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Abstract 

This paper studies the asymptotic behaviour of least squares estimates in a stock- 
adjustment model when the variables are nonstationary. The paper first considers the case 
in which the variables are not cointegrated, and then examines the case under 
cointegration. In the case of no cointegration, we find that the least squares estimate of the 
adjustment coefficient is close to zero, independent of its true value. In the case of 
cointegration, it is shown that a transformation can be applied to the model so that the 
resulting instrumental variable estimates will have standard distributions. Economic 
examples are used to illustrate each case and Monte Carlo simulations are performed in 
order to gauge the relevance of the asymptotic results for finite samples. The simulation 
evidence suggests that the asymptotic results are useful approximations in finite samples. 

Résumé 

La présente étude traite du comportement asymptotique des paramètres que l’on obtient en 
estimant par la méthode des moindres carrés un modèle d’ajustement des stocks doté de 
variables non stationnaires. Les auteurs examinent d’abord le cas où les variables ne sont 
pas cointé grées, puis celui où elles le sont. En l’absence de cointégration des variables, 
l’estimation du coefficient d’ajustement obtenue par la méthode des moindres carrés 
avoisine zéro, peu importe la valeur véritable du coefficient. Dans le cas contraire, il est 
possible de transformer le modèle de manière que les estimations obtenues au moyen de 
variables instrumentales aient une distribution connue. Les auteurs illustrent chaque cas 
au moyen d’exemples de nature économique et effectuent des simulations de Monte-Carlo 
afin d’évaluer la pertinence des résultats asymptotiques pour des échantillons finis. À en 
juger par ces simulations, les résultats asymptotiques obtenus constituent des 
approximations utiles lorsque l’échantillon est fini. 
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1 INTRODUCTION 

The stock-adjustment process is frequently used to model the dynamic behaviour of 

economic agents in the presence of costs that do not allow full adjustment within a single period. 

However, when researchers estimate a stock-adjustment model, they often find that the estimated 

adjustment coefficient is “implausibly low” or inconsistent with economic theory. For example, 

stock-adjustment models of money demand, inventory investment and consumer durables have 

often produced very low speeds of adjustment.1 2 Recent attempts to resolve this issue have, in 

general, involved applying different estimation methods. 

In this paper, we explore the implications of nonstationary data for the stock-adjustment 

model. In particular, we study this issue under both the no cointegration and cointegration cases. 

In the case of no cointegration, we find that the least squares (LS) estimate of the adjustment 

coefficient is close to zero, independent of its true value. We also show that the LS estimate of the 

nonstationary regressor in the model tends to zero, but that its t-statistic increases with the sample 

size. The former result differs from the spurious regression model first examined by Granger and 

Newbold (1974) using a set of Monte Carlo experiments and more recently investigated by Phillips 

(1986) using the functional central limit theorem. In the case of a spurious regression, Phillips 

showed that the LS estimate of a nonstationary regressor converges in probability to the functionals 

of Brownian Motion, while in this paper we show that it converges in probability to zero.3 In the 

cointegration case, it is shown that the transformation proposed by Wickens and Breusch (1988) 

can be applied to the model so that the resulting instrumental variables (IV) estimates have 

standard distributions and statistical inference can proceed in the usual manner. We also show that 

this approach can reduce parameter estimation bias relative to simple LS estimation. 

The paper is organized as follows. Section 2 examines the asymptotic behaviour of LS 

estimates when the variables in the model are nonstationary and not cointegrated, and then 

1. See, for example, Blinder (1986) for inventory investment, Bemanke (1985) for consumer durables 
and Caramazza, Hostland and Poloz (1990) for money. 

2. For example, see Hall and Rossana (1991). 
3. In both situations, however, the t-statistic has a divergent limiting distribution. 
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considers the case in which the variables in the model are cointegrated in the sense of Engle and 

Granger (1987). Section 3 provides empirical examples and simulation evidence which allows us 

to gauge the usefulness of the asymptotic results for finite samples. Concluding remarks follow. 

