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Abstract

Work on testing for bubbles has caused much debate, much of which has focussed on
methodology. Monte Carlo simulations reported in Evans (1991) showed that standard
tests for unit roots and cointegration frequently reject the presence of bubbles even when
such bubbles are present by construction. Evans referred to this problem as the pitfall of
testing for bubbles.

Since Evans' note, new tests for rational speculative bubbles that rely on regime-switching
have been proposed. Van Norden and Schaller (1993) and van Norden (1996) use a switch-
ing regression to look for a time-varying relationship between returns and deviations from
an approximate fundamental price. Hall and Sola (1993) and Funke, Hall and Sola (1994)
test whether asset prices seem to switch between explosive growth and stationary behav-
iour.

Our paper reports on Monte Carlo experiments using Evans’ data-generating process to
gauge the performance of these two kinds of regime-switching tests. The experiments rely
heavily on certain new, fast and robust programs developed at the Bank of Canada for the
estimation of switching regression models that make Monte Carlo studies of such estima-
tors practical. We find that for some (but not all) parameter values, regime-switching tests
have a significant amount of power to detect periodically collapsing bubbles. We also
compare and contrast the performance of the two different regime-switching tests.

Résumé

La mise au point de tests de détection des bulles spéculatives a occasionné bien des débats,
principalement sur des points de méthodologie. Evans (1991) a démontré, au moyen de
simulations de Monte-Carlo, que la présence de bulles est fréquemment rejetée par les
tests standard de racine unitaire et de cointégration même quand des bulles ont été incor-
porées à la construction des données. Ce problème constitue, à ses yeux, la pierre
d’achoppement de ce type de tests de détection des bulles.

Depuis la parution de l’article d’Evans, on a proposé de nouveaux tests de détection des
bulles spéculatives rationnelles qui s’appuient sur un changement de régime. van Norden
et Schaller (1993) et van Norden (1996) ont eu recours à une régression avec changement
de régime afin d’établir s’il existe une relation, variable dans le temps, entre les rende-
ments et les écarts observés par rapport à un prix fondamental approximatif. De leur côté,
Hall et Sola (1993) et Funke, Hall et Sola (1994) ont cherché à déterminer si le prix des
actifs oscille entre une croissance explosive et un état stationnaire.

Dans la présente étude, les auteurs évaluent la puissance de ces deux types de tests au
moyen de simulations de Monte-Carlo; ils emploient pour cela le processus générateur de
données qu’utilise Evans. Leurs simulations font appel aux nouveaux programmes rapides
et éprouvés mis au point à la Banque du Canada pour l’estimation des modèles de régres-
sion avec changement de régime, lesquels rendent possible l’étude de tels estimateurs au
moyen de simulations. Les auteurs constatent que pour certaines valeurs paramétriques
(mais pas pour toutes), les tests de régression avec changement de régime sont suffisam-
ment puissants pour déceler les bulles qui s’effondrent périodiquement. Enfin, ils compar-
ent la performance des deux tests afin d’en faire ressortir les similarités et les différences.
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1.0  Introduction

Work on testing for rational speculative bubbles in financial markets has prompted much
debate, much of which has focussed on methodology. Early work used variance-bound
tests, until various econometric problems with this approach were noted (see LeRoy
1989). The misspecification test suggested by West (1987) has fallen out of favour, since
misspecified fundamentals should cause it to detect bubbles and there is little agreement
on how to specify the fundamentals. (For example, see Flood and Hodrick 1990.) Diba
and Grossman (1988) and Hamilton and Whiteman (1985) recommend the use of tests for
stationarity and for cointegration to test for the absence of rational speculative bubbles.
However, Monte Carlo simulations reported in Evans (1991) show that standard tests for
unit roots and cointegration frequently reject the presence of bubbles even when such bub-
bles are present by construction.1 Evans refers to this problem as the “pitfall” of testing for
bubbles.

Since Evans' note, new tests for rational speculative bubbles that rely on regime-switching
have been proposed. Van Norden and Schaller (1993a, 1993b) and van Norden (1996) use
a switching regression to look for a time-varying relationship between returns and devia-
tions from an approximate fundamental price. Hall and Sola (1993) and Funke, Hall and
Sola (1994) test whether asset prices seem to switch between explosive growth and sta-
tionary behaviour.

A potential flaw of this new approach is that the regime-switching estimators may not be
well behaved. There are two plausible grounds for concern.2

• The presence of rational speculative bubbles implies that the data are non-stationary,
but the properties of regime-switching estimators in this instance are unknown. Since
this non-stationarity exists only under the alternative hypothesis of bubbles, this raises
the question of whether the regime-switching tests have the power to detect bubbles
when they exist. This is similar to the pitfall that Evans (1991) found with the unit-root
and cointegration tests.3

• Little is known about the finite-sample properties of regime-switching estimators. In
particular, little has been done to determine whether the use of tests whose distribution
is known only asymptotically leads to reliable inference. It is conceivable that asymp-
totically correct tests could experience size distortion in small samples, which would
tend to produce evidence of speculative bubbles even when none is present.

1. Charemza and Deadman (1995) show that this problem extends to a broader range of processes than those
considered by Evans (1991).

2. The problems of directly testing for the presence of regime-switching have recently become better under-
stood. However, both of the above approaches circumvent these complications by testing a regime-switching
alternative against a regime-switching null.

