE),

I;dr(s) - I;[O( +BI(S)] ds+ﬁ)ory(s)dz(s), )

which is the correct representation of the stochastic process. The more formal approach to
discretizing equation (4) is to first solve the SDE f@) and then to discretize the solution. Thus,
the discretization of the model (1) should read

rt) = 2P —1)+ P re—1) +e(t)

b ©)
g(t) = J’t_leB(t_S)cry(s)dz

where the conditional mean and variance of the error term are approximated by

2
9

2B 2y
2B[e -1] r(t-1)"" . (6)

E._q[e(D)] =0 andEt_l[sz(t)] =



(See Bergstrom [1984], Nowman [1997], and the Appendix for details.) Note that equation (5) is
the exact solution of the general model (1). Furthermore, the disparity between the discrete-time
approximation, equations (2) and (3), and the above solution, equations (5) and (6), lessens as the
mean-reversion parametgr,tends to zero.

3. Standard estimation techniques

Two of the main techniques that are used in the literature to estimate one-factor interest rate models
are the method of maximum likelihood and the general method of moments.

3.1 Method of maximum likelihood

The method of maximum likelihood is a parametric estimation technique. Under the assumption
that the probability density function of the data has a particular parametric form, the method
ascertains which parameter value would yield the greatest likelihood of obtaining the observed
data. In other words, the method chooses the probability density function under which the observed
data would have the highest likelihood of occurring. The likelihood function is simply the joint
density function of the sample data. For computational convenience, the method focuses on the log
of the likelihood function—parameter estimates obtained from the likelihood function and the log
of the likelihood function are identical.

The standard approach is to assume that the model eg(ajs, , are conditionally normal.
In this case, the log likelihood function (LLF) for (2) or (5) is given by

n 2
LLF(p) =5 5 @og(Znht) + £ (t)é @)
t=1

ht
where h, = Et_l[sz(t)] is the conditional variancey is the number of observations,

andp = {a,B,0,y} is the vector of model parameters. The LLF estimates of the model
parameters are then given by

p = arg max{LLF(p)}, (8)
p

wherep is the parameter vector that generates the largest value of the LLF.



3.2 General method of moments

The general method of moments (GMM) of Hansen (1982) is appealing in that no parametric
assumptions need be made about the distribution of the errors, and the GMM errors are
asymptotically consistent. GMM is closely related to the classical method of moments and
instrumental variable estimation. The classical method of moments uses moment restrictions to
estimate model parameters. These restrictions can be written as population moments whose
expectation is zero when evaluated at the true parameter values. One of the key concepts behind
GMM is that there is a set of moment conditions involving the parameter vector such that the
expected value of these conditions at the true parameter vector is zero. In instrumental variable
estimation, the key idea is to find a set of instruments that is correlated with the regressors but
uncorrelated with the error terms. In other words, the instrument vector must be orthogonal to the
errors. Instrumental variable estimation can be cast in a GMM framework where the momentum
conditions are given by the requirement that the instrument vector be orthogonal to the errors.
Consequently, the moment conditions are also referred to as orthogonality conditions.

More formally, the GMM estimation framework is as follows: Let(ff;p) be aqx 1
vector of disturbances that satisfy the following sef ofthogonality conditions—these conditions
are usually restrictions on the moments of the errors in the model:

E[f(r(t);p)] = O . 9)

Under standard technical conditions such that the law of large numbers holds (see Hansen
[1982] and Hamilton [1994]), the sample average,

Sk

gn(P) = = f(r(®):p), (10)
t=1

is a good approximation for the orthogonality conditions (8)isflarge. Now let

Jn(P) = 9, (P) W, gn(P) (11)

where W,, is a positive definite qx g weighting matrix. The GMM estimate of the model

parameters is given by

pn = arg r?)in{Jn(p)} : (12)



Under fairly general conditionp,, is a consistent estimator of the true parameter vector.
Hansen (1982) showed that an efficient choic@/ofs given by W, = Q™ where

+00

Q = Im NE[g,(po) Gr(p)] = im T ELG(ipo) Frt-Dip)] (13
j=—00

andpg is the true value op. Thus, in order to implement GMM, an estimator far  is required. A
standard approach is to replace the true autocovariances with sample autocovariances. A popular
choice for the estimator @ is the Newey-West (1987) estimator,

S .

A~ A~ S A AT

0 = ¢o+.le‘(¢,-+¢j), (14)
J:

where

> fr®:p) F(rt-i)p) . (15)

t=j+1

CDJ':

The Newey-West estimator is both consistent and positive definite. In addition to this estimator,
several other estimators have also been proposed (see Ogaki [1992] and Hamilton [1994] for
reviews).

Note that, if the number of parameters is equal to the number of orthogonality conditions,
then the system is said to be just-identified and the estimgtésohdependent iV, . In this case,

the parameter estimates are given by simply solgp@) = 0

In the case where the number of orthogonality conditigngs greater than the number of
model parameter$p , diagnostic testing can be conducted using Hansen'’s J-test (also known as the

over-identification test). The restrictions implied by the model can be tested using Hansen'’s J-test,
which states that

n3, (A& x*(a-1)) . (16)



Expanding upon the work of CKLS, choose the vectdt)fp) to be

e(t+1)
f(r(t);p) = 2 bz 17)
t+1)-Z1e® —11 r)?|
2B
where ¢g(t+1) = r(t+1)—e[3 r(t)—%[e‘3 -1] and Z, = [1,r(t)]' is a vector of

instruments, andl] represents the Kronecker product.

