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Abstract

This paper tests between fads and bubbles using a new empirical strategy (based on

switching-regression econometrics) for distinguishing between competing asset-pricing

models. By extending the Blanchard and Watson (1982) model, we show how stochastic

bubbles can lead to regime-switching in stock market returns. By incorporating state-

dependent heteroscedasticity into the Cutler, Poterba, and Summers (1991) fads model, we

show that it can also lead to regime-switching. Two main features of the bubbles model

distinguish it from the fads model. First, the bubbles model implies that returns are drawn

from two distinct regimes. Second, the bubbles model implies that deviations from

fundamental price will help predict regime switches. Using U.S. data for 1926-89, we find

evidence that is consistent with the fads model even when we allow for variation in expected

dividend growth rates and expected discount rates. However, the restrictions that the fads

model implies for a more general switching model are rejected. The rejections point in the

direction of the bubbles model, although not all the implications of the bubbles model are

supported by the data.

Résumé

Les auteurs de l’étude ont recours à une nouvelle approche empirique, fondée sur

l’emploi de méthodes de régression avec changement de régime, en vue de différencier deux

modèles d’évaluation des actifs, soit le modèle des bulles et le modèle des engouements. À

l’aide d’une version élargie du modèle de Blanchard et Watson (1982), ils montrent comment

la présence de bulles stochastiques peut provoquer un changement de régime de la courbe de

rendement des valeurs boursières. Ils démontrent par ailleurs que, si on part de l’hypothèse

que l’hétéroscédasticité varie selon l’état, le modèle de Cutler, Poterba et Summers (1991)

relatif aux engouements peut également déboucher sur un changement de régime. Le modèle

des bulles se distingue du modèle des engouements sur deux points importants. Premièrement,

il repose sur l’hypothèse que les rendements sont tirés de deux régimes distincts.

Deuxièmement, il postule que les écarts observés par rapport au prix fondamental aident à

prévoir les changements de régime. Les résultats obtenus par les auteurs au moyen de données

américaines couvrant la période 1926-1989 appuient le modèle des engouements même si on

laisse varier les taux d’accroissement attendus des dividendes et les taux d’actualisation

attendus. En revanche, les restrictions qu’il faut imposer à un modèle général de régression

avec changement de régime pour qu’il se ramène au modèle des engouements sont rejetées.

Ce rejet tend à accréditer le modèle des bulles, bien que les restrictions que ce dernier

suppose ne soient pas toutes corroborées par les données.
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Introduction

In the last few years, there has been considerable academic interest in models of the

stock market in which price deviates from fundamental price.1 Two of the main alternatives

are the fads model proposed by Summers (1986) and the stochastic bubbles model proposed

by Blanchard and Watson (1982).2 In this paper, we propose an empirical strategy for

distinguishing between fads and bubbles. To the best of our knowledge, this is the first paper

that attempts to do so. The paper may also be of broader interest because we show how to

use switching-regression econometrics to distinguish between competing asset-pricing models.

In a world with fads, Cutler, Poterba, and Summers (1991) show that a measure of the

deviation of actual price from fundamental price will predict returns. We extend the Cutler,

Poterba, and Summers (1991) model to incorporate state-dependent heteroscedasticity similar

to that studied by Schwert (1989). With this extension, fads are consistent with a simple form

of regime-switching in stock market returns.

By extending the Blanchard and Watson (1982) model, we show how stochastic

bubbles can also lead to regime-switching in stock market returns. The intuition is as follows.

Stochastic bubbles may either survive or collapse. This implies that stock market returns

come from two distinct regimes, one of which corresponds to surviving bubbles and the other

to collapsing bubbles. In addition, if the probability of collapse depends on the size of the

bubble, switches in regime will be predictable using a measure of the size of the bubble from

the previous period. These considerations lead naturally to a switching-regression framework.

Like many recent studies, we find evidence that stock market returns are predictable, a

result that is consistent with the existence of fads.3 This is interesting and potentially

1 A very partial list of these papers includes Blanchard (1979), De Long et al. (1989; 1991),
Froot and Obstfeld (1991), Scharfstein and Stein (1990), Summers (1986), and Tirole (1982;
1985).

2 These are the two main alternatives to models in which actual prices correspond to
fundamental prices. See, for example, the recent survey by Bollerslev and Hodrick (1992).

3 Some of the early papers that provided evidence of this predictability include Campbell and
Shiller (1987; 1988) and Fama and French (1988). For further references see the recent survey
by Bollerslev and Hodrick (1992).
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important, since we allow for some degree of heteroscedasticity and account for predictable

variation in the dividend growth rate and the discount rate due to fundamentals in some of

our empirical specifications.

The form of regime-switching implied by the fads model imposes testable restrictions

on a general switching regression. In our data, these restrictions are generally rejected. This

result stems primarily from two aspects of the switching regressions. First, regime switches

are predictable using a measure of apparent deviations from fundamentals. Second, expected

returns (conditional on the size of the deviation in the previous period) are higher in the

survival regime than in the collapse regime. The first aspect is quite pronounced and

contributes strongly to the rejection of the fads-model restrictions. The second aspect is

considerably weaker and would not, on its own, lead to the rejection of the fads-model

restrictions in most of the specifications we consider.

A problem with testing between fads and bubbles models is that there is no consensus

on the correct model of fundamentals. We therefore take an approach to measuring

fundamentals (and thus the apparent deviations from fundamentals) that is not based on a

particular asset-pricing model. To check the robustness of our results, we use three different

techniques for measuring the apparent deviation from fundamentals, each of them based on

successively less restrictive assumptions. For the most part, the qualitative results are similar,

irrespective of the measure we use.

Our paper is organized as follows. Section I describes the fads model and shows how

it is affected by the introduction of state-dependent heteroscedasticity. Section II introduces

our extension of the Blanchard and Watson (1982) model and shows how it leads to a

switching-regression specification for stock market returns. Section III discusses the

estimation of the two models and shows how they imply different parameter restrictions on a

general switching regression. Section IV discusses different techniques for measuring apparent

deviations from fundamental price. Sections V and VI present empirical results for the fads

and bubbles models, respectively. Section VII discusses the interpretation of the empirical

results and suggests some possible directions for future research.
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I. The Fads Model

Traditional models of efficient financial markets imply that stock prices are non-

stationary and returns are not predictable. Summers (1986) points out that if there are fads in

the stock market, we may observe long temporary price swings that can be modeled as a

slowly decaying stationary component in prices. The decay over time in the transitory

component will lead to mean reversion in stock prices.

The following model, used in Fama and French (1988) and Cutler, Poterba, and

Summers (1991), can capture both the traditional model and the idea of fads:

(1)

(2)

where pt is the log of the stock market price in period t, pt
* is the non-stationary component

of the log price, andεt is white noise. Under the traditional model, log prices are a random

walk, et = 0 and returns (the difference in log prices) are white noise.4 We can think of p*t as

the fundamental price because it does not include a fads element. Under the fads model,

prices have a stationary component:

(3)

Thus the fads model can be characterized as a situation in whichσe
2>0 andρe>0, whereσe

2 is

the variance of et. The stationary component et in stock prices implies that returns will be

predictable.5

4 Strictly speaking, efficiency in financial markets implies that log prices are a martingale,
rather than a random walk. Our presentation of the traditional and fads models follows Cutler,
Poterba, and Summers (1991). Later in this section we allow the variance ofεt to vary over time;
then in the traditional model (i.e., whenσ2

e=0) log prices are a martingale.