3. Both problems could lead us to conclude that bubbles are absent when they are in fact present. The differ-
ence is that, with the cointegration and unit-root tests, this result is caused by size distortion while with the
regime-switching tests it is caused by a lack of power. This difference arises because the two kinds of tests
reverse the null and alternative hypotheses.
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Our paper is a first step in addressing these questions. We examine the power properties of
regime-switching bubble tests by carrying out Monte Carlo experiments using Evans’
data-generating process (DGP). Our work relies on certain new, fast and robust programs
developed at the Bank of Canada (van Norden and Vigfusson 1996) for the estimation of
switching regression models that make Monte Carlo studies of such estimators practical.
We find that for some (but not all) parameter values, regime-switching tests have signifi-
cant amount of power to detect periodically collapsing bubbles. We are also the first to
compare and contrast the performance of the two different kinds of regime-switching
tests.

In the following section, we explain the relationship between speculative bubbles and
regime-switching, and then review the tests proposed by Hall and Sola and by van Norden.
Section 3 explains the design of our Monte Carlo experiments, and their results are dis-
cussed in Section 4. Section 5 concludes and gives several suggestions for further
research.

2.0  Tests for Rational Speculative Bubbles

This section has three goals. We first describe what a bubble is. We next describe the two
regime-switching tests used in this paper to detect bubbles. Finally, we compare the two
tests looking for similarities and differences.

2.1  Bubbles and Regime-Switching

Consider a simple asset-pricing model, which only requires that

(EQ 1)

where  is the logarithm of the asset price,  is the operator for expectations conditional

on information at timet, , and  is a vector of other variables. Solving the

equation forward gives the general result

. (EQ 2)

One solution to equation (EQ 1), which we will denote , occurs when

, (EQ 3)

so
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. (EQ 4)

We refer to (EQ 4) as the fundamental solution, since it determines the asset price solely as
a function of the current and expected behaviour of other variables.

However, equation (EQ 4) is not the only solution to (EQ 1). We define bubble solutions to
be any other set of asset prices and expected asset prices that satisfy equation (EQ 1) but

where . We define the size of the bubble  as

. (EQ 5)

Note that since  satisfies equation (EQ 1), it follows4 from (EQ 1) and (EQ 5) that

. (EQ 6)

Since , this means the bubble must be expected to grow over time.5

Nothing in the above model has any implications for regime-switching. Some of the early
literature on rational speculative bubbles even considered purely deterministic bubbles.
Regime-switching stems from the descriptions of asset market behaviour (for example,
those surveyed in Kindleberger 1989) to which the above model of bubbles is often
applied. The first example of regime-switching in the rational speculative bubble frame-
work is Blanchard (1979), who proposes a bubble that moves randomly between two
states,C andS. In stateC, the bubble will collapse, so6

. (EQ 7)

4.  Blanchard (1979) has a more complete derivation of this and subsequent steps found in this section.

5. A considerable literature exists on the conditions under which such bubbles are feasible rational-expecta-
tions solutions. Important contributions to this debate include Obstfeld and Rogoff (1983, 1986), Diba and
Grossman (1987), Tirole (1982, 1985), Weil (1990), Buiter and Pesenti (1990), Allen and Gorton (1991),
and Gilles and LeRoy (1992). In single-representative-agent models, a truly rational agent cannot expect to
sell an over-valued asset (one with a positive bubble) before the bubble bursts. Therefore, bubbles should
exist in such models only if they can be expected to grow without limit. Some researchers, such as Froot and
Obstfeld (1991), have therefore suggested interpreting empirical tests for bubbles as tests of whether agents
are fully rational, or whether they instead exhibit some form of myopia when considering events that are
either very far in the future or of very low probability. An alternative interpretation would be to consider evi-
dence of bubbles as suggesting that non-representative-agent models (such as those of De Long et al. 1990,
Allen and Gorton 1991 or Bulow and Klemperer 1991) are required.

6. The notation  (or ) denotes the expectation of  conditional on the fact that the state
at t is C (or S) and on all other information available at timet.

pt
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StateS, where the bubble survives and continues to grow, occurs with a fixed probability
q. Since

, (EQ 8)

it follows from (EQ 6) that

(EQ 9)

This model was subsequently generalized by Evans (1991) and van Norden and Schaller
(1993) to consider the case where both the size of collapses and their probability were
functions of the size of the bubble.

The distinguishing feature of these regime-switching models is that the behaviour of the
asset price is now state-dependent, and that the state itself is unobservable. However, these
models may differ in the way the probability of observing a given regime varies over time.
In Blanchard (1979), this is simply a constant. In the van Norden bubble test, the probabil-
ity of observing the collapsing regime is assumed to be an increasing function of the size
of the bubble. In the Hall and Sola test, this probability is assumed to follow a first-order
Markov process, where the probability of remaining in a given regime is constant.7 To dis-
tinguish these two kinds of switching models, we will refer to the case where the probabil-
ity of observing a given state is independent of past states as “simple switching.” In the
case of a two-state model, the simple switching model is simply the special case of the
Markov-switching model where

(EQ 10)

where  is the probability of remaining in statek given that the last

period’s state wask.