4. The data and initial empirical results

The present study uses 90-day commercial paper rates for Canada and 3-month Treasury bill rates
for the United States. The data are recorded at a weekly frequency for the period 1975 to 1995 and
consist of 1095 observations. Wednesday closing observations are used; Thursdays are used if the
Wednesday was unavailable; and Tuesdays are used if both the Wednesday and the Thursday were
unavailable.

Two main questions are addressed in this section: Is there a difference between the results
obtained by estimating the discrete model, (2)-(3), and those obtained by estimating the aggregate
model, (5)-(6)? Do the results depend on estimation technique?

Table 1 contains the results of estimating both the discrete model and the aggregate model
via LLF and GMM methods. As shown in the table, there is virtually no difference between the
estimates of the discrete and aggregate models for the Canadian 90-day commercial paper rate or
for the 3-month U.S. Treasury bill rate series using either technique. Thus, it would appear that the
results are not driven by aggregation effects. The results are quite similar as estinfatethef
rate of adjustment towards the long-run mean of the short-term interest rate—are small and the
aggregate model reduces to the discrete model in the limiftheids to zero. Thus, the higher-
order aggregation effects are quite small and can be neglected from all practical purposes. Hence,
all further discussion in this section will focus on the results of the discrete model.

For Canadian commercial paper rates, neitheor (3 are significant, although the LLF and
the GMM methods yield similar point estimates. In particular, the LLF and GMM methods yield
estimates of the long-run mean/B, of 8.97 per cent and 8.89 per cent, respectively. Both these

2. Treasury bill rates are used, as opposed to eurodollar rates, to allow direct comparison of the results with
earlier studies.



values are below the sample mean of the data series, which is 9.90 per cent. The methods disagree
on the estimates af andy. The LLF estimates are = 0.108 andy = 0.441 while the GMM
estimates areg =0.029 andy =0.998. Both o andy are significant for the LLF estimation. However,

only y is significant for the GMM estimation. The discrepancies in the estimates will be further
investigated later in the paper.

Table 1: One-factor models: LLF and GMM estimates

CP-CAN TB-US
Discrete | Aggregate| Discrete | Aggregate] Discrete | Aggregrate| Discrete | Aggregate
LLF LLF GMM GMM LLF LLF GMM GMM

o 0.0332 0.0332 0.0311 0.0341 0.0102 0.0102 0.0435 0.0435

(0.0254) | (0.0248) | (0.0482) | (0.0499)| (0.0121) | (0.0122) | (0.0417) | (0.0367)
B -0.0037 | -0.0037 | -0.0035 | -0.0036 | -0.0012 -0.0012 -0.0061 | -0.0061

(0.0027) | (0.0027) | (0.0053) | (0.0056) | (0.0024) | (0.0025) | (0.0069) | (0.0063)
o 0.108* 0.108* 0.029 0.027 0.012* 0.012* 0.007* 0.007*

(0.012) (0.001) (0.021) (0.020) (0.001) (0.001) (0.003) (0.003)
y 0.441* 0.442* 0.998* 1.019* 1.532* 1.532* 1.761* 1.761*

(0.048) (0.004) (0.288) (0.293) (0.048) (0.047) (0.161) (0.179)
—a/B 8.97 8.97 8.89 9.47 8.50 8.50 6.61 6.61
Corrected standard error appear in parentheses. (*) indicates that the coefficient is statistically signififant at
the 5 per cent level.

For U.S. Treasury bills, neither nor (3 are significant. Furthermore, the LLF and GMM
methods yield different estimates of the long-run meai{3,-of 8.50 per cent and 6.61 per cent,
resepectively. These values lie either side of the sample mean, which is 7.71 per cent. Both the
estimates ob andy are significant. The LLF estimates are 0.012 andy = 1.532 while the GMM
estimates are = 0.007 andy = 1.761. The estimates of andy for Treasury bills appear to be
robust; they agree within standard error. Furthermore, the estimates are similar to previous
empirical findings. For example, Tse (1995) foy1.728 for 3-month U.S. money market rates
using monthly data from August 1976 to May 1994; and Brenner, Harjes, and Kroner (1996) found
y = 1.559 for 13-week Treasury bill yields using weekly data from 9 February 1973 to 6 July 1990.

As a further robustness check on the different GMM estimates, different instrument sets
were used. In addition t&, = [1, r(t)]' , the instruments sgis= [1, r(t), r(t—l)]' and
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Z, = [1,r(t), r(t=21),r(t-2)] " were employed. The results for Canadian commercial paper and

U.S. Treasury bills are reported in Tables 2 and 3, respectively. The estimates for Canadian

commercial paper appear to be unstable, with estimatgsrahging from to 0.229 to 0.998.

Furthermore, Hansen'’s J-test rejects the model for two of the intrument sets. The estimates for U.S.