2 ANALYTICAL RESULTS 

2.1 The case of no cointegration 

This subsection considers the implications of nonstationary data for the stock-adjustment 

model when the data are not cointegrated. We begin by briefly introducing the stock-adjustment 

model. For simplicity, the version of the model used in this section contains only one regressor 

(xt). Suppose that y*, the desired level of yt, is related to xt by the equation 

y, = $xt + “r (D 

The stock-adjustment process assumes that in any given period the actual value of yt may not 

adjust completely to the desired level, that is 

(1 -L)yt = X(y*-Lyt) ; Xe (0,1] (2) 

where X is the so-called adjustment parameter and L is a lag operator such that Llyt = y,_;. 

Equation (2) specifies that the change in current yt will respond only partially to differences 

between the desired level and the previous period’s value of yr Substituting (1) into (2) and 

solving for yt admits 

= Vr + V/-i + 1\ (3) 

where Yj = X,p, y2 = (1 - X) and T|f = Xur 

Now, let yt and xt be 1(1) variables and ut an 1(0) variable such that the data generation 

process (DGP) for yt is a cointegrated system of the form 

yt = fa* + ur ut = Put-1+ iPl < 1 W 
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Ax, = d, (5) 

where dt and gt are i.i.d(0,o^) and i.i.d(O.a^) respectively. In this context the above DGP for y, 

can be thought of as a stock-adjustment model with complete adjustment in any given period, that 

is X = 1. 

Suppose that the model to be estimated is given by 

yt = ayt_1 + bzt + vt (t=12 T) (6) 

where A z, = et, Ay, = /,, et is i.i.d(0,oj), ft is i.i.d(0,(j2) and cow(ft,et+i) = 0 Vi; in other 

words, y, and z, are each 1(1), but they are not cointegrated. Alternatively, equation (6) can be 

viewed as a misspecified stock-adjustment model. 

Theorem 1 below provides weak convergence results for the LS estimates of equation (6) 

when the DGP is given by (4) and (5). The following lemma is useful in the derivation of this and 
T 1 

other theorems. For notational convenience we denote ^ as ^ and J as J . 
»= 1 '0 

LEMMA 1. Let “ => " denote weak convergence of the relevant probability measures as the 

sample size (T) tends to infinity. Define W(r) and V(r) as independent Wiener processes on the 

function space C[0,1], where C[0,1] is the space of all real valued continuous functions on the 

interval [0,1]. Then as T 

(a) => CI2Jw<r)2dr 

(b) 7-22,z?=>o2Jv(r)2dr 

(c) => oeodjv (r) w (r) dr 

(e)7-22>,u,=>0 

(0 r2£z,u, => 0 
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(8)î"2X>.?.1=»|32O2
djW(r)2dr 

(h) r-2£y,-!*,=»? oljw^dr 

(i) 7-22>,_1z,='P<sJoJi/(r)W'(r)<<r 

THEOREM 1. Suppose that equation (6) is estimated by LS and the conditions of Lemma 1 are 

satisfied. Then as T —» 

(i) â => 1 

(ii) b => 0 

PROOF: See Appendix. 

Theorem 1 tells us that if a non-cointegrated stock-adjustment model is estimated by LS, 

then the parameter estimate of the lagged dependent variable (LDV) will tend to unity 

asymptotically, while the parameter estimate of the 1(1) regressor will tend, asymptotically, to zero. 

These results imply that in the non-cointegrated model the LS estimate of the adjustment 

coefficient (X.) will be low even though the true value of X. is unity. 

While Theorem 1 summarizes the behaviour of the first-sample moments of the variables 

in equation (6), the limiting distribution of the LS estimates of (a,b)T is given by Theorem 2 

below. Useful results for Theorem 2 are summarized in the following lemma. 