2.2  The Hall and Sola Test for Bubbles

As mentioned earlier, Diba and Grossman (1988) suggested using tests for stationarity to
rule out the existence of bubbles. This method could be useful in the case of a non-collaps-
ing bubble but, as shown in Evans (1991), these tests tend to reject the presence of bubbles
when regime-switching bubbles are present. Hall and Sola (1993) address this problem by
extending the standard Augmented Dickey-Fuller (ADF) test

7. As noted by Evans and Lewis (1995), a two-state first-order Markov process is not compatible with (EQ
6). They reconcile this by modifying the usual two-state Markov model to allow for jumps in asset prices
when the regime changes.

Et Bt 1+( ) 1 q–( ) Et Bt 1+ C( )⋅ q Et Bt 1+ S( )⋅+=

Et Bt 1+ S( )
Bt 1 r+( )⋅

q
--------------------------=
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where . (EQ 11)

to allow the parameters to vary between two regimes, giving

where . (EQ 12)

The slope coefficients  and  are the basis of bubble test. Evidence that one regime is

non-stationary (i.e. ) while the other is stationary (i.e. ) indicates the pres-

ence of a bubble. However, one property of switching regressions is that such models are
identified only up to the particular relabeling of parameters that has the effect of swapping
the names of theS andC regimes. This means that one should find either

or .

Our application of the Hall and Sola test (below) will be conducted on artificial data for
the bubble, where the original authors tested asset prices (i.e., the bubble term plus the
fundamental term). Since both must satisfy the same dynamic relationships, this change
should be innocuous. Funke, Hall and Sola (1994) use the Markov-switching ADF test to
find evidence for bubbles in the Polish economy in the late 1980s and early 1990s. Hall
and Sola (1993) performed a brief study of the test’s properties. However, they only esti-
mated a single realization of each of five different data-generating processes, including
Evans bubble process (described below) with the probability of continuing to grow, ,
equal to 0.75.8

2.3  Van Norden Bubble Test

Van Norden (1993) and van Norden and Schaller (1993a, 1993b) modify the Blanchard
model to allow for the possibility that the bubble is expected to collapse only partially in
stateC by replacing (EQ 7) with

(EQ 13)

8. Note that Hall and Sola (1993) multiply the bubble term by twenty in constructing their simulated asset
prices. This implies, unlike the case mentioned above, that their bubble will have a rate of return twenty
times greater than that of the fundamental.
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vt N 0 σ,( )∼
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whereu(.) is a continuous and everywhere differentiable function such that  and

. Hence, the expected size of collapse will be a function of the relative size of
the bubble, , and the bubble is also not expected to grow (and may be expected to

shrink) in stateC. They also suggest that the probability of the bubble’s continued growth
falls as the bubble grows, so that9

(EQ 14)

van Norden (1993) and van Norden and Schaller (1993b) show that a first-order Taylor-
series approximation of this process gives the following two-state switching regression
system10

(EQ 15)

where the model implies that ,  and , and  is the Gaussian

cdf function.11 Again, one property of switching regressions is that such models are iden-
tified only up to a particular renaming of parameters that has the effect of swapping the
names of theS andC regimes. In this case, this equivalence implies that

(EQ 16)

9. Since we will only consider positive bubbles in this paper, the use of the absolute value in the derivative in
(EQ 14) is not strictly necessary.

10. The original model uses the exchange rate innovation  as the dependent variable. This variable in
turn consists of innovations in fundamentals  and innovations in the bubble. Hence

. If we assume that in this model  and use (EQ 6) then
. Since r is small, the use of  as the dependent variable is a good approximation of

the earlier model.

11. This model differs trivially from that considered in van Norden (1993) and van Norden and Schaller
(1993). The former assumed that  was the logistic cdf rather than the Gaussian. Both papers also used
slightly different classifying equations (using either  or ) to allow for the possibility of negative bub-
bles.
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where llf() is the log-likelihood function, indicating that these alternative parameteriza-
tions cannot be distinguished without additional information. The van Norden bubble
model implies that one should find either [ , , ] or [ ,

, ].

In addition to testing the above restrictions implied by the bubble model, van Norden
(1993) and van Norden and Schaller (1993a,b) test whether the bubble-motivated switch-
ing regression model gives significantly more information about the behaviour of ,

than two simpler models.12 Significant evidence of bubbles requires that the switching
regression model can reject these simpler models. One of these is the normal-mixture
model (NM)

. (EQ 17)

which is simply the special case of (EQ 16) where . A rejection of this

null hypothesis implies that there is a significant link between  and the behaviour of the

mixing distributions, because it captures shifts either in their means, or in their mixing
probabilities, or in both.13

(EQ 16) also nests the linear regression model as the special case where
,  and , giving the error contamination model (EC)14:

. (EQ 18)

Any rejection of this model can be interpreted as evidence of non-linear predictability in
asset prices. Note that if the variances differ across the two regimes, all parameters will be
identified under the null.

12. van Norden (1993) also considers a third model. Since it nests within the normal-mixture model, rejec-
tions of the normal-mixture model imply a rejection of the third model.

13. van Norden (1993) also notes the relationship of the time-varying transition probabilities to Markov-
mixture models. Schaller and van Norden (1994) consider generalizations of (EQ 16) to allow for Mark-
ovian state-dependent transition probabilities.

14. We also examined a similar model where we drop the restriction that . We found that this model
was on average somewhat more problematic to estimate and more likely to statistically reject than the two
models considered above.