5 The predictability of returns can also come from time variation in required returns in an
efficient market. Fama (1991), Fama and French (1988), and Poterba and Summers (1988)
discuss the question of interpretation in more detail and provide references to a variety of
explanations. We return to this issue in Section IV when we discuss measuring apparent
deviations from fundamental price.
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Cutler, Poterba, and Summers (1991) consider a situation in which a proxy is available

for the fundamental price. Because there is no universally accepted model of fundamentals,

any such proxy is likely to be measured with error. We can model this using an errors-in-

variables approach:

(4)

where pf is the proxy and w is the measurement error (which is assumed to be serially

uncorrelated). Cutler, Poterba, and Summers also suggest the following statisticλ as a way of

reflecting the degree of measurement error:

(5)

If pf is a perfect measure of fundamentals (soσ2
w=0), thenλ=1; if pf measures p* with error,

thenλ<1. In any case, since it is a ratio of variances it is always non-negative.

To see how fads lead to the predictability of returns based on lagged information, we

can use equations (1)-(4) to express returns in terms of differences between the proxy for

fundamentals and log price. This suggests regressions of the form:

(6)

One example of a proxy for fundamental price is the log of the real dividend. (This is the

proxy that Cutler, Poterba, and Summers (1991) use in their empirical work on stock market

returns.) Equation (6) is then a regression of returns on the lagged log dividend-price ratio. It

is easy to show that (1)-(4) imply that:

(7)

The fads model therefore implies that estimates ofβb should be negative.

A simple extension of the fads model leads to regime-switching behaviour. Suppose

that the variance of stock market returns varies over time, so that instead of being white
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noise,εt is heteroscedastistic. In particular, suppose that the heteroscedasticity is of the

following form:

(8)

with σC>σS, so that C refers to the high-variance state and S to the low-variance state.6

Schwert (1989) has studied a similar form of heteroscedasticity.7 To complete the model, we

need a functional form for q which guarantees that it will be bounded between 0 and 1. We

use the Logit form

(9)

whereΦ is the logistic cumulative distribution function andβq0 is the mean of the logistic

distribution function.

The fads model can be summarized in the following switching regression:

(10)

(11)

(12)

where bt is the proportional deviation of actual stock market price from fundamental price. In

Section III, we will show that this fads model represents a special case of a general switching

regression. In the same section, we will discuss how to estimate and test the fads model.

II. Stochastic Bubbles and Regime-Switching

In this section, we begin by describing the Blanchard and Watson (1982) model of

stochastic bubbles. By stochastic bubbles, we mean bubbles that may either survive or

collapse in each period. The existence of stochastic bubbles implies that there are two regimes

6 This extends the Cutler, Poterba, and Summers (1991) fads model to allow for state-
dependent heteroscedasticity.

7 Schwert (1989) considers a Markov-switching model for variances. Equation (8) is slightly
more restrictive; in effect, it constrains the rows of the probability transition matrix to be equal.
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generating stock market returns, one where the bubble collapses and one where it survives.

Rational investors take this into account when deciding whether or not to hold an asset. The

period-to-period arbitrage condition allows us to impose some structure on asset returns in the

surviving and collapsing regimes: in the surviving regime, returns should be sufficiently high

to compensate the investor for the possibility that the bubble may collapse. Combined with

the historical observation that larger overvaluations are more likely to collapse, this provides

us with the essential elements for a regime-switching specification for stock market returns.

We begin by considering a simple asset-pricing model where risk-neutral investors

choose between holding an asset that yields (1+r) and a risky stock. The period-to-period

arbitrage condition for the stock is:

(13)

where Pt and Dt are the stock’s price and dividend at time t and Et denotes the expectation

conditional on information available at timet. One possible solution to this equation defines

the fundamental price as

(14)

All other prices are said to be "bubbly," with the size of the bubble defined as

(15)

Since we have assumed that all asset prices, bubbly or not, follow (13), this implies that the

bubble must satisfy the condition

(16)

Blanchard (1979) and Blanchard and Watson (1982) consider a particular stochastic

solution to (16). They suppose there are two states of nature, one where the bubble survives

(state S) and one where it collapses (state C). If the possibility of being in state S is some

constant q and being in state C implies Bt=0, then (16) implies

(17)
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The intuition here is that, if Bt>0, agents expect capital losses of Bt in state C, which must be

balanced by expected capital gains in state S in order to earn the required rate of return on

the bubble.

Historical accounts suggest that the probability of a bubble surviving decreases as the

bubble grows. We therefore extend the Blanchard-Watson model by allowing the probability

of survival q to depend on the proportionate size of the bubble

(18)

where bt ≡ Bt/Pt and (19)

Note the use of the absolute value of bt, since the bubble may be positive or negative.8

While some notable market crashes have occurred in a single day, in other cases a

collapse may occur over several months.9 To model this, our second extension of the

Blanchard and Watson model allows the expected value of the bubble, conditional on

collapse, to be non-zero, thereby allowing for partial collapses. We assume that the expected

size of a bubble in state C, which we define as utPt, depends on the relative size of the bubble

in the previous period, so that

8 There are theoretical arguments against negative bubbles that are often closely related to
restrictions on the admissibility of non-fundamental solutions. On the admissibility of non-
fundamental solutions, see, for example, Diba and Grossman (1988), Obstfeld and Rogoff (1983;
1986), and Tirole (1982; 1985).) Blanchard and Fischer (1989, 238) argue that "[These
restrictions] often rely on an extreme form of rationality and are not, for this reason, altogether
convincing. Often bubbles are ruled out because they imply, with a very small probability and
very far in the future, some violation of rationality, such as non-negativity of prices or the
bubbles becoming larger than the economy. It is conceivable that the probability may be so
small, or the future so distant, that it is simply ignored by market participants." Moreover, recent
work by Allen and Gorton (1991) and Leach (1991) has shown that restrictions on non-
fundamental solutions are not robust to minor changes in assumptions, such as the introduction
of heterogeneous agents, or allowing for more than two periods in an over-lapping generations
model, or changing from discrete to continuous time. Our motivation for building the sort of
model of speculative behaviour presented in this section is the same as Solow (1957, 323-324)
in using an aggregate production function, which was controversial at the time: "Either this kind
of [approach] appeals or it doesn’t.... If it does, I think one can draw some ... useful conclusions
from the results."

9 The fall in the Tokyo stock exchange in the period following January 1990 is an example.
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(20)

We further assume that u( ) is a continuous and everywhere differentiable function and

that:10

(21)

(22)

(The differentiability assumption is made because we will be linearizing the model.)

Assumptions (21) and (22) are added to ensure that a collapse means that the bubble is

expected to shrink.11 Imposing (16) then gives

(23)

This shows that the expected value of the bubble in the surviving state is a decreasing

function of the probability of survival q(bt). In other words, the greater the probability of

collapse, the larger must be the gain on a positive bubble in the surviving state in order to

compensate the investor for the possibility of collapse.

Note that when q(bt)≡q, a constant, and u(bt)≡0, this model reduces to the Blanchard

and Watson process.

It is straightforward to derive the expected excess returns R in each regime, where

excess returns are the rate of return on the bubbly asset less the rate of return on the

alternative asset:

10 As with assumptions on q(bt), the assumptions on u(bt) are not imposed on the data.
Instead, they allow us to determine the expected signs and relative magnitudes of the parameters.

11 To see this, draw a graph with u(bt) (which equals E[Bt+1 C]/Pt) on the vertical axis and
bt on the horizontal axis. The function u(bt) passes through the origin, since u(0)=0. The 45° line
represents a situation where E[Bt+1 C]/Pt = Bt/Pt; i.e., where a "collapsing" bubble is the same
size as the previous period’s bubble. Since 0≤u’≤1, u(bt) always lies on or below the 45° line.
Thus these assumptions ensure that a collapsing bubble is no larger than the bubble in the
previous period.
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(24)

(25)

Noting that conditional expected excess returns are a function of bt, we can take first-order

Taylor series approximations of Et(Rt+1 S) and Et(Rt+1 C) with respect to bt around some

arbitrary value b̄to obtain:

(26)

(27)

where

(28)

(29)

Assuming r≥0, we can then prove thatβSb≥0 andβCb≤0, and more generally thatβSb≥βCb.
12

By dropping the expectations operator Et in equations (26) and (27), we can rewrite

them as

(30)

(31)

To complete the switching-regression model, we need a functional form for q(bt) that satisfies

(19) and that guarantees that the resulting estimates of q will be bounded between 0 and 1.