Treasury bills are remarkably robust to the choice of instruments. Furthermore, the discrete model,

(2)-(3), cannot be rejected using Hansen’s J-test. A final observation is that it appears to be

extremely difficult to estimate andy independently. For the same data set, high estimatgaref

typically associated with lower estimatesafThe difficulty of estimation may be a symptom of

the conditional standard deviation being misspecified.

Table 2: One-factor models: Robustness to GMM instruments

per
5 = 3.
hality

ers to

CP-CAN

Z’t [1r] [1,rore_al [Lrori ol
a 0.0311 0.0533 0.0331

(0.0482) (0.0448) (0.0417)
B -0.0035 -0.0064 -0.0041

(0.0053) (0.0048) (0.0045)
ol 0.0290 0.1260 0.1497

(0.0206) (0.1123) (0.1176)
y 0.9981* 0.3167 0.2286

(0.2883) (0.3852) (0.3478)

0 2 4
q- Ip
2 — 8.606** 11.770**

x“(a-1,)
Corrected standard error appear in parentheses. (*) indicates that the coeffigient is
statistically significant at the 5 per cent level. (**) indicates rejection at the 5
cent level. Standard errors are computed with a Newey-West estimator with
The number of degrees of freedon,- 1, , Is equal to the number of orthogo
conditions minus the number of parameters to be estimatedyThe  value re
Hansen’s J-test.

One of the drawbacks of the GMM technique is that a set of orthogonality

conditions has

to be specified. This entails both deciding on moment conditions and choosing a set of instruments.
Thus, the rejection of the model for Canadian commercial paper could possibly be due to the fact
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that a poor set of instruments was chosen. For example, Kogure (1997) and Gouriéroux and
Monfort (1996) considered the more general SDE,

dr(t) = a[r(t),pldt+ b[r(t),p]dz , (18)

wherep represents a vector of unknown parameters. They noted that moment conditions for (18)
are given by

E[h[r©] alr(.el +3h [r©] Br@pl] = 0 (19)

whereh:R - IR is any twice continuously differentiable function such tBgh[r(t)]|] < «
How does one go about deciding which orthogonality conditions to use from the above infinite set
of moment conditions?

Table 3: One-factor Models: Robustness to GMM instruments

TB-US
Z't [1r] [1,rore_al [Lroria ool
a 0.0435 0.0252 0.0243
(0.0417) (0.0401) (0.0398)
B -0.0061 -0.0027 -0.0027
(0.0069) (0.0066) (0.0065)
o 0.0072* 0.0071* 0.0079*
(0.0027) (0.0029) (0.0028)
y 1.761* 1.750 1.706
(0.161) (0.172) (0.156)
0 2 4
q- Ip
2 — 2.633 3.019
x*(q-1,)
Corrected standard error appear in parentheses. (*) indicates that the coeffigient is
statistically significant at the 5 per cent level. (**) indicates rejection at the § per
cent level. Standard errors are computed with a Newey-West estimator with sj= 3.

Gallant and Tauchen (1996) addressed the problem of which orthogonality conditions to
choose in their paper entitled, “Which Moments to Match?” There, they formulated a systematic
approach to generating moment conditions, which they called the efficient method of moments
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(EMM). The remainder of the paper concentrates on using the EMM technique to further examine
the validity of the one-factor model, (1), for Canadian commercial paper and U.S. Treasury bills.

5. Efficient method of moments (EMM)

The efficient method of moments specifically addresses the question of which set of moment
conditions to match. A systematic approach to choosing the orthogonality conditions for the GMM
estimator is given. The general idea is to first formulate a good statistical description of the data
and then test if the structural model could possibly yield a similar description of the data; the
structural model is the data-generating process that is postulated to have generated the observed
data. EMM was initially proposed by Bansal, Gallant, Hussey, and Tauchen (1994; 1995), and
further developed by Gallant and Tauchen (1996). Good overviews can be found in Tauchen
(1995), and Gallant and Tauchen (1997a).

First, start with an auxiliary model that gives a good statistical description of the data.
Suppose that the conditional densitydf=r(t) ] is given by

f(rt|xt_1, 9) ’ (20)

where x;_q = (r{_,...,l_»r,_,) and® is a vector of parameters, of length , that
characterizes the auxiliary model. The paramebesse estimated by quasi-maximum likelihood
using the scores of the auxiliary model (hence, the auxiliary model is also referred to as the score
generator):

~ n

0, = arg max z Iog[f(rt|xt_1,9)]. (21)
0 i=Te

Sl

Now consider the structural model foithat depends on a vector of parameters |, of Ierhgth
Define the moment criterion,

m(p,8) = E[ 2 logl(r,(p)[% _1(p). O)]] . (22)
00

where the expectation is with respect to the true density of the structural model. The expectation
can be calculated by Monte Carlo methods, namely, averaging over a long simulation,
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N
m(p, 6r) = ﬁ 3. 2. 1ogL 1 (F(9)]%:_1(0), 6] . (23)

where{ ft(p)}rN= . s asimulation generated from the structural model. If the observed data is

generated by the structural model, then one would expect that the moment criterion would be close
to zero. More formally, the EMM estimator for the parameters of the structural model is given by

. . Ay, -l -
Pn = arg n;mm(p’en)'(ln) m(p, On), (24)

where

n_

n
1
3 [ 2 togl (1,101 |[ 5 Toul 11y _1.81] (25)
=L+1
The above choice of the weighting matrix is valid under the assumption that the auxiliary model
yields a good statistical description of the data generator process, which is assumed to be the case.
Note that the weighting matrix depends only on the observed data and is independent of the

parameters of the structural model.