βS 0> βC 0< η 0< βS 0<

βC 0> η 0>
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Van Norden and Schaller (1993a) use this test framework to show evidence of bubbles in
monthly returns from the Toronto Stock Exchange. Van Norden (1996) looks for evidence
of bubbles in post-Bretton-Woods floating exchange rate data, and van Norden and
Schaller (1993b) examine the behaviour of NYSE monthly stock returns from 1926 to
1989. The latter paper also presents extensive analysis on whether regime-switching in
fundamentals can account for the evident regime-switching in stock returns.

2.4  Comparing Hall and Sola’s Test with van Norden’s Test

By comparing the last two sections, the reader can see that the Hall and Sola test and the
van Norden test show some important similarities and differences in both parts of the
regime-switching model: the level equations and the transition equations. Each of the two
level equations gives the relationship between the observable dependent and explanatory
variables for a particular regime. The transition equations give the probability of being in
the current regime at a given period of time.

When both tests have the same dependent variable (i.e.,  for all t) the level equa-

tion of van Norden’s test (EQ 15) is a simpler version of the level equation of Hall and
Sola’s test (EQ 11) where  for all i and k. In applications of these tests, several

different kinds of dependent variable have been examined. Funke, Hall and Sola (1994)
used the actual changes in asset prices and the residuals from a regression of fundamentals
on the assets. The van Norden test has been applied to excess returns on exchange rates
and the rates of returns on stock market indices. Thus the applied researcher can choose
from a number of different transformations when using these switching models. To
abstract from the difficulties of choosing the correct dependent variable, our Monte Carlo
study uses only the bubble term as the dependent variable; therefore, the level equations of
the two tests are similar.

The transition equations, however, are not necessarily the same. If van Norden’s coeffi-
cient  equals zero, then the van Norden test becomes a constant probability simple
switching model. Such a model is a special case of a Markov-switching model, implying
that the van Norden test would then be nested inside of Hall and Sola’s test. However, for
a large majority of the bubbles examined below, estimates of  do not equal zero. Hence,
the tests are not nested.

Not being nested doesn’t mean that the tests are unrelated. For the Hall and Sola test, the
probability of being in a given regime is dependent on an unobserved state variable that
follows an AR(1) process with the autoregressive coefficient  equal to

(Hamilton 1989). In the van Norden

test, the probability of being in a given regime is dependent on the level of the observed
variable . As  usually shows positive serial correlations, the dynamics of the two

models can be quite similar.

Bt yt=

ψi k, 0=

η

η

ρ
Pr St S St 1– S==( ) Pr St C St 1– C==( ) 1–+

Bt Bt
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The theory on bubbles is ambiguous on how the probability of collapse should be mod-
elled. The degree of uncertainty on how to model these transition probabilities suggests
that either model may be useful. One could test which model would be more appropriate
by estimating a Markov-switching model where the transition probabilities were depen-
dent on the size of the bubble. This non-constant transition probability Markov-switching
model would encompass the other two models, but estimating such a model could prove
difficult.15

3.0  Experimental Design

As we noted in the introduction, the purpose of this paper is to examine the behaviour of
regime-switching bubble tests described in the preceding section. Specifically, we want to
use Monte Carlo experiments to evaluate the power of the tests and to compare the two
testing methodologies. This involves specifying a data-generating process that creates
bubbles, generating multiple time series from this process, estimating the regime-switch-
ing models and applying the tests described above. All of our estimation is done by maxi-
mum-likelihood methods using the programs documented in van Norden and Vigfusson
(1996).16

We decided to use various parameterizations of the Evans’ (1991) bubble model as our
data-generating process. This choice has several attractive features. First, the problems of
unit-root and cointegration-based tests on this data set are well-documented, facilitating a
comparison of the regime-switching tests with earlier tests.17 Second, Charemza and
Deadman (1995) study the performance of the earlier tests on other data-generating pro-
cesses and reach conclusions broadly similar to those of Evans, suggesting that the Evans
process might not produce atypical results. Third, as we explain below, the Evans model is
not precisely nested within either the Hall and Sola or the van Norden bubble testing mod-
els. We think this introduces an interesting amount of misspecification into the experimen-

15. The Bank of Canada procedures likelihood function is written to handle a time-varying Markov-switch-
ing model, but the EM algorithm included in the procedures cannot estimate such a model. Diebold, Lee,
and Weinbach (1994) describe an EM algorithm that could be used in such a case.

16. We made minor modifications to the code to improve its ability to find convergent solutions for hard-to-
fit data sets. We improved the error-trapping in the original programs, and when both gradient-based and
EM-based maximization strategies seemed to be failing, we used a few iterations of a simple simulated
annealing procedure to get new starting values for maximum likelihood estimation.

17. Hooker (1996) uses the Evans DGP to examine a bubble test proposed by Durlaf and Hooker (1994) that
differs from the regime-switching tests in testing both for specification error and for a bubble term separately
and sequentially. Hooker conducts Monte Carlos for both the size and power of the tests. For the Evans DGP,
the test performs well for all values of  with the percentage of correct detections ranging from 55 to 45 per
cent, and decreasing slightly with . Since the regime-switching tests are better with lower values of , as
shown in the next section, these two kinds of tests may be considered complementary.

Our results and Hooker’s results, however, are not directly comparable. Here we test the bubble series alone.
Hooker tests an I(2) series where fundamentals and bubble are combined. Furthermore, the parameter values
used by Hooker differ from those used by Evans and by us.

π
π π
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tal design and may give a better indication of how the tests are likely to perform when
confronted with real data that may not nest perfectly within either model. We also felt that
it offered a neutral “middle ground” on which to compare the performance of the two
tests.