We use the Logit form

(32)

12 The proof forβCb follows directly from (22). ForβSb, we can use (22) and the fact that
1≥q(bt)≥0 to show that the second term in the expression is always non-negative. Equations (19),
(20), and (22) together imply that the first term is also non-negative, so the sum of the two terms
will be non-negative.
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whereΦ is the logistic cumulative distribution function.

III. Estimating and Testing the Fads and Bubbles Models

In this section, we show how both the fads and bubbles models nest within a general

switching regression. Each model has implications for the parameters of the general switching

regression. In some cases, these are zero restrictions; in other cases, they involve equalities or

inequalities among the parameters in the three equations that make up the general switching

regression. By testing these restrictions jointly and separately, we can make statements about

the ways in which each model corresponds, or fails to correspond, to the data.

As shown in the discussion of the bubbles model, there may be a non-linear

relationship between Rt+1 and bt that takes the form of state-dependency; i.e., the relationship

between Rt+1 and bt exists but varies across states. If we knew with certainty which regime

generated each observation of Rt+1, we could estimate these relationships using standard least-

squares techniques. Given uncertainty about the classification of Rt+1 into these regimes,

however, standard estimation techniques will give biased and inconsistent estimates.13

Nonetheless, consistent, efficient, asymptotically normal parameter estimates of such systems

can still be obtained, provided that the equations are estimated simultaneously and that

explicit account is taken of classification uncertainty.14

To understand the estimation procedure, suppose that in regime C

(33)

and that in regime S

(34)

This implies that we can write the probability density function of an observation conditional

on it being generated by a given regime as

(35)

13 See Lee and Porter (1984) for a proof.

14 See Goldfeld and Quandt (1976) and Kiefer (1978) for proofs.
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and

(36)

If we have no information on which regime generates each observation, we may denote the

average probability that an observation comes from regime S as q. More generally, if we have

a set of variables Mt that contain imperfect classifying information, we can write the

probability that Rt+1 = RS
t +1 as q(Mt). Therefore, the unconditional probability density function

of each observation is

(37)

and the likelihood function for a set of T observations

(38)

Maximizing this likelihood function therefore estimates both (33) and (34) simultaneously

with a set of parameters for q(Mt), and it can be shown to lead to consistent and efficient

estimates without the need for a priori knowledge on which observations correspond to a

given regime.15

The general switching regression that encompasses the fads and bubbles models can be

expressed as:

(39)

(40)

(41)

15 For those familiar with Markov-switching models, it may be useful to note that this
switching model has a related stochastic structure. A two-state Markov-switching model has two
state-dependent probabilities: q(t) = Pr(S(t)=0 S(t-1)=0) and p(t) = Pr(S(t)=1 S(t-1)=1). The
switching model presented here has one state-independent probability q(t) = Pr(S(t)=0). This is
the special case of the Markov-switching model where q(t) = 1-p(t); i.e., the probability of
today’s state is independent of yesterday’s state.
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These three equations form a standard switching-regression model of the type described by

Goldfeld and Quandt (1976) and Hartley (1978), and can be estimated by maximum-

likelihood methods.

The fads model implies a number of restrictions on the general switching regression.

First, according to the fads model, expected returns (conditional on bt) should be the same in

both regimes. This implies thatβS0 should equalβC0 and thatβSb should equalβCb. Second, as

shown in Section I, the fads model implies that returns should be mean-reverting. This

implies that the estimated value ofβb should be negative. Finally, according to the fads

model, bt should not influence which regime will occur in the subsequent period. This implies

that βqb should equal zero. The fads-model restrictions can be summarized as follows:

(42)

(43)

(44)

(45)

We can test the fads model in two basic ways. The first way is to impose the first

three restrictions and compare the fit of the resulting regression with the fit of the unrestricted

general switching regression. In Section V, we use a likelihood-ratio (LR) statistic to conduct

this joint test.16 The second way is to impose the first three restrictions (so as to estimate the

fads model) and check whetherβb is negative.

The bubbles model also has implications for the general switching regression. First,

according to the bubbles model, expected returns (conditional on bt) should be greater in the

states where the bubble survives than in the states where it collapses.17 This implies thatβS0

16 A number of authors have noted that while Lagrange Multiplier and Wald tests should be
asymptotically equivalent to the LR tests, they sometimes give widely divergent results when
applied to regime-switching models. For example, see Engle and Hamilton (1990). As the LR
tests are thought to be the most reliable, we use these for most of the joint hypothesis tests we
report.

17 For bt < 0, the expected returns in the surviving regime should be larger in absolute value
(i.e., more negative) than those in the collapsing regime. Of course, the implications for the signs
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will not necessarily equalβC0 and thatβSb should be greater thanβCb. Second, according to the

bubbles model, collapses are more likely when bubbles are large in magnitude. This implies

that βqb should be positive. The implications of the bubbles model for the general switching

regression can be summarized as follows:

(46)

(47)

(48)

There are two main ways in which we can test the bubbles model against the fads

model. The first we have already discussed. The fads model implies certain restrictions on the

general switching model. These restrictions are inconsistent with the bubbles model, so if we

fail to reject them, we would conclude that there is no significant evidence for the bubbles

model. The second sort of test involves the implications that are summarized in the previous

three equations. If these parameter restrictions hold, it provides evidence in favour of the

bubbles model.18

IV. Measuring Apparent Deviations from Fundamental Price

In this section, we describe three different approaches to measuring bt, the proportional

deviation of actual stock market price from fundamental price. To motivate the three

approaches, consider the classic Gordon (1962) model:

(49)

where g is the dividend growth rate. We can think of the fundamental price in the Gordon

world as a function of current dividends, anticipated dividend growth, and anticipated interest

of βSb andβCb are the same regardless of whether bt is positive or negative.

18 As always, other interpretations, which may involve neither bubbles nor fads, are possible.
We are currently pursuing this point in a related paper that will examine whether switches in
fundamentals (dividend growth and/or discount rates) can account for what we find in the data.
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rates. Our first approach assumes a particular stochastic process for dividends and a constant

interest rate. Under these assumptions, current dividends are a sufficient statistic for Pt* and

thus bt; in fact, Pt
* is a multiple of Dt. Our second approach allows for variable dividend

growth rates, but maintains the assumption of a constant interest rate. Our third approach

allows for variation over time in expectations of both dividend growth rates and interest rates.

A. Assuming the Dividend Process

We begin by assuming that stock market prices obey the following period-to-period

arbitrage condition:

(50)

where r is the required rate of return, which we assume for the moment is constant. A number

of previous studies have assumed that log dividends follow a random walk with drift:

(51)

where dt is the log of dividends.

Under these assumptions, it is straightforward to show that fundamental price is a

multiple of current dividends:

(52)

where:

(53)

This set of assumptions therefore provides one possible motivation for the measure of

fundamental price used by Cutler, Poterba, and Summers (1991).

Under these assumptions, the proportional deviation of actual price from fundamental

price is:

(54)
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We use the sample mean of the price dividend ratio to calculateρ.

B. A VAR Projection on Dividend Changes and the Spread

Our second approach allows for variation over time in expected dividend growth and

provides a way of capturing the information about future dividend growth contained in the

information set available to market participants. This approach follows Campbell and Shiller

(1987), who introduce a VAR approach to estimating and testing the present-value model of

stock market prices. A simple algebraic manipulation allows us to use their methodology to

construct estimates of bt. Because the Campbell and Shiller (1987) approach is well known,

our description of it is brief and focusses on the aspects that are directly relevant.