The validity of the structural model can be tested by noting that

nm(p,6)' (i) m(p,6) B Xx(lg-1,) (26)

under the null hypothesis that the structural model is correct. If the null hypothesis is rejected, then
diagnostic testing can be carried out to see where the model failssttistics,

T = (S) " /nm(p,6y) |, (27)
where
1/2
T R S O B« RN B
S, = ?'ag[ln—Mn[Mn(ln) Myl Mn]% with M, = é‘ﬁm(pmen), (28)

contain information about how well the structural model fits the scores of the auxiliary model. (A
computationally less intensive diagnostic test is given by the guiatatistic. The quast-statistic

is given by equation (27) witt§, = {diagis]} "> . The quasstatistic has a downward bias
relative to 2 compared to the adjustestatistic.) Thus, largéstatistics, typically greater than 2,
indicate those characteristics of the data that not satisfactorily explained by the structural model.
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6. Semi—non-parametric (SNP) model

EMM estimation relies on choosing an auxiliary model that yields a good statistical description of
the data. The conditional density of the interest rate process is estimated by the semi—non-
parametric (SNP) approach. The SNP approach was developed by Gallant and Tauchen as a
method for describing the properties of time series data. The conditional density of a multivariate
process can be approximated by a Hermite polynomial series expansion around the standard
normal density. The approach yields a non-linear, non-parametric model that nests several well-
known models. For example, the model nests the Gaussian VAR model, the semi-parametric VAR
model, the Gaussian ARCH model, and the semi-parametric ARCH model. In the SNP approach,
the conditional density for the interest rate procgss

[P(z,%_)I°0(z) 1

f(ryx,8) = > = (29)
| [IP(u %)) () du %
whereq@(*) is the standard normal density and
Xioqg = (Feop o Tm TiZq) (30)
e —Hy
= ) (31)
Z R,
LU
Ke = @t > O5rej (32)
j=1
I_I'
Ro=60+ > 8]z, (33)
i=1
KZ KX D
P(z,x_1)= 5 O agg xf_lmzf‘ where ay =1 , (34)
a =0q3:0 O
B i
anda,p X;_; = % ap []rel; - (35)
B stlP =B ji=1

Lp

B is anLy-vector,p = (B, ..., BLp) , such thaﬂsj are non-negative integers@pd: Z Bj
ji=1
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The possible classes of auxiliary models can classified by the parrhgtdrs, L, K, and
Ky Ly is the number of lags in the linear part of the SNP motlels the number of lags in the
ARCH part;L is the number of lags af that are included in the part ofP(z,x); K; is the degree
of the polynomialP(z,x)in z; andK, is the degree of the polynomi&lz,x)in x. (By convention,
L, = 1 if K= 0.) The various SNP models can be classified according to whether the parameters
Ly L Ly, Kz @ndK, are zero or non-zero. Some of the possible SNP models are outlined in
Table 4.

Table 4: Classification of SNP models

SNP Model L, L, Lp K, Ky
Gaussian VAR 21 =0 20 =0 =0
Semi-parametric VAR 21 =0 20 21 =0
Gaussian ARCH 20 21 20 =0 =0
Semi-parametric ARCH 20 21 20 21 =0
Non-linear, non-parametrilz =0 >0 =1 >1 >1

Model selection is determined by examining the Schwarz Bayes (BIC), Hannan-Quinn
(HQ), and Akaike (AIC) informationThus the model that yields the lowest criteria values is
selected. The BIC, HQ, and AIC information criteria are as fotlows

BIC = s,(6n) +%(p9/n) logn

- . 36
HQ = 5,(8) + (py/n) log(logn) (30)
AIC = $,(8n) + pg/ N

Each of the criteria has two components: the first is the value of the objective function that rewards
for goodness of fit; the second is an adjustment that penalizes for too many parameters. The AIC
tends to overparameterize the model while the BIC offers a sparser selection. The HQ criteria yield
models between the BIC and AIC. Model selection is based on the BIC information criteria but the
HQ and AIC values are listed for comparison. The valugs.;, K, K,, andL, are determined
sequentially. This approach is not necessarily optimal; however, it has the desirable property of
sequentially refining the conditional density.
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For the CP-Can series, the SNP model witf= 2,L, = 7,L,=1,K, =8, andK, =0 is
optimal under the BIC criteria. This model has 19 degrees of freedom. For the TB-US series, the
SNP model witiL, =2, L, =9, L, = 1,K, =4, andK, = 0 is optimal under the BIC criteria. This
model has 17 degrees of freedom. Hence, semi-parametric ARCH models appear to be adequate to
describe both sets of data.