As we noted in Section 2.0, the Evans model is a generalization of the Blanchard (1979)
model where both the size of collapses and their probability are functions of the size of the
bubble; it incorporates partial rather than total collapses and sets the probability of col-
lapse equal to zero when .

Initially the bubble grows at an average rate 1+r, but the realized rate of growth differs
from the expected value by serially uncorrelated mean zero errors. We will refer to this
phase of steady expected growth as Regime G. Once the bubble’s size reaches a threshold
level of , its behaviour changes. It continues to grow at an expected rate of 1+r but there

is now a probability  of collapse to a level  (Regime C). To compensate, if the bub-
ble does not collapse (Regime E) it is expected to grow at a rate greater than .

This model can be written as;

(EQ 19)

where  and  are positive parameters with ,  is an exogenous indepen-

dently and identically distributed strictly positive random variable with  and

 is an exogenous independently and identically distributed Bernoulli process that takes

the value 1 with probability  and 0 with probability . Evans’ bubble satisfies (EQ
6).

There are two points to note about this model. First, since  is strictly positive, the bubble
will never change sign and will never entirely vanish. Second, Regime G is only distin-
guished from the mixture of the other two regimes by the distribution of innovations in the
bubble. For a particular distribution of , the innovations in the mixture of Regimes C and
E will simply appear to be more volatile than in G.

Bt α≤

α
1 π– δ

1 r+

Bt 1+ 1 r+( )Btut 1+= ForBt α≤

Bt 1+ δ θt 1+ π 1–
+ 1 r+( ) Bt δ 1 r+( )–

1–( )( )ut 1+= ForBt α>

α δ δ 1 r+( )α< ut
Etut 1+ 1=

θt

π 1 π–

ut

ut
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For estimation, we rewrite (EQ 19) in first differences as

(EQ 20)

For our Monte Carlo experiments, we generate 5000 draws of the above process with 100
observations. We use the same parameter values as Evans, setting , ,

, , and  where  and . We

allow the probability of the bubble continuation, , to vary over the same interval as
Evans: [0.999,0.25].

To simplify estimation, all data series were standardized to have a mean of zero and a vari-
ance of one. (For graphing, they were also centered at (0,0).) The relationship between

 and  can be seen in Figure 1. At high levels of  the graph appears to be composed
of two branches. The left branch corresponds to State C, where the bubble collapses, and
the right with States G and E, where the bubble continues to grow. As  decreases, State
G becomes more distinct from State E. State G can be identified as the large mass centered
at 0 on the horizontal axis. It is most prominent when . The decrease in  also
causes a change in the slopes of the two branches. This is because the growth rate in State
E increases as  decreases. This increase in the growth rate results in the decline in the
slope of the right branch.

G

E

C

Bt∆ 1 r+( )ut 1–{ }Bt 1–=

Bt∆ 1 r+( )
π----------------ut 1–

 
 
 

Bt 1–

π 1–( )δut

π-----------------------+=

Bt∆ δut B–
t 1–

=

ForBt 1– α≤

ForBt 1– α andθt> 1=

ForBt 1– α andθt> 0=

r 0.05= α 1=

δ 0.5= B1 δ= ut exp yt
τ2

2
-----– 

 = yt IIN 0 τ2,( )∼ τ 0.05=

π

Bt∆ Bt π

π

π 0.25= π
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FIGURE 1.

π 0.99= π 0.95=

π 0.85= π 0.75=

π 0.50= π 0.25=
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4.0  Monte Carlo Results

4.1  Overview of Results

The two regime-switching tests frequently detect bubbles that the unit-root tests incor-
rectly reject. When comparing regime-switching with unit-root tests, one must remember
that the nulls of the two kinds of tests are opposite. One might think that because critical
values are chosen to minimize false rejections of the null that the unit-root tests should
detect bubbles more often since their null hypothesis is that a bubble exists. As seen in
Table 1, this is clearly not the case.

The relationship between the value of  and the ability to detect bubbles varies among the

different tests. For values of  less than 0.99, the Bhargava (1986)  and  unit-root

tests frequently and incorrectly reject the null of a bubble in favor of a stationary stable
alternative.18 The van Norden test does best when  equals 0.75 and does a poorer job for
other values. The Hall and Sola test detects more bubbles than van Norden according to
the t-tests for all values of  except when  equals 0.75.

The following sections give more details on our results. The next section discusses the dif-
ficulties experienced in trying to get the maximum-likelihood estimation methods to con-
vergence. Following sections discuss each test individually. We then look at the added
information each test provides, followed by conclusions.