Consider the simple present value model of stock market prices:

(55)

Define the innovation in stock price as:

(56)

The present value model implies that the innovation can be expressed in terms of observable

variables as:

(57)

Note that this expression is equal to the excess return on stocks, multiplied by the stock

market price.

If the present value model were true, then a linear function of current prices and

dividends (the "spread") would be the optimal linear forecast of future dividend changes.

Intuitively, this is because the current price reflects all available information, so innovations

(i.e., excess returns) are unpredictable. Campbell and Shiller (1987) define the "spread" as the

difference between price and a multiple of current dividends:

(58)
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It is easy to show that St is the optimal linear forecast of St
*, where St

* is a weighted average

of future dividend changes:

(59)

where

(60)

A variety of studies, including Campbell and Shiller (1987), have found that excess

returns are predictable. This predictability has two main interpretations. The first, which is

emphasized by Fama and French (1988), for example, is that financial markets are rational

and efficient and that discount rates vary over time in a predictable manner. The second,

which is emphasized by Poterba and Summers (1988), for example, is that there may be some

element of apparent irrationality in financial markets in the form of fads or bubbles. Under

the first interpretation, we can obtain a better estimate of fundamental price by incorporating

the sort of information contained in past dividends and prices that makes returns predictable.

Under the second interpretation, by incorporating this additional information, we may bias our

tests against finding either fads or bubbles because we have attributed to fundamental price

some of the predictability that arises from fads or bubbles.

The additional information available from past dividend changes and stock market

prices can be incorporated by estimating the following VAR representation for∆Dt and St

(where both variables have been demeaned):

(61)

If b(L) were 0, then dividend changes would depend only on past dividend changes; if agents

have additional information beyond the history of dividends that is reflected in past prices

(and therefore past S), then S will have incremental explanatory power.

The equations (61) can be stacked into a first-order system:
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(62)

where blank elements are zero. In companion matrix form, this can be rewritten as:

(63)

In our context, the value of such a VAR representation is that it allows us to form an optimal

forecast of future dividend changes, conditional on a given information set Ht:

(64)

where

(65)

and e1 is a row vector that picks out∆Dt. Through a simple algebraic manipulation, we can

transform the expression for the spread into an expression for fundamental price PB
t, where

PB
t incorporates the optimal linear forecast of future dividend changes (St

*) based on past

prices and dividends. Let:

(66)

Then we can define a second measure of deviations from fundamentals, namely:

(67)
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We set r=1/[(P/D) - 1], where X denotes the sample average of X. This ensures that St has

mean zero over our sample.

C. Incorporating Time Variation in Interest Rates

The VAR approach based on Campbell and Shiller (1987), which we have just

outlined, is attractive, but it ignores a determinant of stock market prices that is frequently

emphasized, namely variation over time in interest rates. To incorporate predictable variation

in interest rates, as well as in dividend growth rates, we use the dividend-ratio model

proposed by Campbell and Shiller (1988). Define the log of the stock market return as:

(68)

This can be approximated quite closely as:

(69)

whereδt≡dt-1-pt, lower-case letters denote logs, k is a constant, andκ is a coefficient that

emerges from the approximation.19

Equation (69) is a difference equation that can be solved forward subject to a terminal

condition (limi ∞ κiδt+i=0) to obtain:

(70)

In other words, (70) says that the log dividend-price ratio can be expressed as a weighted sum

of future returns ht+j and dividend growth rates∆dt+j. This equation contains economic content

only if we put some conditions on the process for returns. In particular, Campbell and Shiller

(1988) assume that expected stock market returns differ from the expected returns on some

other asset by an amount that does not vary over time:

(71)

Taking expectations on both sides of (70) and substituting in (71), we obtain:

19 We follow Campbell and Shiller (1988) in settingκ=exp(g-h), whereh is the sample mean
stock return andg is the sample mean dividend growth rate.
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(72)

Equation (72) can be thought of as a dynamic version of the Gordon model, in which both

interest rates and dividend growth rates vary freely through time.

To construct an optimal linear forecast of the dividend-price ratio, we use a VAR of

the following form:

(73)

where all variables are expressed as deviations from their means. Using companion matrix

notation, our forecast of the log dividend price ratio is:

(74)

where e2 is a vector that picks out rt-1-∆dt-1. The resulting value ofδC
t can be used to construct

a third fundamental price and thus a third measure of bt:

(75)

V. Empirical Estimates of the Fads Model

In this section, we present estimates of the fads model derived in Section I as well as

tests of the restrictions which the fads model implies for the general switching regression.

A. Assuming the Dividend Process (bA)
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Table I presents estimates of the fads model. We begin by focussing on the first

column of the table, which presents parameter estimates based on bA
t . A major implication of

the fads model is that a regression of returns on the apparent deviation of actual prices from

fundamental prices should yield a negative coefficient. As the first column shows, the point

estimate of this coefficient (denotedβb) is -0.013 and the t-statistic is -2.1, a result that is

consistent with the fads model.20 To get a sense of the economic significance of the point

estimate, consider the value of bt in September 1987 (one of the larger values in the sample

and one of historical interest). With bt=.29, the point estimate implies that excess returns will

be lower by .37 per cent a month (5 per cent a year).

The result forβb is consistent with the results of previous studies. As noted above, the

regression reported in the first column of Table I is very similar to the Cutler, Poterba, and

Summers (1991) test of the fads model. Their estimate ofβb is -0.01, which is close to our

estimate.21

A number of authors have argued that the evidence for fads is weaker if

heteroscedasticity is taken into account. For example, Kim, Nelson, and Startz (1991) argue

that most of the evidence for mean reversion comes from the period before World War II, a

period during which the volatility of stock market returns was unusually high.22 We allow

for heteroscedasticity by letting disturbances come from a high- and low-variance regime. As

Table I shows,σC is about three times as large asσS, so heteroscedasticity appears to be a

20 We report t-ratios based on the inverse of the Hessian. The results that we report are
asymptotically consistent and efficient under our assumptions. A number of recent studies (e.g.,
Kim, Nelson, and Startz (1991), McQueen (1992), Nelson and Kim (1992), and Richardson and
Stock (1989)) have found that standard test statistics can be misleading in studies of stock market
predictability. In this paper, we use more than 700 non-overlapping observations and account for
conditional heteroscedasticity.

21 Our results correspond most closely to the last row, first column of their Table 6. The sign
of their estimate differs because they regress returns on fundamental price minus actual price and
we regress returns on actual price minus fundamental price.

22 See also McQueen (1992) and Nelson and Kim (1992) on heteroscedasticity.
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genuine issue in the data.23 Even after allowing for heteroscedasticity, there is still evidence

that returns are predictable, since the results in column one of Table I showβb to be

significantly negative.

In Section III, we discuss two main types of tests of the fads model. The first imposes

the fads-model restrictions on the general switching regression and then tests whether or not

βb is negative. However, this does not test between the fads and bubbles models. The second

type of test examines whether the fads-model restrictions are valid; it is therefore a more

useful test for distinguishing between fads and bubbles.

The fads-model restrictions on the general switching regression are shown in equations

(42), (43), and (44). These restrictions reflect two fundamental differences between the fads

model and the bubbles model. First, the bubbles model implies that returns are drawn from

two distinct regimes, so that the intercept (βS0 andβC0) and slope (βSb andβCb) coefficients

may differ between regimes. Second, the bubbles model implies that the size of deviations

from fundamental price influences the regime from which each stock market return is drawn,

so thatβqb will not be equal to zero.