The one-step-ahead conditional mean and conditional standard deviation for the above SNP
fits are plotted in Figures 1 and 2, along with the raw data sets. The conditional means appear to
track the series quite well and the conditional standard deviations also appear to track movements
in the series.
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Table 5: SNP estimation of the conditional density of CP-CAN

SNP tuning parameters Objective function
L, L, Lp K, Ky lg Sh BIC HQ AIC
1 0 1 0 0 3 | -0.9732 | -0.9635 -0.9678 -0.9704
2 0 1 0 0 4 | -0.9822 | -0.9822 -0.9879 -0.9914
3 0 1 0 0 5 | -0.9982 | -0.9820 -0.9892 -0.993%
4 0 1 0 0 6 | -0.9982 | -0.9820 -0.9892 -0.993%
2 1 1 0 0 5 -1.1300 | -1.1138 -1.1210 -1.1254
2 2 1 0 0 6 | -1.1954 | -1.1760 -1.1846 -1.189%
2 3 1 0 0 7 | -1.2258 | -1.2032 -1.2132 -1.219%
2 4 1 0 0 8 | -1.2383 | -1.2124 -1.2239 -1.230%9
2 5 1 0 0 9 | -1.2477 | -1.2186 -1.2315 -1.2394
2 6 1 0 0 10 -1.2489| -1.2164 -1.2309 -1.2396
2 7 1 0 0 11 -1.2557] -1.2201 -1.2359 -1.2445
2 8 1 0 0 12 -1.2558| -1.217( -1.2342 -1.2447
2 7 1 4 0 15 -1.3792| -1.3307 -1.3522 -1.3693
2 7 1 5 0 16 -1.3787| -1.327( -1.3496 -1.3639
2 7 1 6 0 17 -1.4014| -1.3464 -1.3708 -1.3846
2 7 1 7 0 18 -1.4022| -1.344( -1.3698 -1.3895
2 7 1 8 0 19| -1.4109| -1.3495| -1.3767 | -1.3933
2 7 1 9 0 20 -1.4101| -1.345% -1.3741 -1.3936
2 7 1 8 1 25 -1.4220| -1.331% -1.3716 -1.3941
2 7 1 8 2 34 -1.4270] -1.3071 -1.3605 -1.3948
2 7 2 8 1 34 -1.4296| -1.3101 -1.3630 -1.39944
2 7 3 8 1 43 -1.4334| -1.2844 -1.3507 -1.3949
L, is the number of lags in the linear part of the SNP modeglis the number of lags in thg
ARCH part;L, is the number of lags in the polynomial paf(z,x) The polynomiaP(z,x)is of
degreeX, in zandK, in x; by conventionL, =1 if K, = 0. The number of SNP parametersgs
The value of the objective function isBhe BIC, HQ, and AIC information criteria are listef.
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Figure 1: Canadian commercial paper rates
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Table 6: SNP estimation of the conditional density of TB-US

SNP tuning parameters Objective function
L, L, Lp K, Ky lg Sh BIC HQ AIC
1 0 1 0 0 3 | -0.7661 | -0.7565 -0.7608 -0.7634
2 0 1 0 0 4 | -0.7702 | -0.7573 -0.7630 -0.766%
3 0 1 0 0 5] -0.7711| -0.7550 -0.7621 -0.766%
2 1 1 0 0 51 -1.0782 | -1.0620 -1.0692 -1.073%
2 2 1 0 0 6 -1.1761 | -1.1567 -1.1653 -1.170¢
2 3 1 0 0 7 | -1.2368 | -1.2142 -1.2242 -1.230
2 4 1 0 0 8 -1.2718 | -1.2459 -1.2574 -1.2644
2 5 1 0 0 9 | -1.2781 | -1.2490 -1.2619 -1.2697
2 6 1 0 0 10 -1.2929| -1.2606¢ -1.2750 -1.2837
2 7 1 0 0 11 -1.2979| -1.2624 -1.2782 -1.2848
2 8 1 0 0 12 -1.3014 1.2627 -1.2798 -1.2943
2 9 1 0 0 13 -1.3069| -1.2649 -1.2835 -1.2949
2 10 1 0 0 14 -1.3069] -1.2617 -1.2817% -1.2940
2 9 1 4 0 17 -1.3556| -1.3007 -1.3250 -1.3399
2 9 1 5 0 18 | -1.3562| -1.2981 -1.3239 -1.3396
2 9 1 4 1 19 -1.3645| -1.2934 -1.3249 -1.3441
2 9 1 4 2 24 -1.3706| -1.2834 -1.3221 -1.34%7
2 9 2 4 1 27 -1.3700] -1.2824 -1.3215 -1.3441
2 9 3 4 1 32 -1.3700] -1.2697 -1.3156 -1.3435
L, is the number of lags in the linear part of the SNP modtglis the number of lags in thg
ARCH part;L, is the number of lags in the polynomial paf(z,x) The polynomiaP(z,x)is of
degreeK, in zandK, in x; by conventionl, =1 if K, = 0. The number of SNP parametersgs
The value of the objective function isBhe BIC, HQ, and AIC information criteria are liste.
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Figure 2: U.S. Treasury bill rates
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7. Efficient method of moments estimation

The first step in the EMM method is to estimate the auxiliary model. The second is to generate a
simulated time series for the SDE. Given the results of Section 4, the SDE (1) was simulated using

a simple discrete-time Euler scherhe,

rt+h) = rt)+[a+pr)]h+or)’/h &) (37)

whereg(t) is a random draw from the standard normal distribution. Each week was divided into

50 subintervals of equal length, = 1/50. A simulation of weekly data of length 77,000 was
generated. The first 2,000 generated observations were discarded so that the simulation used in the
EMM estimation would be independent of the initial conditions. Thus, the simulation used in the
EMM estimation had 75,000 observations at a weekly frequency. The simulation length was
deemed to be long enough so that Monte Carlo errors become negligible.