LEMMA 2. Define P(r) as a Wiener process that is independent ofW(r) and V(r) on C[0,1]. Then 

as T —> oo, 

(a) 7^25>?=>cj2j/>(r)2dr 

(b) r2Yyt_yzt => cyjJ> (r) V(r) dr 

(c) (l/2)a2[P(l)2- 1] 

(d) TTl^ztvt => of gjv (r) dP (r) 
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THEOREM 2. Suppose that equation (6) is estimated by LS and the conditions of Lemma 1 and 2 

are satisfied. Then as T —»<*>, 

(i) A 
T(à- 1) S{a2

ejV(r)2dr(l/2)oj[P(l)2-l] -<5jOe\P (r)V(r)dr 

°/°e! ('v (r) dP (r) »7 (r) 2dro2
ejv(r) 2dr - (OjOejP (r) V(r) dr)2} 

(«) 

7(5-0) 4 {OyoJP(r)V(r)dr- (l/2)a2 [P (l)2-1] } / 

{ a2JP ( r) 2dro2jV ( r)2dr - ( cyjJP ( r) V ( r) Jr)2 } 

PROOF: See Appendix. 

The results in Theorem 2 tell us that the limiting distribution of the LS estimates of à and 

b are functionals of Wiener processes. These results imply that the limiting distribution of the 

t-statistic (T~1/2t. ) converges in distribution to functionals of Wiener processes. In other words, 
b 

the limiting distribution of the t-statistic for the hypothesis b = 0 diverges as the sample size tends 

to infinity. Thus, even though the LS estimator of b converges to zero in probability, the t-statistic 

for the null hypothesis of b = 0 will be significant for large samples if one uses conventional 

asymptotic critical values. Moreover, the frequency of rejections will increase with the sample 

size. 

It should be stressed that the case investigated in this paper differs from the case of a 

spurious regression examined by Phillips (1986). Phillips showed that the coefficient of the 1(1) 

regressor converges in probability to Brownian Motion. In the present case, we show that the 

coefficient converges in probability to zero even though the limiting distribution of the t-statistic 

test for b = 0 is divergent in both cases. The spurious regression problem does not arise in our 

model because there is an LDV in the regression which serves to offset the nonstationary 

component of the stochastic process generating the dependent variable. Thus regression (6) can be 

loosely viewed as regressing the stationary component of the dependent variable on an 1(1) 
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regressor. Interestingly, the fact that the present model is not a spurious regression implies that a 

regression with 1(1) variables does not necessarily generate 1(1) residuals, even though they fail to 

be cointegrated; rather, this result depends on whether there is an LDV in the regression. 

Although the analytical results in this section are obtained under the assumption of i.i.d. 

errors, Wirjanto (1992) uses a multivariate generalization of Corollary 1 in Hermdorf (1984a) to 

show that relaxing this assumption to allow the disturbances to be weakly dependent and 

heterogeneously distributed does not change the results in Lemmas 1 and 2 and Theorems 1 and 2. 

The framework of investigation for this general case is similar to that of Phillips (1986,1987,1989) 

and is based on the earlier works of Billingsley (1968), Hermdorf (1983,1984a, 1984b), McLeish 

(1975a, 1975b, 1977) and Pollard (1984). 

2.2 The case of cointegration 

In this subsection we examine the stock-adjustment model when the nonstationary data are 

cointegrated. Consider the DGP given by (4) and (5) and suppose that the model to be estimated 

is given by 

yt = ay,-\+ bxt + vf (t=l, 2,..., T) (7) 

where xt and yt are cointegrated. That is, there is no misspecification regarding the choice of the 

regressor (xt) in equation (7). For simplicity the regression error term is assumed to be i.i.d(O.o^). 