As shown in the lower portion of Table I, the likelihood-ratio test statistic for the joint

test of the fads-model restrictions is 16.3. Since this test has aχ2 distribution with three

degrees of freedom under the null hypothesis of fads, the joint test strongly rejects the fads-

model restrictions.

B. Alternative Measures of Deviations from Fundamental Price (bB, bC)

Constructing a measure of the fundamental stock market price is an inherently difficult

and potentially contentious task. If we were attempting to test either the fads model or the

bubbles model against the null hypothesis that stock market returns are driven exclusively by

fundamentals, it would also be an extremely important task. When we are trying to

distinguish between the fads model and the bubbles model, it is less clear that our choice of a

model of fundamentals is crucial.

23 A formal test for the equality ofσS and σC is difficult; see Hansen (1993) and Garcia
(1992) for recent progress in this area.
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Cutler, Poterba, and Summers (1991) argue that a noisy measure of fundamental price

will tend to bias tests against finding evidence that non-fundamentals are important. Thus, if

we use a noisy measure of fundamental price and still find evidence of either fads or bubbles,

their view is that the noisiness of our measure of fundamentals strengthens the case that non-

fundamentals matter. Others take a different view. For example, Cecchetti, Lam, and Mark

(1990) argue that some of the evidence for fads can be explained by variations in the

endowment process. In the present-value model outlined in Section II, this might be

represented, for example, by variation in the expected growth rate of dividends.

Whether or not the measure of fundamentals makes a difference in testing between

fads and bubbles is a question on which the previous literature is largely silent. Our approach

is therefore eclectic and empirical: we consider various measures of fundamental price and

examine whether they lead to different results.

The results in the first column of Table I assume that the expected dividend growth

rate is constant. Our second measure of fundamental price allows for predictable variation in

the dividend growth rate. In particular, it incorporates the information available in past

dividend changes and stock market prices using a linear projection on this past

information.24

We refer to the measure of deviation from fundamental price that incorporates

predictable time variation in the dividend growth rate as bB. The results for this measure are

presented in column two of Table I. The point estimate ofβb is -0.012 with a t-statistic of 2.1,

which is very close to the results using bA. We can test the fads model against the bubbles

model by determining whether the restrictions of the fads model on the general switching

regression are valid. In the lower portion of Table I, the test statistic for the joint test of these

restrictions is 10.8. As in the earlier results, this is a strong rejection of the fads-model

restrictions.

24 If the existence of fads or bubbles leads returns to be predictable, then incorporating this
predictability in the measure of fundamental price might bias tests against finding evidence for
fads or bubbles. Whether incorporating this predictability into fundamental price would tend to
bias the tests relatively more against fads or against bubbles is hard to say.
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Fama (1991) and Fama and French (1988) argue that the predictability of returns is

due to time variation in expected returns. One way to take this into account is to use excess

returns as the dependent variable, as we do in this paper. This captures variations in the rate

of return on the alternative asset. A second way to take this into account is to use predictable

variation in discount rates in constructing the measure of fundamental price. This may help to

capture predictable variation in the interest rate or the risk premium.

We refer to the measure of deviation from fundamental price that incorporates

predictable variation in the discount rate (as well as in the dividend growth rate) as bC. The

results for this measure are presented in column three of Table I. The point estimate ofβb is

-0.008 with a t-statistic of 2.5. The value of bc
t is .51 in September 1987, so the point estimate

of βb implies that returns will be about .39 per cent lower in October (about 5 per cent lower

at annualized rates). This is very close to the results using bA.

The second type of test is whether the fads-model restrictions on the general

switching regression are valid. In the lower portion of Table I, the test statistic for the joint

test of these restrictions is 4.0. In contrast to the earlier results, the test fails to reject the fads-

model restrictions.

We can briefly summarize the results for the full sample. The main focus of this paper

is testing between fads and bubbles. We do this by testing the restrictions that the fads model

imposes on the general switching regression. For two of our three measures of fundamental

price, we find strong rejections of the fads-model restrictions. Our estimates of the fads model

differ from previous research because we allow for state-dependent conditional

heteroscedasticity; nevertheless, we still find evidence that returns are predictable, since our

estimates ofβb are negative. The evidence that returns are predictable is also robust to

allowing for variation in the dividend growth rate and the interest rate in constructing

measures of fundamental price.
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C. Subperiods

It is often suggested that much of the evidence for the predictability of returns comes

from periods that include the 1929 crash and the Great Depression.25 More generally, time-

series econometric results are sometimes sensitive to the specific time period over which the

estimation is done. In this subsection, we therefore present results for three subperiods

— 1929-45, 1946-72, and 1973-89. The first includes the 1929 crash, the Great Depression,

and World War II; the second includes the post-war boom up until the first major oil shock;

and the third covers the most recent period, including the inflation of the 1970s and the 1987

crash.

The results for the period 1929-45 (Table II) are the most surprising. Once allowance

is made for state-dependent heteroscedasticity (as our switching regression does), the evidence

for fads is very weak. Contrary to the prediction of the fads model, the estimate ofβb is

either positive or close to zero, depending on how we measure fundamental price. In all cases,

the t-statistic onβb is less than one in absolute value.

In the 1946-72 period, the estimates ofβb are all negative and all have t-statistics

greater than two in absolute value as shown in Table III. However, when we test the fads-

model restrictions, they are very strongly rejected regardless of which measure of fundamental

price we use.

The results for the period 1973-89 provide the evidence most consistent with the fads

model. As shown in Table IV, the estimates ofβb are all negative and all have t-statistics

greater than two. Nevertheless, one of the three measures of fundamental price leads to a

rejection of the fads-model restrictions.

The subperiod results suggest that the evidence for fads we find in the full sample

does not derive primarily from the 1930s; the estimates ofβb are more consistent with the

fads model during the post-war boom and the period since the 1973 OPEC shock. However,

as in the full sample, the subperiod results frequently reject the restrictions implied by the

fads model, suggesting that there is more in the data than fads.

25 See, for example, Kim, Nelson, and Startz (1991).
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We discuss the interpretation of the empirical results for the fads model (and how they

relate to the empirical results for the bubbles model) in the Conclusion.

VI. Empirical Estimates of the Bubbles Model

In this section, we present estimates of the bubbles model derived in Section I as well

as tests of the restrictions implied by the bubbles model for the general switching regression.

The bubbles model differs from the fads model in two main ways. First, the bubbles model

implies that returns are drawn from two distinct regimes. In particular, we show in Section II

that the bubbles model implies an inequality restriction on the slope coefficients in the

surviving and collapsing regimes, namely thatβSb≥βCb. Moreover, since returns come from

distinct regimes, there is no reason to expect the intercept coefficients (βS0 andβC0) to be the

same in the two regimes. Second, the bubbles model implies that deviations from fundamental

price influence the regime from which the next period’s stock market return is drawn.

Specifically, the bubbles model in Section II suggests that a bubble is more likely to collapse

when the actual price is far away from the fundamental price. This implies thatβqb will be

positive.

A. Assuming the Dividend Process

As noted in the previous section, the fads-model restrictions are frequently rejected;

the estimates of the bubbles model parameters in Table V help us to see why. We begin by

focussing on the first column of the table, which presents parameter estimates based on bA
t .