For robustness, the estimation was conducted using different initial conditions, two
different random number seeds for the simulation series, different numbers of weekly subintervals,
and different simulation lengths. The results are fairly robust to the random number seeds, the
number of subintervals, and the length of the simulation. However, the estimations were quite
sensitive to the initial conditions. Robust results were found by using the results for the LLF and
GMM estimations as initial conditions. Only the LLF and GMM estimatesofpB, andc were
used. In addition, a wide range of initial values fowas also used to prevent biasing the EMM
estimates of towards the LLF and GMM estimates\of

For Canadian 90-day commercial paper rates, none of the structural model parameter EMM
estimates are statistically significant (Table 7). The point estimates 603143 an@ =
—0.007615 are smaller than the corresponding LLF and GMM estimates. The other EMM estimates
areo = 0.0000255 angi=2.6459. They estimate is much larger than any of the previous estimates.
Not surprisingly, the)(2 -test overwhelmingly rejects the one-factor model, (1), as offering an
adequate description of the evolution of 90-day Canadian commercial rates. The score generator
diagnostics listed in Table 8 pinpoint the problem with the model. The one-factor model is unable
to fit the scores associated with the Hermite polynomial coefficients (of the auxiliary model). In
particular, thd-statistics of all the even-power Hermite polynomial coefficients are all significantly
greater than 2. Thus, the model is unable to explain the non-Gaussian deviations of the data.

3. A weak order two scheme (see Kloeden and Platen [1992]) for the SDE was also implemented, yielding
similar results. However, this method increased the estimation time by a factor of six.



Table 7: EMM estimates

CP-CAN TB-US
Score generator s2718000 s$2914000
a 0.00807 0.0314*
(0.00724) (0.0150)
B -0.000710 -0.00762
(0.000673) (0.00570)
o 0.0000255 0.00280
(0.0000881) (0.00247)
y 2.646 2.425¢*
(1.441) (0.185)
| 15 13
8 'p
2 78.481 15.472
X (lg—1y5)
Corrected standard error appear in parentheses. (*) indicates that the coeffigient is
statistically significant at the 5 per cent level. The number of degrees of freqdom,
lg—1,, is equal to the number of auxiliary model parameters minus the numq;ar of
parameters to be estimated. Some comparj’éon probabilities that are helpful in
interpreting the abovey? tests are as followstx?(15)>37.7 = 0.001 | ,
Prob[x*(13) = 16.0] = 0.25 and Prol{x*(13) 219.§ = 0.10 .

The one-factor model does a much better job of modelling the evolution of the 3-month
U.S. Treasury bill rates. The EMM estimates are 0.0314,3 = -0.00762,0 = 0.00280, an¢ =
2.425. Only the estimates of andy are statistically significant. Furthermore, the EMM estimate
of y agrees with the GMM estimate within error bounds. However, the insignificance a the
estimate casts some doubt on the validity ofylestimate. The(2 -test is unable to reject the null
hypothesis that the structural model, (1), gives a valid description of 3-month U.S. Treasury bill
rates. However, the score generator diagnostics listed in Table 9 indicate that the one-factor model
is unable to fit the score associated with the quartic term of the Hermite polynomial. Overall, it
would appear that the one-factor model, (1), is better able to describe the 3-month U.S. Treasury
bill rate series than the Canadian 90-day commercial paper series, althought the fit is far from

perfect.



23

Table 8: CP-CAN score generator diagnostics

genfr(;?é? eqn. Quasit-stat T-stat
¢, Mean -0.405 -1.226
¢, VAR 0.801 1.063
@2 0.939 1.227
8, Var 0.939 1.840
8, ARCH 0.370 0.413
0, -0.996 -1.167
03 -0.809 -0.909
6, -1.102 -1.330
65 0.948 1.088
O 0.43 0.451
6, 0.592 0.643
a,q Hermite 0.864 1.149
829 3.040 5.842
430 1.612 1.794
Q40 4.890 6.006
A50 0.955 0.991
40 4.959 5.329
470 0.685 0.695
ago 4.595 4.740

See equations (28)-(29) for a description of the

calculation of the abovestatistics.
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Table 9: TB-US Score generator diagnostics

genfr(;?é? eqn. Quasit-stat T-stat
@y Mean 0.724 0.779
¢; VAR -0.391 -1.132
@2 -0.408 -1.122
8, Var 0.655 1.379
8, ARCH 0.842 1.357
0, 0.830 1.126
O3 0.799 1.004
6, -0.228 -0.334
05 -0.590 -0.845
O 0.621 0.736
9, 0.462 0.534
Og 0.305 0.438
B9 0.553 0.809
a,o Hermite -0.368 -0.380
a20 0.917 1.714
830 -0.903 -0.928
40 1.955 2.721

See equations (28)-(29) for a description of the

calculation of the aboviestatistics.