It is straightforward to demonstrate that the LS estimates of the coefficients of equation (7), 

although consistent, will have non-standard limiting distributions which make statistical inference 

difficult to conduct. It is thus desirable to find a transformation of the data that yields 1(0) variables 

and allows us to perform inference on the coefficients of the transformed variables using standard 

distributional theory. One such procedure is proposed by Wickens and Breusch (1988), which 

allows us to estimate both the short-run and long-run dynamics in the same model. The Wickens- 

Breusch procedure uses the same idea as that proposed by Bewley (1979) by transforming 

equation (7) into a form where the only variables in levels are those in the cointegrating regression, 
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and all other variables are in first differences. The resulting equation can then be estimated using 

instrumental variables (IV), and inference may proceed using standard asymptotic theory. 

The Wickens-Breusch transformation of equation (7) results in 

yt = 8i^y,-i+82
xt + nt (8) 

where gj = -a(l-a)-1, g2 = h(l-a)"1 and nt = (l-a)_1vr The IV estimate of g from 

equation (8) using the instrument set zt = [x, yt_ j] is given by 

8\~8\ 

82-82 

lyt-^yt Z^-i 
-1-1 f- 

. X*? J L 5>'y'. 

& (9) 

The resulting estimate is identical to the LS estimate gT = [gj g^j, where gj - -à ( 1 - â) 1 and 

g2 = é ( 1 — â)_1, and à and 5 are the LS estimates of a and b from equation (7). 

To formally derive the limiting distribution of the Wickens-Breusch IV estimates, we use 

the following lemma. 

LEMMA 3. Let M(r) be a Wiener process independent ofW(r) on the function space C[0,1]. As 

T -» 00 we have 

[Tr} 
(i) r1/2y£dt=>o2

dW(r) 
t= 1 

[Tr] 
(ii) r1/2 ^ vt => O

2
M (r) 

t= 1 

where [Tr] is the integer part of Tr. Note that equation (7) can be expressed as 

yt = ( 1 - aL)-1 (bx, + vt) ; then as T-» «*>, 

(z)r2y£x}=>o2jW(r)2dr 

(b) T2^xtyt_ 1 = T2^xt( 1 -aL)~l (bxt + v,) 

=> g2o
2

d\
w (r)2dr 
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(c) rXy£*xtvt => d\w (r)dM W 

(d) = r-^d-oLr^ta^j + v^jJv, 

(r) 

(e) rlyZxtAyt = r-^d-oL)-1 (éAx,., + Av,_,) 

^>g2V2
d\\W{r)dW{r)+\} 

(f) ^^.jAy, = r1'£(l-aL)-2(bxt_l + vl_1) (ftAxf.! + Av,_j) 

=>sHfW'('W(r) + (l-fl)-2a2 

THEOREM 3. Suppose that equation (8) is estimated by LS and the conditions of Lemma 3 are 

satisfied, then as T —» «> 

(i) T172^-^) => {g2ovoJlV(r)dM(r)}/ 

{( 1 - a) g2
2o

2
d\W(r) dW(r) + [a2

v( 1 - a) "2]} (10) 

(ii) n*2-g2) => {cvod\w(r)dM(r)}/{(l-a)a2
d\W(r)2dr} (11) 

PROOF: See Appendix. 

Equations (10) and (11) show that the IV estimator gj is asymptotically normal, while the 

IV estimator g2 is asymptotically a mixture of normal distributions. This implies that inference 

about the parameters gj and g2 may be carried out using standard distribution theory. Following 

the steps in Wiijanto (1992), the previous results can be shown to hold when the i.i.d. errors are 

replaced by weakly dependent and heterogeneously distributed errors. 

3 EMPIRICAL EXAMPLES AND SIMULATION RESULTS 

3.1 The case of no cointegration 

As an example of the no cointegration case, we consider a conventional stock-adjustment 
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Ouliaris (1990). The results presented in Table 2 (p. 25) show no evidence of cointegration even 

at the 10 per cent level of significance. 