The point estimate ofβS0 is .0074 with a t-statistic of 4.1. IfβSb were zero, this point estimate

would translate into positive excess returns of 0.7 per cent a month (9 per cent a year) for a

surviving bubble. The point estimate ofβC0 is -.0294 with a t-statistic of -1.4. IfβCb were

zero, this point estimate would translate into negative excess returns of about 3 per cent a

month (31 per cent a year). The point estimates of the intercept coefficients therefore imply

substantial differences in expected returns between the surviving and collapsing regimes. The

statistical significance of the difference is weaker; as the lower panel of the table shows, the

marginal significance level of the restrictionβS0=βC0 is about .08.
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The bubbles model in Section II implies thatβSb should be greater thanβCb. The point

estimate ofβSb is -.0136 with a t-statistic of 2.0. The point estimate ofβCb is -.0554 with a

t-statistic of 1.4. The inequality restriction implied by the bubbles model therefore holds but

the point estimates are not sharp enough to reject the null hypothesis thatβSb=βCb at

conventional significance levels. The economic significance of the coefficient estimates is

quite different, however. For example, consider one of the larger values of bt in our sample,

namely the value of .26 in September 1929. Even at this relatively high value of bt, the

coefficient estimate implies a change in expected returns of only 35 basis points in the

surviving regime. In the collapsing regime, the point estimate ofβCb implies a change of 144

basis points.

The bubbles model in Section II suggests that bubbles are more likely to collapse

when they comprise a large portion of the price of the stock. This implies thatβqb should be

positive. The point estimate ofβqb is 1.71 with a t-statistic of 3.1.

The existence of distinct regimes in the bubbles model (and particularly the fact that

the probability of a collapse depends on bt) means that the relationship between returns and bt

can be highly non-linear. One way to illustrate this is to look at the probability that next

period’s return will be unusually high or low. In the fads model, expected returns next period

depend on bt; thus if bt is large this period, there is an increased likelihood that next period’s

returns will be unusually low. In the bubbles model, a change in bt has an effect through the

slope coefficients (βSb andβCb), but there is an additional effect because bt influences the

probability that a given regime will occur. Mathematically, the probability of a return two

standard deviations below the mean (a "crash") is:

(76)

The probability of an unusually high return ("rally") can be defined similarly.

If the non-linearity introduced by the bubbles model is empirically important, the

magnitude of the fluctuations in the probability of a crash will be much larger in the bubbles

model. Figure I graphs the probabilities of a crash generated by the fads and bubbles models.

The scale of the fluctuations is very different. For example, from the beginning of the sample
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to September 1929, the probability of a crash generated by the fads model increases by only

about two-tenths of a percentage point (from .022 to .024). Over the same time span, the

probability of a crash generated by the bubbles model rises from about .03 to almost .10.

Figure II plots the probability of a rally. In the months leading up to May 1932 (the lowest

value of bt in the sample), the probability of a rally generated by the fads model rises by

about one percentage point (from .026 to .036). The probability of a rally generated by the

bubbles model rises from about .01 to almost .09.

B. Alternative Measures of Deviations from Fundamental Price (bB, bC)

The results in the first column of Table V are based on the assumption that the

expected dividend growth rate is constant. Our second measure of fundamental price allows

for predictable variation in the dividend growth rate. The second column of Table V presents

estimates of the bubbles model using bB. The picture that emerges is broadly similar to the

results in the first column of Table V. The point estimate ofβS0 is positive, while that forβC0

is negative and much larger in magnitude. IfβSb andβCb were zero, the point estimates of the

intercept coefficients (βS0 andβC0) would imply that annualized returns would be about 67 per

cent higher in the surviving regime than in the collapsing regime. The marginal significance

level for a test of the restrictionβS0=βC0 is .08. The point estimate ofβCb is negative and

about six times smaller than the point estimate ofβSb. Neither parameter is very precisely

estimated, however, so the data fail to reject the restrictionβSb=βCb. As predicted by the

bubbles model in Section II,βqb is positive with a t-statistic of about 2.5.

Our final measure of deviation from fundamental price is bC, which incorporates

predictable variation in the discount rate (as well as in the dividend growth rate) in the

fundamental price. The results for bC are presented in column three of Table V. The point

estimates of the intercept and slope coefficients in the equations for the surviving and

collapsing regimes are similar to those for bA and bB. The point estimate ofβS0 is positive and

relatively small in magnitude, while the point estimate ofβC0 is negative and larger in

magnitude. IfβSb andβCb were zero, the point estimates of the intercept coefficients (βS0 and

βC0) imply that annualized returns would be about 45 per cent higher in the surviving regime

than in the collapsing regime. The marginal significance level for the restrictionβS0=βC0 is
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about .10. As with bA and bB, the point estimate ofβCb is negative and smaller thanβSb by

about a factor of five. The point estimate ofβqb is positive; unlike the estimates ofβqb in

columns one and two, however, the t-statistic is small.

Intuitively, the bubbles model suggests that: 1) there should be a regime in which the

bubble survives and excess returns are positive to compensate the investor for the possibility

that the bubble may collapse; 2) in the periods in which a positive bubble collapses, returns

should be negative; and 3) the probability of a collapse should increase as the bubble grows

larger. The empirical results for the full sample broadly correspond to this description of

stochastic bubbles. There is one important exception: simple models of rational bubbles (and

the derivations presented in Section II) imply that returns in the surviving regime should be

higher when the bubble is larger. This conflicts with our finding thatβSb is negative. There

are theoretical reasons for interpreting this finding cautiously. In a broader theoretical model

(which relaxes the assumption of risk neutrality and allows the intertemporal marginal rate of

substitution to vary over time), we find that a bubbles model predicts thatβCb will be negative

and thatβSb will be greater thanβCb, but that no sign restriction can be placed onβSb.
26

26 See van Norden and Schaller (1992).
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C. Subperiods

For the subperiod that includes the 1929 crash and the Great Depression, the results

are broadly similar to those for the full sample. As shown in Table VI, the estimates ofβS0

are greater than the estimates ofβC0, the estimates ofβSb are considerably larger than the

estimates ofβCb, and the estimate ofβqb is positive. Unlike the full sample, for the period

1929-45,βSb is either positive or very close to zero.

For the period 1946-72, the estimate ofβS0 is larger than the estimate forβC0, as

shown in Table VII. Unlike the full sample, this difference is highly significant; in fact, the

difference betweenβS0 andβC0 is the main reason the fads model is so strongly rejected

during the post-war boom subperiod. The difference in slope coefficients is smaller than in

the full sample (and the direction is reversed) andβqb is insignificantly different from zero.

The results for the period since the first OPEC shock are broadly similar to the full

sample results. As shown in Table VIII, the estimate ofβS0 is greater than the estimate ofβC0,

the estimate ofβCb is much smaller than the estimate ofβSb, and the estimate ofβqb is positive

(except when bC is used).

VII. Conclusion

The objective of this paper is to test which model provides a better description of U.S.

stock market returns: a fads model or a bubbles model. Our econometric approach to this

question is novel. We show that both the fads model and the bubbles model can be

represented as special cases of a general switching regression. This allows us to develop a

new set of tests, involving the parameters of a general switching regression, to distinguish

between fads and bubbles.

Previous authors have shown that the fads model implies that apparent deviations from

fundamental price will help to predict stock market returns. Our estimates of the relevant

coefficient (βb) generally support this finding. When we test the restrictions that the fads

model imposes on the general switching regression, however, we frequently reject these

restrictions.

In our formulation, there are two key differences between the fads model and the

bubbles model. The first arises from the fact that a fads model allows predictable variation in
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excess returns, while a bubbles model imposes the condition that expected returns are equal

on the bubbly asset and the alternative asset. This condition of the bubbles model implies that

returns must be high in the states where the bubble survives in order to compensate the

investor for the low returns in the states where the bubble collapses.

The point estimates of the parameters that reflect this difference tend to point in the

direction of the bubbles model. Because the regimes in the fads model differ only in their

variances, the fads model implies that the slope and intercept coefficients in the regimes

should be the same. The point estimates suggest economically important differences between

the intercept coefficients. If the slope coefficients were zero, the intercept coefficients

typically would imply that annualized returns in the surviving regime would be 40-70 per cent

higher than in the collapsing regime.