25

8. Conclusion and discussion

A broad class of one-factor models for the short-term interest rate in Canada and the United States
was examined. The model parameter estimates were found to be independent of whether a
discretized version or a more accurate aggregation version of the continuous-time model was used.
Furthermore, the parameter estimates for the U.S. Treasury bill interest series are more or less
independent of the estimation technique employed—the study compares results from the LLF,
GMM, and EMM estimation methods. However, the results for the Canadian commercial paper
rates series vary with the estimation technique. Hypothesis testing suggests that the class of one-
factor models for the short-term interest rate, (1), are inadequate as models for the evolution of the
Canadian commercial paper rate. The evidence against the model for U.S. Treasury bill rates is
only marginal. Thus, the one-factor model, (1), appears to offer a much better description of U.S.
data than similar Canadian data. This result casts doubt on the usefulness of one-factor models,
such as the CIR square root model, for providing an adequate basis for analyzing the risks of
Canadian-dollar fixed-income portfolios.

It is conceivable that the inconsistent results for Canada stem from the possibility that the
estimation techniques (LLF, GMM, and EMM) are unable to correctly identify time series data that
adhere to the one-factor model, (1). However, the analysis presented in Appendix B indicates that
the difference is probably not due to the estimation technigues. Monte Carlo experiments suggest
that the various estimation techniques are all able to correctly identify a time series whose data-
generating process is truly given by equation (1). Thus, the discrepancies in the estimations are not
a symptom of the estimation techniques but rather an indication that the class of one-factor interest
rate models given by (1) is inadequate to describe the observed interest rate series.

Several authors have tried to patch up the class of one-factor models, (1), by replacing the
parametero by a time-varying parameteh; (for examples, see Brenner, Harjes, and Kroner
[1996], Andersen and Lund [1997], and Brailsford and Mahesweran [1998]). For example, a
GARCH(1,1) specification for the time varying volatility parameter could be achieved by replacing
equation (3) byEt[etz+ 1l = 02t+1 = h2t+1 rt2y Whereh2t+1 = w+ (phzt +6 stz . Note that
modelling volatility as a GARCH process allows volatility to be time varying but volatility is not
modelled as separate random process. Thus, the GARCH extension would still be classified as a
one-factor model. However, preliminary research indicates that even these models do not provide
an adequate characterization of the process driving short-term interest rates in Canada.

Principal component analysis suggests that three factors are necessary to describe
movements in the yield curve (Litterman, Scheinkman, and Weiss [1991] and Han [1997]). These
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factors are commonly referred to as shift, tilt, and twist factors and are associated with the level,
slope, and curvature of the yield curve, respectively. Han (1997) found that these three factors were
able to explain 94 per cent of the movements in the Canadian yield curve. Hence, in addition to the
short-term interest rate, at least two other factors are necessary. One possibility for an appropriate
second factor is stochastic volatility. Another possibility is a factor related to a time-varying long-
run mean of short-term interest rates, which may more adequately capture mean-reversion of short-
term interest rates.

Affine models of the term-structure of interest rates incorporating stochastic volatility, and
a time-varying long-run mean for the short-term interest rates (which is a three-factor model of the
term structure of interest rates) have been discussed by Dai and Singleton (1997). Balduzzi, Das,
Foresi and Sundaram (1996), Chen (1996) and Gong and Remolona (1996) also discuss affine
three-factor models for the term structure of interest rates. The authors intend to employ EMM
techniques to investigate whether Chen’s three-factor model offers a good description of the
evolution of the Canadian term structure.
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Appendix A: Solving the stochastic differential equation

Consider the stochastic differential equation

dr(t) = [a+Br(t)]dt+@(rt) dz. (38)

The above equation can be solved by first introducing the variat{¢) = o + [ r(t) and then
using Ito’s lemma to notice that the following equation must hold

die®'y(9] = peP o) dz . (39)

Equation (39) is simply shorthand notation for

- t t
(7Y (3], = [ B o(r s)dz. (40)
Simplifying equation (40) yields the general solution

rt) = =2+ 1P [+ Br(0)] + eBtJ';Be_BScp(r,s)dz. (41)

B B

The solution can also be written in an iterative form, namely:

r(t) = 2peP 1]+ P r(t—1) +&(t)
B . (42)

(t-s)

e(t) = Iz_leB o(r,s)dz

Thus, equation (42) is the correct discretization model for the stochastic differential equation (38).
Equation (42) explicitly takes care of the aggregation over time issues. Note that the conditional
mean and variance of the error term are given by

E,_,[e(t)] =0 (43)

and
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E,_1[£°(D)] Et_1{%:_1880_3)(;)0,3)&%2}