18. The greatest difference between a percentage that we report and Evans is less than 5 per cent.

TABLE 1. Summary Table: Ability of Tests to Detect Bubbles

Test 0.999 0.99 0.95 0.85 0.75 0.50 0.25

Bhargava N1 rejection in favor of
explosive alternative

78.5 32.5 0 0 0 0 0

rejection in favor of
stable alternative

0 1 65.5 94.6 98 100 100

Bhargava N2 rejection in favor of
explosive alternative

95 58 15 4.5 2 1 0

rejection in favor of
stable alternative

0 1 18.5 90 94.5 97 97

van Norden correct signs 8 89.5 82.5 96 99 89.5 95

t-test 1 5 16 48.5 77 28.5 3

Hall & Sola correct signs 39.5 67.5 78.5 83.5 83.5 71

t-test 25 50 64 64 58 35

π
π N1 N2

π

π π
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4.2  Convergence

A standard problem in performing Monte Carlo or other simulation experiments with iter-
ative estimators is that some fraction of the estimates will typically fail to converge. This
in turn puts limits on the confidence we should attach to our experimental results. Fortu-
nately, this was not a serious problem in practice. Table 2 shows that for the Hall and Sola
test, we achieved convergence for 90 per cent or more of the simulated data sets, regard-
less of the parameterization of the DGP considered. For the van Norden test, we needed to
estimate as many as three switching models on each data sample. Fortunately, conver-
gence rates were generally higher than for the Hall and Sola model, as shown in Table 2.
We also occasionally have the problem that the restricted models give values of the higher
likelihood function than the unrestricted model (which may reflect false convergence or
the presence of multiple local maxima). As shown in Table 3, this problem was also rare,
except when . (We explore the case where  in greater detail below.) In all
subsequent tables, the reported fraction of cases in which bubbles were detected counts as
non-detection cases whether some models failed to converge and cases where restricted
models gave the highest values of the likelihood function.

a. The Hall and Sola test has not been done for .

TABLE 2. Percentage of Draws that Failed to Converge: Hall and Sola (HS) van Norden
(vN,NM,EC)

0.999 0.99 0.95 0.85 0.75 0.50 0.25

Hall & Sola (HS) NAa 7.60 10.78 4.80 3.40 3.46 10.42

van Norden (vN) 3.32 5.32 3.30 3.82 4.62 4.82 2.92

Normal Mixture (NM) 0.92 3.56 1.74 1.22 0.90 0.58 0.58

Error Contamination (EC) 3.4 4.42 3.78 2.78 3.38 2.92 2.76

vN & NM 0.14 0.62 0.06 0.18 0.12 0.08 0.02

vN & EC 0.52 0.46 0.36 0.64 0.50 0.18 0.22

NM & EC 0.06 0.22 0.32 0.18 0.18 0.08 0.06

NA 11.98 13.78 8.32 7.880 8.160 13.06

HS & vN NA 1.00 0.34 0.32 0.16 0.18 0.32

TABLE 3. Percentage of Draws with Restricted LLF Greater than Unrestricted: van Norden

0.999 0.99 0.95 0.85 0.75 0.5 0.25

NM > vNa 1.122 0.4862 0.04138 0.2080 5.789 88.33 2.514

EC > vN 6.594 3.974 1.179 1.414 8.578 87.87 2.267

π 0.5= π 0.5=

π

π 0.999=

HS vN∪

π
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4.3  Hall and Sola Test

We consider our results for the Hall and Sola test using two different levels of rigour. First,
we examine whether the switching model gets the signs of the two autoregressive coeffi-
cients right. (Note that the two regimes were normalized by setting Regime 1 to be the
regime with the greater slope coefficient.) Next, we test whether these estimates are signif-
icantly different from zero. We also do a Wald test to see whether the two coefficients are
jointly different from each other.

The relationships between these tests can be seen in Figure 2. The test of the coefficient
signs is equivalent to the entire area either right of the Y-axis or below the X-axis. The t-
statistics restricts this area to right of the YT-line or below the XT-axis. Testing to see that
they are both the right signs reduces the area to just the bottom quadrant below the X-axis
and right of the Y-axis. Using the t-statistics reduces the area to the area of C+D. Finally
using the Wald Test eliminates area C leaving only D. Results for these tests are reported
in Table 4.

FIGURE 2.

The individual tests (Table 4) show considerable power to detect bubbles. The autoregres-
sive coefficients are significantly different 40-70 per cent of the time, and the individual
coefficients are significantly different from zero and have the correct sign even more fre-
quently (with one exception.) The test seems to have the greatest power when the proba-
bility of the bubble surviving is around 80 per cent. At the highest probabilities, the
estimated coefficient in the collapsing regime performs poorly, perhaps because so few
collapses would be observed in a sample of 100 observations. At the lowest probabilities,

a. The NM > vN etc. are those draws that returned likelihood function values
higher for the restricted model than the unrestricted case.The two restricted
models are the Normal Mixture model (NM) and the Error Contamination
model (EC).

A

C

B1

B2

D

β1

β2

YT

XT

Wald
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the estimated coefficient in the surviving regime performs poorly (presumably for differ-
ent reasons).

The joint test results (Table 5) also show that the bubble test is most successful for mid-
range levels of . If we simply require that the estimated autoregressive coefficients have
the correct signs, then we find evidence of bubbles 40-80 per cent of the time. Even the
most stringent tests, which require that all the coefficients are both statistically different
from zero and from each other, find significant evidence of bubbles as much as 43 per cent
of the time. However, it should be noted that this power again drops off considerably as
approaches 0 or 1.

TABLE 4. Percentage of Draws Passing Single Test

Regime 1 Explosive Regime 2 Stable or Collapsing Regimes not Equal

Wald Test

0.25 88.77 46.13 82.21 65.24 50.17

0.50 93.76 68.95 89.60 71.00 65.07

0.75 94.04 76.15 89.50 75.18 67.43

0.85 95.97 84.58 82.52 71.20 66.45

0.95 98.25 84.90 69.46 53.75 53.22

0.99 98.93 89.78 40.38 27.32 42.29

π β 0> t-stat 2> β 0< t-stat 2–<

π

π
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.