Some may argue that our inability to reject the null hypothesis of no cointegration may in 

part reflect the low power of standard unit-root tests against persistent alternatives. Thus we also 

apply a residual-based test recently proposed by Shin (1992), which has cointegration as its null 

hypothesis. One difficulty with this test is that the residuals must come from a test regression that 

admits parameter estimates that are efficient as well as consistent. Although the parameter 

estimates from the Engle-Granger static test regression are super-consistent, they are not efficient. 

In order to get efficient estimates, we follow the suggestion of Stock and Watson (1992) and add 

leads and lags of the first differences of the regressors to the Engle-Granger test regression.^ The 

results, reported in Table 3 (p. 25), corroborate our previous conclusion by rejecting the null of 

cointegration in favour of the no cointegration alternative. Hence, there is strong evidence against 
8 

cointegration between real Ml, real output and nominal short-term interest rates. 

Given the pretesting results, we proceed to estimate equation (12) by LS. From the results 

in Section 2.1, we expect the parameter estimate corresponding to the lagged dependent variable 

to be close to unity and the parameter estimates of the independent variables to be close to zero but 

highly significant. The estimation results presented in Table 4 (p. 26) confirm our priors. The 

estimated coefficient for the LDV is 0.954, while the parameter estimates of the independent 

variables are close to zero and highly significant. A striking feature of these results is the fact that 

the adjustment parameter (k) is only 0.046, which implies that only 17.2 per cent of the adjustment 

towards the desired level is completed within one year. 

Since the analytical results established in Section 2.1 are asymptotic, the question arises 

whether they can provide a useful guide in explaining the empirical results obtained in finite 

7. We chose the number the leads and lags to equal lNT(Tl/i) or 4 since this is consistent with the 
simulation results in Stock and Watson (1992). The conclusions are not sensitive to this choice. 

8. Amano and van Norden (1992), using Monte Carlo experiments, find that a joint unit-root - stationary 
testing procedure allows researchers to be more confident about their conclusions when both tests 
indicate that the data are stationary. 
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samples, such as the foregoing results for the money demand equation. To investigate this issue, a 

set of simple Monte Carlo experiments is conducted. The simulated data are generated by DGPs 

of the form 

yt = *+?,_!+/, 

h = k+zt-i + et 

(13) 

(14) 

where k = 1, ft is aj) and et is i.i.d(0,aj). In the simulation, ft and et are drawn from an 

independent N(0,0.5) population, such that co\<Jret) = 0. Thus the variates yt and zt are each 1(1) 

but are not cointegrated by design. The stock-adjustment model 

y, = k + ay,_1 + bzt + vt 
(15) 

is estimated by LS. For each experiment we perform 5,000 replications with the sample size T set 

equal to 25, 50, 100, 200 and 500 and record the parameter values at selected percentiles and the 

rejection frequency of zt using standard asymptotic critical values/* 

The results are presented in Tables 5 and 6 (p. 26) and 7 (p. 27). Tables 5 and 6 report the 

parameter estimates for the LDV and the independent variable at selected percentiles, respectively. 

As one would expect, given the asymptotic results established earlier, as the number of 

observations increases, the estimated coefficient on the LDV appears to be approaching unity, 

while that on the independent variable approaches zero. The results in Table 7 provide evidence 

supporting our conjecture that the rejection frequency of the null hypothesis of b = 0 should 

increase with the sample size. It is apparent that if we use standard normal asymptotic critical 

values, we would reject the null far too often. For example, at the 10 per cent level the number of 

rejections begins at 41.4 per cent when T = 25 and increases monotonically to 46.0 per cent when 

T = 500. These false rejections help explain the empirical results we obtained earlier, that is, even 

though the coefficients of real output and the interest rate are close to zero, their t-statistic suggests 

9. We begin data generation at T = -50 and discard the first 51 observations to minimize any problems 
associated with starting values. The simulations were performed on a Sun SPARCstation using RATS 
version 3.1. 
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that they are statistically significant. Hence, it appears that the asymptotic results established in 

Section 2.1 are useful approximations in finite samples. 