(44)

t _ .
Ei_1 1e2[3(t S‘)(pz(r ,s)ds} By Ito Isometry
t—

t -
= [ €I E 0] ds

To proceed further, lep(rt) =or(t)Y and approxima®,_,[¢°(rs)] byr(t-1) . The

conditional variance of the error term can then be approximated by

2
E,_4[e°(t)] = ;’—B[eZB ~1] r(t-1)%. (45)
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Appendix B: Monte Carlo experiment

A Monte Carlo experiment was conducted in order to gain some insight into the discrepancies
between the LLF, GMM, and EMM estimation techniques that were noted in Sections 4 and 7. A
weekly frequency interest series was generated using the SDE (1), with known parameter values,
as the data-generating process. A simple discrete-time Euler scheme, with each week divided into
50 equally spaced subintervals, was employed to generate a simulation of a short-term interest
series of weekly observations and total length 1095 observations. The following model parameters
were chosena = 0.08,3 =-0.01,0 = 0.01, andy = 1.5. Hence, the generated series should have a
long-run mean of 8 per cent and a conditional volatility that is dependent on the level of the series.

The simulated time series is graphed in the upper panel of Figure 3. The middle and lower
panels of Figure 3 show the one-step-ahead condition mean and conditional standard deviation.
The lower panel shows a clear dependence of the conditional volatility on the level.

The results of the LLF, GMM, and EMM estimatidhare presented in Table 10. All three
methods give similar, statistically significant estimatew@ndy. The GMM method yields the
best estimates af andy in terms of both closeness to the true parameter values and smallness of
the standard deviations of the estimates. In terms of mean absolute percentage errorYN#ePE)
relative ranking of the three estimation techniques is: first, LLF; second, EMM; and third, GMM.
(Itis not too surprising that the LLF method wins out since the data were generated using normally
distributed errors.) However, the LLF estimates wfand 3 have relatively large standard
deviations, which are comparable to the EMM standard deviations. The GMM method
overestimates the values afand3. The GMM estimates are roughly twice the size of the true
values. The EMM estimates afandp are statistically indistinguishable from the true values.

4. The GMM estimate presented is for the just-identified system with the instrumental \étctsr [Lrt]
(see Section 3.2). The EMM estimate uses a simulation of weekly data of length 77,000 observations of
which the first 2,000 observations are discarded. As before, each week is divided into 50 subintervals. A SNP
auxiliary model with L, = 1, L, =5, L, = 1, K ,=5, and K, = 0 best describes the statistical properties of the
Monte Carlo time series.
N pi-p
_1 i Fi
5. MAPE= 5 z ——
i=1 I
the number of parameters.

Where()i are the parameter estimal:qs, are the true parameter valudssand
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Furthermore, the EMI\/)(2 -test is unable to reject the structural model (1), and the score generator

diagnostics (see Table 11) only offer extremely marginal evidence against thé®model.

The above results suggest that all three estimation techniques, LLF, GMM and EMM, are
able to identify the one-factor model (1) when it is the true data-generating process. Of course, this
result is only indicative since it is based on a single Monte Carlo trial.

Table 10: Simulation results

Simulation
LLF GMM EMM
o 0.0825* 0.1592* 0.1176*
(0.0385) (0.0140) (0.0310)
B -0.0084 -0.0173* -0.0134*
(0.0046) (0.0014) (0.0039)
o 0.00926* 0.00998* 0.00824*
(0.00161) (0.00126) (0.00149)
y 1.536* 1.504* 1.575*
(0.077) (0.048) (0.091)
—a/B 9.82 9.20 8.78
2 - - 15.978
X" (15)
Corrected standard error appear in parentheses. (*) indicate$ that
the coefficient is statistically significant at the 5 per cent levdl.
The simulated data was generated using the data generating
process (1) with parameter values 0.08 g 7 -0.01 ¢ 5 0.01
andy = 1.5 . Some comparisoqi probabilities that are heldful
in interpreting the abovg™ tests are as follows:
Prob[x*(15) > 14.3 = 0.50 , Profx>(15)>18.7] = 0.25 and
Profx2(15) = 25.0 = 0.05.

6. More weight is given to thg2 -test since it is a joint hypothesis test for all the score generator equations. The
{-statistic tests are singular hypothesis tests that do not use the full information set, i.e., the information in the

off-diagonal elements cfﬁn is not used in thetatistic test (see Section 5).
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Figure 3: Simulated data: Input to SNP
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Figure 4: SNP Output: s1514010.fit
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Table 11: Simulation Score generator diagnostics

genfr(;?é? eqn. Quasit-stat T-stat
¢, Mean 0.981 1.017
®; VAR -0.414 _0.419
6, Var 0.353 0.495
8, ARCH 1.476 1.610
0, 0.447 0.532
% 0.401 0.511
0, 0.509 0.544
65 -0.112 -0.126
a,o Hermite -0.948 -1.031
820 1.198 1.312
830 -0.223 -0.226
840 0.293 0.433
as0 -0.331 -0.362
40 1.847 2.025
470 0.592 0.631
g 0.955 1.536
90 0.724 0.824
a10, 0 1.564 1.738
411, 0 0.613 0.641

See equations (28)-(29) for a description of the

calculation of the abovestatistics.
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