4.4  Van Norden Bubble Test

Table 6 shows the results of the likelihood ratio tests for bubbles, which compare the fit of
the regime-switching model (vN) (EQ 15) to that of the two simpler models NM (EQ 17)
and EC (EQ 18). For both high and low values of , the nulls are almost always rejected
in favor of the switching model. (Remember that those draws where the restricted models
had likelihood function values greater than the unrestricted models were included as non-
rejections of the null! Including these draws did not have a great effect on the rejection
rates except for .) However, the case where  stands out as an important
exception. Here, there were very few rejections of the null, reflecting the very high (over
85 per cent) frequency with which the restricted models gave higher values of the likeli-
hood function than the unrestricted model.

TABLE 5. Percentage of Draws Passing Multiple Tests

Regime 1 Explosive and
Regime 2 Stable or Collapsing

Regime 1 Explosive
Regime 2 Stable or Collapsing

and Regimes Not Equal

0.25 70.98 34.78 35.72 17.26

0.50 83.36 57.97 54.63 37.79

0.75 83.54 63.79 55.94 42.51

0.85 78.49 64.37 52.48 42.82

0.95 67.70 50.16 36.44 27.03

0.99 39.30 24.91 15.96 10.10

π
β 0>
β 0<

t-stat 2>
t-stat 2–<

β 0>
β 0<

Wald Test

t-stat 2>
t-stat 2–<
Wald Test

π

π 0.5= π 0.5=
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We next examine the parameters of our estimated model (Table 7). To avoid the identifica-
tion problem noted in (EQ 16), the parameters are normalized by setting Regime 2 as the
regime with the greater slope coefficient.The bubble model therefore implies that one
should find[ , , ].

When  or  we may never observe a bubble collapse in our relatively
small sample of 100 observations. This could cause the estimates to miss the behaviour of
Regime C, so that the two regimes in the regime-switching model would be based upon
the slight difference between Regimes E and G. This is consistent with the Monte Carlo
results. Using the median of the distribution, we find  and  except for

.

As shown in Table 8, the t-statistics also provide evidence of bubbles. Independent of the
level of , Regime 2 usually has significantly positive slope and intercept terms, while the
slope term in the equation for the probability of being in Regime 1 is usually (correctly)

TABLE 6. Adjusted LR Tests.Percentage Rejections

Restriction NM EC

5% 1% 5% 1%

.999 98.03 97.45 91.47 90.62

.99 99.24 98.90 94.97 93.81

.95 99.96 99.96 98.45 97.66

.85 99.73 99.73 98.02 97.44

.75 91.00 89.26 87.44 84.92

.5 11.46 11.40 12.01 11.96

.25 97.49 97.49 97.73 97.73

TABLE 7. Median Value of Parameters

.999 .99 .95 .85 .75 .5 .25

Parameter

 -0.0023      0.126      0.552      0.468     -0.541     -0.338       1.02

 0.363  0.221     -0.667     -0.941      -1.09     -0.937      -1.03

    0.0971      0.101      0.136      0.174      0.205      0.242     0.0897

 0.749  0.628      0.221      0.339  0.470      0.854     0.0438

 0.211       -1.47       -2.69       -3.11       -3.23       -2.31       -185.

 2.54  2.01  1.76  1.45  1.18  1.10  351.

      1.05       1.24       2.23       2.21     0.0987     0.0567       2.25

     0.154     0.0947     0.0643     0.0726      0.107      0.212     0.0914

π

β1 0< β2 0> η 0>

π 0.999= π 0.99=

β1 0< β2 0>

π 0.999 0.99,{ }=

π

α1
β1
α2
β2
λ
η
σ1
σ2

π
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negative for all values of . However the actual percentage varies greatly. The change in

 greatly affects Regime 1’s slope. At high levels of  the slope is often found to be sig-

nificantly greater than zero. The lack of actual collapses at high levels of  may be

responsible for this failure to detect a collapsing regime. As  decreases, the slope is
found to be significantly less than zero. This corresponds well with the presence of a bub-
ble.

As mentioned earlier, the van Norden test for bubbles consists of testing three coefficients’
signs: , , and . When all three coefficients have the correct sign, the

series is classified as having a bubble. Requiring that the coefficients only have the correct
signs implies that the van Norden test classifies almost all the series as being bubbles for
values of  less than 0.99 (Table 9). Requiring statistical significance causes the level of

detection to drop. The series for which  equals 0.25 sees the greatest decrease. This large

drop is due to the transition equation’s slope coefficient  being statistically significant
only 6 per cent of the time (Table 8).

To better understand the behaviour of the test, we also examined the ex post probability
that an observation was generated by Regime 1 (i.e., the probability conditional on

a. Shaded cells are significantly less than zero and unshaded are significantly greater than
zero. “Significantly” different means that the t-statistic is greater than 2 or less than -2. Both
percentages were calculated for each parameter. The higher percentage is reported.