It is instructive to compare the above results to the results reported by Granger and 

Newbold (1974) for the case of a spurious regression. In their experiment the DGPs are given by 

(13), (14) and (15), with the coefficient on the LDV set equal to zero; that is, with complete 

adjustment within each period. Using 1,000 replications and the 5 per cent normal asymptotic 

critical value, Granger and Newbold report that the t-statistic for b = 0 rejects the null hypothesis 

falsely at a rate of 75 per cent when 7 = 50. In contrast, our result for 7 = 50 suggests that the 

rejection rate is only 30.4 per cent, which is considerably lower than that of a spurious regression. 

However, it is still much larger the 5 per cent level, suggesting that the t-statistic is not a valid test 

for the 1(1) variable in regression (15). 

3.1 The case of cointegration 

As an example of the cointegration case, we consider the U.S. aggregate consumption 

equation. Specifically, the log of U.S. real consumption of nondurables and services per capita (cf) 

and the log of U.S. real disposable income per capita (ydt) are tested for cointegration over the 

1948Q1 to 1991Q3 sample period. The data, obtained from Data Resources Inc., are seasonally 

adjusted. 

We start by testing the time-series properties of the data. The results, reported in Table 8 

(p. 28), suggest that both series are nonstationary. Next we determine whether our measures of 

consumption and real disposable income are cointegrated. Using the simple Engle and Granger 

(1987) two-step approach, we find significant evidence of cointegration at the 5 per cent level (as 

shown in Table 9 (p. 27)).10 Since we are able to reject the null of no cointegration using tests with 

weak power, we do not apply the test with the cointegration null hypothesis. The results of 

estimating the static cointegration regression 

10. Since we are able to reject the null hypothesis of no cointegration, we do not apply the test with the 
null of cointegration. 
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ct = a + $yd, + u, (16) 

are presented in the upper panel of Table 10 (p. 28). 

Since the variables ct and ydt are found to be cointegrated, as explained in Section 2.2, the 

Wickens-Breusch transformation is applied to the stock-adjustment model for aggregate 

consumption, 

ct = k + acl_l + bydt + vt, 07) 

to yield the following equation: 

c, = 80 + gi^ct + g2ydt + nr (18) 

This equation can be estimated using IV, using the instrument set zt = [p c, _ l yd], where p is a 

vector of ones. In the present context, the coefficient of interest g2 is the long-run elasticity of 

income; in other words, the IV estimate of g2 in equation (18) provides us with an alternative 

estimate of the cointegrating vector (3 in (16). The results from estimating equation (18) are given 

in the lower panel of Table 10. The IV estimate of the long-run elasticity of income is 0.865, which 

is smaller than the LS estimate (0.896) from equation (16). Given the IV estimates of g1 and g2, 

the coefficient on the LDV is 0.870, while that on the income variable is 0.113. 

The Monte Carlo results in Baneijee, Dolado, Hendry and Smith (1986) suggest that the LS 

estimate of (3 in equation (16) has substantial finite sample bias because the equation ignores the 

short-run dynamics. The more correlated ydt and ut are in equation (16), the greater the bias. This 

will occur when the coefficient of the LDV in equation (17) is close to unity. The IV estimate of 

g2, on the other hand, is likely to have better finite sample properties than the LS estimate of [3, 

because it estimates both the short-run and long-run dynamics in the same equation. Moreover, the 

least square estimate of [3, although Op (T*1), has a non-standard limiting distribution. In 

contrast, the IV estimate of g2 is also Op (7^) and has a mixture of normal limiting distribution 

that permits conventional asymptotic theory to be used for inferential purposes. 
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In order to investigate whether the IV estimator has better finite sample properties than the 

simple LS estimator, we again use Monte Carlo simulations. The DGP of the variates is 

yt = k+ayt_x+ (l-a)xt + ut (19) 

and 

Axt = pAxt_1 + e[ (20) 

where lc= 1, u, is i.id(0,o^) and et is i.id(0,o^). The simulated data are used in a simple static 

equation estimated by LS and then in a Wickens and Breusch transformed equation estimated by 

IV. The parameter p is set equal to 0.4. We consider various values of a (0.95,0.75,0.50 and 0.25), 

sample sizes (25, 50, 100, 200 and 500) and s = G/GU (5.0, 1.0 and 0.2) to determine the 

robustness of the results. For each experiment, 5,000 replications are performed and the bias of the 

LS and IV estimators are calculated and compared. 