The point estimates of the slope coefficients (βSb andβCb) are also quite different. The

bubbles model implies that the coefficient in the collapsing regime should be negative and

smaller than the coefficient in the surviving regime. The point estimate of the coefficient in

the collapsing regime is always negative and typically about four to five times smaller than

the coefficient in the surviving regime.

The second difference between the fads and bubbles models arises because the bubbles

model in Section II suggests that a large bubble is more likely to collapse. In our formulation,

this implies that the coefficientβqb should be positive. Over the period 1928-89, this is what

we find; moreover, the data strongly reject the hypothesis thatβqb=0 for two of our three

measures of fundamental price.

Although the rejections of the fads model point in the direction of the bubbles model,

the evidence is not definitive. First, the statistical significance of the differences in the

intercept and slope coefficients between regimes is weak. Over the period 1928-89, the

marginal significance level of the test for equal intercept coefficients is generally around .10.

In the test for equal slope coefficients, the marginal significance level is even higher.

Second, intuition (and the derivations in Section II) suggest that expected returns

should be an increasing function of the size of the bubble in the states where the bubble

survives. In our data, the relevant coefficient (βSb) has the opposite sign. In Section VIB, we
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discuss theoretical reasons for not exaggerating the importance of this result for the bubbles

model. Nonetheless, the result suggests that some caution is appropriate.

Taken together, our results suggest that there is more in the data than fads. The

specific ways in which the data conflict with the fads model are frequently consistent with the

bubbles model, but the evidence in favour of the bubbles model is not decisive.

We see a number of directions for further research. First, this paper shows how to use

switching regression econometrics to distinguish between two specific asset-pricing models. In

the future, economists may wish to think about how different asset-pricing models might lead

to regime-switching behaviour. Differences between the models should suggest parametric

tests based on the coefficient estimates from a general switching regression.

Second, we examine aggregate stock market returns for the U.S. It would be

interesting to see if the patterns we find in U.S. aggregate data carry over to other countries

and other assets, as well as whether they appear in the returns of individual firms or particular

portfolios.27

Third, the focus in this paper is on models in which asset prices do not correspond to

fundamental price. It is possible that fundamentals determine asset prices and that the regime-

switching behaviour we find is due to changes in fundamentals. For example, Bollerslev and

Hodrick (1992) and Cecchetti, Lam, and Mark (1990) have proposed stochastic processes for

dividends that seem to account for some of the predictability of returns. Whether such

processes for fundamentals can account for the sort of regime-switching we find is an

interesting question and one that we are currently pursuing.

Fourth, apparent anomalies in asset markets may arise because of strong assumptions

about the constraints faced by agents. For example, Brock and LeBaron (1990) show that in a

production-economy asset-pricing model, the introduction of finance constraints on firms can

27 Van Norden and Schaller (1993) offer some evidence on regime-switching in Canadian
stock market returns, and van Norden (1996) examines regime-switching in foreign exchange.
Neither of these papers tests a fads model against a bubbles model.
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accentuate mean reversion.28 Whether finance or other constraints can explain our results is

another interesting question for future research.

28 There is some empirical evidence to support this idea; see Jog and Schaller (1993).
Woodford (1989) shows that imperfect financial intermediation can lead to non-linear (or even
chaotic) dynamics.
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Table I
The Fads Model: Full Sample (1929-89)

Coefficients bA
t bB

t bC
t

β0 0.0067
(4.015)

0.0047
(2.691)

0.0051
(2.988)

βb -0.0126
(-2.079)

-0.0117
(-2.122)

-0.0077
(-2.547)

βq0 -1.1983
(-7.511)

-1.1951
(-7.469)

-1.1747
(-7.354)

σS 0.0392
(21.198)

0.0393
(20.919)

0.0390
(20.535)

σC 0.1278
(8.526)

0.1289
(8.460)

0.1274
(8.574)

Joint Test 16.32
(0.0010)

10.82
(0.0127)

4.02
(0.2598)

The coefficients are estimated from a switching regression of the form represented by
equations (10)-(12). The figures in parentheses below the point estimates are t-statistics
calculated using the inverse of the Hessian. The headings bA

t , bB
t , and bCt refer to three

different measures of apparent deviations from fundamental price that are described more
fully in Subsections A, B, and C of Section IV, respectively. The Joint test takes the general
switching regression represented by equations (39)-(41) as the null hypothesis and the
coefficient restrictions in equations (42)-(44) as the alternative hypothesis; the likelihood-ratio
statistic is distributedχ2 with three degrees of freedom. The marginal significance levels (p-
values) are in parentheses below the Joint test statistics. The switching regression is estimated
using the maxlik procedure in GAUSS with a combination of BFGS and BHHH algorithms.
For bA

t , the sample period is 1927-89, because lagged data are not required for the VARs
(which are used to construct bB

t and bCt ).
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Table II
The Fads Model: 1929-45

Coefficients bA
t bB

t bC
t

β0 0.0085
(1.763)

0.0043
(0.730)

0.0007
(0.090)

βb 0.0056
(0.405)

-0.0003
(-0.017)

-0.0067
(-0.697)

βq0 -0.7387
(-2.427)

-0.7342
(-2.426)

-0.7508
(-2.301)

σS 0.0482
(7.643)

0.0513
(9.034)

0.0517
(7.730)

σC 0.1490
(5.993)

0.1538
(5.509)

0.1540
(5.611)

Joint Test 12.65
(0.0055)

5.60
(0.1329)

4.02
(0.2596)

See the notes to Table I. For bA
t , the sample period is 1927-45, because lagged data are

not required for the VARs (which are used to construct bB
t and bCt ).
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Table III
The Fads Model: 1946-72

Coefficients bA
t bB

t bC
t

β0 0.0084
(3.742)

0.0066
(3.065)

0.0057
(2.562)

βb -0.0180
(-2.462)

-0.0153
(-2.380)

-0.0092
(-2.480)

βq0 -0.2525
(-0.044)

-0.2925
(-0.057)

-0.1803
(-0.025)

σS 0.0338
(2.607)

0.0338
(2.787)

0.0340
(2.209)

σC 0.0405
(2.108)

0.0408
(2.139)

0.0398
(1.931)

Joint Test 18.79
(0.0003)

19.09
(0.0003)

17.56
(0.0005)

See the notes to Table I.
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Table IV
The Fads Model: 1973-89

Coefficients bA
t bB

t bC
t

β0 0.0044
(1.396)

-0.0010
(-0.296)

0.0246
(2.897)

βb -0.0493
(-2.333)

-0.0424
(-2.364)

-0.0711
(-2.781)

βq0 -0.7714
(-1.531)

-0.7795
(-1.573)

-0.6324
(-1.617)

σS 0.0360
(8.098)

0.0360
(8.240)

0.0337
(8.983)

σC 0.0759
(4.666)

0.0763
(4.681)

0.0741
(5.727)

Joint Test 4.04
(0.2570)

8.38
(0.0388)

1.41
(0.7031)

See the notes to Table I.
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Table V
The Bubbles Model: Full Sample (1929-89)

Coefficients bA
t bB

t bC
t

βS0 0.0074
(4.087)

0.0053
(2.818)

0.0059
(3.228)

βSb -0.0136
(-1.976)

-0.0117
(-1.926)

-0.0071
(-2.239)

βC0 -0.0294
(-1.402)

-0.0386
(-1.572)

-0.0253
(-1.349)

βCb -0.0554
(-1.361)

-0.0757
(-1.553)

-0.0397
(-1.374)

βq0 -1.7660
(-6.181)

-1.6593
(-5.872)

-1.3227
(-4.815)

βqb 1.7132
(3.071)

1.2068
(2.459)

0.2396
(0.800)

σS 0.0406
(19.645)

0.0407
(19.812)

0.0394
(18.165)

σC 0.1338
(7.463)

0.1340
(7.475)

0.1271
(7.896)

Tests:

βS0=βC0 3.0284
(0.0818)