TABLE 8. Percentage of Draws with Parameters Significantly Different From Zeroa

.999 .99 .95 .85 .75 .5 .25

Parameter

26.17 16.19 7.98 23.1 53.9 81.58 10.28

55.54 47.50 16.9 51.2 84.20 96.00 95.98

36.02 56.98 86.3 96.98 99.56 98.89 98.8

95.8 94.54 96.7 98.33 97.97 93.35 48.83

16.58 44.1 76.9 90.52 94.3 52.35 8.02

47.7 60.4 83.6 91.88 90.7 29.24 6.76

100 99.95 100 99.9 99.9 99.5 100

99.8 99.97 100 100 100 99.9 100

TABLE 9. Joint Bubble Tests  and

0.999 0.99 0.95 0.85 0.75 0.50 0.25

Percentage
of all three
coefficients
being

of the correct
sign

8.294 39.51 82.45 95.59 98.87 89.30 94.93

statistically
significant

0.7478 4.883 16.01 48.40 76.78 28.47 2.824

π
π π

π
π

π

α1
β1
α2
β2
λ
η
σ1
σ2

β1 0< β2 0> η 0<

π
π

η

β1 0< β2 0> η 0<

π
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). We would expect to find many periods classified as growing and few

classified as collapsing. If we identify the collapsing regime with Regime 1 then
this is supported by Figure 3. The smaller the value on the horizontal axis, the
smaller the number of draws that are classified as Regime 1. For  between 0.95

and 0.75, Regime 1 is somewhat infrequent, and at  equal to 0.50 there are a
number of cases where Regime 1 is very frequent and Regime 2 is very infrequent.
The majority of draws lie on the 45 degree line, implying that all the periods are
clearly distinguished between Regimes 1 and 2. Each period has either a very low
or very high probability of being in Regime 1. The exception is when  equals
0.50. Some draws contain a large number of periods whose probability of being in
Regime 1 is neither very high (greater then 0.9), nor very low (less than 0.1). This
may be due to the lack of a separate regime for State G, the growing state, in the
specification.

FIGURE 3.

Bt 1+∆

π
π

π
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4.5  Comparing van Norden and Hall and Sola

Having examined the individual performances of the two tests, we now use the two tests
together. First, we examine how often the tests agree that a bubble is present. Second, we
examine how often one test confirms the presence of a bubble already detected by the
other.

In Table 10, using the least stringent condition that the coefficients are of the correct sign,
bubbles are found over 50 per cent of the time for values of  equal to 0.85 and 0.75. Even
the most stringent test that all the coefficients are statistically significant gives a positive
result more than one third of the time for .

Table 11 shows the marginal benefit of running the second test: the percentage of bubbles
found by test B given that test A has already found a bubble.

Given a positive finding by the van Norden test, the Hall and Sola test is more likely to dis-
agree rather than to agree for all values of . The van Norden is more likely to agree
rather than to disagree for a finding of bubble by the Hall and Sola test only for the cases
where  is equal to 0.85 or 0.75.

5.0  Conclusions

We have examined the ability of two similar but not equivalent regime-switching tests to
detect bubbles when they are present by construction. Both tests are shown to be substan-
tially better than the previously used unit-root tests in detecting bubbles when they are

a. “Agrees” and “finding of a bubble” mean that all three slope coefficients are
statistically significant for the van Norden test and that the t-tests and the Wald
test are statistically significant for the Hall and Sola test.

TABLE 10. Percentage of Draws that Agree with Both Tests

Tests

Hall and Sola van Norden 0.99 0.95 0.85 0.75 0.50 0.25

Correct signs and Wald test correct signs 14.02 33.14 50.74 55.38 49.04 34.18

t-test 1.545 7.172 26.27 43.36 15.05 0.9432

Correct t-tests and Wald
test

correct signs 10.20 24.51 41.58 42.16 33.80 16.59

t-test 1.318 5.661 22.01 33.56 10.34 0.5291

TABLE 11. Percentage of Times Test B Agrees with the Finding of a Bubble by Test Aa

A B 0.99 0.95 0.85 0.75 0.50 0.25

Hall and Sola van Norden 10.94 21.00 51.61 79.00 27.36 3.071

van Norden Hall and Sola 30.85 36.08 45.49 43.80 36.15 17.97

π

π 0.75=

π

π

π
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present by construction. In particular, Evans (1991) showed that unit-root tests may inad-
vertently suggest the absence of bubbles when several regime switches are encountered in
the sample; this seems to be when regime-switching methods have the most power to
detect bubbles.

When used with similar dependent variables, the two regime-switching tests differ in three
ways. First, the Hall and Sola test allows for more complicated dynamics within regimes
by including lagged changes in the asset price. Second, the probability of being in a cer-
tain regime for Hall and Sola depends on last period’s regime, while the same probability
for van Norden’s test depends on last period’s value of the bubble. Third, to the extent that
there are variations in the fundamental value of the asset, the tests use different explana-
tory variables; Hall and Sola use the asset’s price while van Norden uses the difference
between this price and the fundamental prices. These differences in structure result in the
two tests having different abilities to detect bubbles. In this paper, we focussed on the sec-
ond of these three differences, and found that the van Norden test tended to have more
power than the Hall and Sola test for certain values of the probability of the bubble con-
tinuing to grow , but that the power of the Hall and Sola test was less sensitive to the

value of .

Even though the tests are different, we currently cannot say that one test is superior to the
other. The van Norden test did have higher rates of convergence, but convergence is likely
to be more of an issue for a Monte Carlo study than for applied research. To establish
which test, if either, is better would require more work.The power of each test when the
bubble term is measured with serially correlated errors will be an important topic to exam-
ine. Serially correlated errors could likely be the case when applied to actual data. The size
of the tests will also need to be examined. The ability of the regime-switching tests to
detect bubbles when they are present will be of little use to the applied researcher if the
tests also find many false positives.

π
π
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