The simulation results, presented in Table 11 (p. 28), can easily be summarized.11 As 

expected, the bias increases with the coefficient on the LDV and decreases with the number of 

observations. When we compare the two estimators, we find that the IV estimator dominates the 

LS estimator with regard to parameter estimation bias over the sample sizes and parameter space 

we consider. The reduction in bias is most notable for large samples and large LDV coefficients. 

For example, when T = 100 and the coefficient on the LDV is set equal to 0.95, the parameter bias 

corresponding to the LS estimator is about -0.458, whereas the bias corresponding to the IV 

estimator is only -0.083. These results support our conjecture that the IV estimator will have better 

finite sample behaviour than the LS estimator, especially when the LDV coefficient is close to 

unity. 

11. We only report simulation results for s = 0.2, as the conclusions do not change for the other values 
of s. The omitted results are available from the authors upon request. 
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4 CONCLUSIONS 

The aim of this paper has been to study the implications of nonstationarity for the stock- 

adjustment model. We found that in a non-cointegrated model, the estimate of the adjustment 

coefficient will tend to zero, independent of its true value. Moreover, the LS estimate of the 1(1) 

regressor will tend to zero, but the t-statistic for its insignificance will reject the null if conventional 

asymptotic critical values are used. This then provides one explanation for the typically observed 

low estimate of the adjustment coefficient in stock-adjustment models. 

In the case of cointegration, we showed that IV estimation can be used to estimate the 

transformed model and that statistical inference can proceed using standard distributional theory. 

We also demonstrated that the IV estimator can reduce parameter estimation bias relative to the LS 

estimator. 

There are two important implications emerging from this study: (i) the empirical estimates 

from a stock-adjustment model do not provide an economic measure of the adjustment coefficient 

if the 1(1) variables in the model are not cointegrated; and as a result, (ii) a pre-testing for 

cointegration between the 1(1) variables in stock-adjustment models should be carried out prior to 

estimation. 
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APPENDIX: THEOREM PROOFS 

Proofs of Theorems 1 and 2. Again, for notational convenience we denote X as X anc* J as J 
t= l 

1. Some results for Lemma 1 

= r2X (P2*?-1 + 2P*,-1“,-1+«?-1) 

= P2r22>?-, + 2P7'‘2X*.-i“<-i+r'2X“?-i 

-Pr-2S*<-ix«+r'22-t<“<-i 

7_2]D’I-1ZI = 7"22(PXI-1 + “I-I)ZI 

= 7"2£(P*,-l»,+ «,-l2,) 

= Pr^.i^î'ïw-i 
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2. Proof of Theorem 1 

The least squares estimates of a and b are given by 

Irf-i 
Jjt-xh Xz? J LXz^_ 

-1^ 

Xw, 

D 
Xz? 

I>.-1 

X^-iz 

X^-1. X
Z
/(P^

+U
î) . 

Fx/D 

F2/D 
(A.l) 

where 

*> = X>?-iXzMX*-iz,)2 

Fi = 2^2>,-i(P*.+-.)-X*-IZ
,X

Z
.<P*.