3.1647
(0.0753)

2.7031
(0.1002)

βSb=βCb 0.9870
(0.3205)

1.6602
(0.1976)

1.2256
(0.2683)

βS0=βC0 and
βSb=βCb

3.3819
(0.1844)

3.6452
(0.1616)

3.3148
(0.1906)

The coefficients are estimated from a switching regression of the form represented by
equations (30)-(32). The figures in parentheses below the point estimates are t-statistics
calculated using the inverse of the Hessian. The headings bA

t , bB
t , and bCt refer to measures of

apparent deviations from fundamental price; see Subsections A, B, and C of Section IV,
respectively. The first two tests are based on Wald statistics using the inverse of the Hessian
and are asymptotically distributedχ2 with one degree of freedom. The third test is based on a
likelihood-ratio statistic and is asymptotically distributedχ2 with two degrees of freedom.
Marginal significance levels are listed below the test statistics. The estimation uses the maxlik
procedure in GAUSS with a combination of BFGS and BHHH algorithms.
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Table VI
The Bubbles Model: 1929-45

Coefficients bA
t bB

t bC
t

βS0 0.0110
(1.775)

0.0048
(0.675)

0.0065
(0.372)

βSb 0.0128
(0.685)

0.0037
(0.217)

-0.0002
(-0.012)

βC0 -0.0427
(-1.297)

-0.0543
(-1.068)

-0.0677
(-1.263)

βCb -0.0741
(-1.361)

-0.1046
(-1.232)

-0.0965
(-1.374)

βq0 -1.3388
(-2.773)

-1.3917
(-2.701)

-0.8444
(-0.682)

βqb 1.8821
(2.341)

1.1490
(1.664)

0.1985
(0.239)

σS 0.0497
(6.712)

0.0561
(9.065)

0.0510
(2.951)

σC 0.1471
(5.231)

0.1676
(4.918)

0.1462
(2.820)

Tests:

βS0=βC0 2.6087
(0.1063)

1.3002
(0.2542)

2.5374
(0.1112)

βSb=βCb 2.1674
(0.1410)

1.5069
(0.2196)

2.1955
(0.1384)

βS0=βC0 and
βSb=βCb

2.6476
(0.2661)

1.5829
(0.4532)

2.7798
(0.2491)

See the notes to Table V. For bA
t , the sample period is 1927-45, because lagged data

are not required for the VARs (which are used to construct bB
t and bCt ).
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Table VII
The Bubbles Model: 1946-72

Coefficients bA
t bB

t bC
t

βS0 0.0324
(6.849)

0.0304
(7.146)

0.0296
(7.164)

βSb -0.0268
(-2.852)

-0.0237
(-2.824)

-0.0142
(-2.115)

βC0 -0.0013
(-0.300)

-0.0030
(-0.722)

-0.0036
(-0.881)

βCb -0.0149
(-1.439)

-0.0132
(-1.264)

-0.0104
(-1.782)

βq0 0.6634
(1.500)

0.5406
(1.351)

0.4315
(1.120)

βqb -0.3029
(-0.218)

0.1632
(0.151)

0.4462
(0.628)

σS 0.0161
(4.784)

0.0161
(4.840)

0.0161
(4.998)

σC 0.0382
(17.657)

0.0380
(18.467)

0.0379
(19.116)

Tests:

βS0=βC0 32.1920
(0.0000)

36.9500
(0.0000)

39.5250
(0.0000)

βSb=βCb 0.6562
(0.4179)

0.6187
(0.4315)

0.2066
(0.6494)

βS0=βC0 and
βSb=βCb

9.0357
(0.0109)

6.5806
(0.0372)

12.7790
(0.0017)

See the notes to Table V.
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Table VIII
The Bubbles Model: 1973-89

Coefficients bA
t bB

t bC
t

βS0 0.0036
(0.913)

0.0014
(0.406)

0.0231
(2.095)

βSb -0.0229
(-0.879)

-0.0245
(-1.051)

-0.0630
(-1.991)

βC0 0.0025
(0.146)

-0.0636
(-1.337)

-0.0399
(1.145)

βCb -0.1898
(-1.730)

-0.2431
(-1.765)

-0.1454
(-1.247)

βq0 -1.1542
(-1.685)

-2.4383
(-3.148)

-0.3120
(-0.472)

βqb 1.9339
(0.769)

6.2322
(2.092)

-1.3777
(-0.791)

σS 0.0368
(7.934)

0.0395
(13.825)

0.0345
(9.010)

σC 0.0749
(5.381)

0.0721
(5.553)

0.0758
(5.702)

Tests:

βS0=βC0 0.0034
(0.9535)

1.8828
(0.1700)

0.1747
(0.6760)

βSb=βCb 2.1251
(0.1449)

2.5809
(0.1082)

0.3984
(0.5279)

βS0=βC0 and
βSb=βCb

3.1280
(0.2093)

4.9634
(0.0836)

0.6708
(0.7151)

See the notes to Table V.



19
30

19
35

19
40

19
45

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

B
ub

bl
e 

M
od

el
F

ad
s 

M
od

el

F
ig

ur
e 

1
P

ro
ba

bi
lit

y 
of

 a
 C

ra
sh



19
30

19
35

19
40

19
45

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

B
ub

bl
e 

M
od

el
F

ad
s 

M
od

el

F
ig

ur
e 

2
P

ro
ba

bi
lit

y 
of

 a
 R

al
ly



Bank of Canada Working Papers

1997

97-1 Reconsidering Cointegration in International Finance:
Three Case Studies of Size Distortion in Finite Samples M.-J. Godbout and S. van Norden

97-2 Fads or Bubbles? H. Schaller and S. van Norden

1996

96-2 Decomposing U.S. Nominal Interest Rates into Expected Inflation
and Ex-Ante Real Interest Rates Using Structural VAR Methodology P. St-Amant

96-3 Regime-Switching Models: A Guide to the Bank of Canada Gauss S. van Norden and
Procedures R. Vigfusson

96-4 Overnight Rate Innovations as a Measure of Monetary Policy Shocks J. Armour, W. Engert
in Vector Autoregressions and B. S. C. Fung

96-5 A Distant-Early-Warning Model of Inflation Based on M1 Disequilibria J. Armour, J. Atta-Mensah,
W. Engert and S. Hendry

96-6 Provincial Credit Ratings in Canada: An Ordered Probit Analysis S. Cheung

96-7 An Econometric Examination of the Trend Unemployment Rate in Canada D. Côté and D. Hostland

96-8 Interpreting Money-Supply and Interest-Rate Shocks as Monetary-Policy Shocks M. Kasumovich

96-9 Does Inflation Uncertainty Vary with the Level of Inflation? A. Crawford and M. Kasumovich

96-10 Unit-Root Tests and Excess Returns M.-J. Godbout and S. van Norden

96-11 Avoiding the Pitfalls: Can Regime-Switching Tests Detect Bubbles? S. van Norden and R. Vigfusson

96-12 The Commodity-Price Cycle and Regional Economic Performance
in Canada M. Lefebvre and S. Poloz

96-13 Speculative Behaviour, Regime-Switching and Stock Market Crashes S. van Norden and H. Schaller

96-14 L’endettement du Canada et ses effets sur les taux d’intérêt réels de long terme J.-F. Fillion

96-15 A Modified P*-Model of Inflation Based on M1 J. Atta-Mensah

Earlier papers not listed here are also available.

Single copies of Bank of Canada papers may be obtained from
Publications Distribution, Bank of Canada, 234 Wellington Street Ottawa, Ontario  K1A 0G9

E-mail: publications@bank-banque-canada.ca
WWW: http://www.bank-banque-canada.ca/
FTP: ftp.bank-banque-canada.ca (login: anonymous, to subdirectory

/pub/publications/working.papers/)