+
“.> 

= P2*?2>,-+Xz?I>f-- PX*- IZ.XZA _ X^- IZ*XZA 

= “2>»-iz
*2>*-i <Pz*+“«) +X^-iXz«^+“»> 

= “PX>i- IZ»X^- \xt- X?*- iz*X?/- iMf+ PX??- iXzA + X3f-iXzA 

Then, as T -» 

[Tr] 

(i) r"1/2X^=>^(r) 
/= l 

[Tr] 

(ii) 7^1/2 X ^ °2V (r) 
t= t 

where [Tr] is the integer part of Tr. Then we obtain the convergence results in Lemma 1, 

reproduced below as 

(l)r2Jit*<S2
d\W(r)1dr = Bxx 

(b)r2£z?=>a2JV(r)2dr = B„ 

# (c) r22v,=>a<oJV(r)H'(r)<Jr = B„ 
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XX 

XX 

(e)T~2'£x,u,=>0 

(Or2£z,u,=s.o 

(g) r22>?_, =» $2Ojjw (r)2Br = p2s, 

(h) ’r22y,-tx,=>^2
djn'(r)2dr = PB, 

0) 7~25>,- ,z, =* Po^ojv (r) H' (r) Br = pB„ 

Hence as T —» °° we obtain the following results: 

rtj^B^B,,- (PB„)2 = P2(B^J!-B2
!) 

T^B^PB^PB^-PfPB^) = P2(B„B„-B2,) 

r-'Fj^.-PtpB^pBJ+PCP^,,) = VH~BJ>X! + BJ1„) =0 

which implies that 

à = (T4Fl/T^4D) => 1 

b = (T~4F2/T
4D) =>0 

Q.E.D. 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

3. Proof of Theorem 2 

To prove Theorem 2, equation (12) is reproduced as 

yt = Wt-i +bz, + vt 

■ &<-iz3 

y = Wa + V 

+ v, (A.7) 
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Then the LS estimate of a is 

a = (WTW) lWTy 

which can be expressed as 

cc-a = (WTW)~1WTv. 

(A.8) 

(A.9) 

Let H be a (2x2) matrix of the form 

H= T0 

0 T 

Then (A.9) can be rewritten as 

tf(â-a) = (ir'wTwir‘) ‘ir‘w‘v 

_ V22>?-. 

r2 

-1\ * 17-1 U/T, 

-1,- 
73>,-,V, 

. rI2>v,. 

D L-î"
25>,-I

z< 

iz. r
12>,-,v, 

r‘Iz,v,. 

(A.10) 

(A.11) 

where 

D = 

p; = 

K = 

î-223-?.,r2Sz?-(r2X^.lZ,)2 

î"2Iz? r'Xj'.-iv.-r-2^,.^, r‘5>,v, 

r22>,-,2, r'Xy,-,v,+r-2Xy?., r‘Xz,v,. 

Since as T —» 

[7-r] 

(i) r-172 ^ et=> a^V (r) 
r= 1 

[7>] 

(ii)r£/,=>o2/>(r) 
t= 1 

we obtain the convergence results in Lemma 2, which are reproduced as 
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(a) r22>?_ ! => afjp (r) 2dr = Byy 

(b) r2^>,_ ,z, => op'jP (r) V(r) dr = By, 

(c) r,Xj’,-,v,s d/2)o2[/>(1)2-l] =Byy 

(d) 7~‘£z(v( => Oyajv (r) dP (r) = Bzy 

Thus as T —» 

=> (ByyBzz- Byz) 

^^zz^yv Byz^zv 

F 2 => ByzByv + ByyBzv 

(A. 12) 

(A. 13) 

(A. 14) 

such that 

T(â-l) = (F;/D*)^{S,1BJV-B,IB,V}/{BJ/„-B5!} 

T(ft-O) = i {-v» +V»}/{B„B„-B2} 

(A.15) 

(A.16) 

Q.E.D. 

Proof of Theorem 3 

To proceed with the proof, substitute the definition of yt into equation (7) and premultiply by the 
matrix Diag [T~l/2, T) yields 

T^Cgi-gO 
T(g2-g2) 

(1-a)"1 

d-fl)'1 

T-^y^r^xy 

r^xAyt T-^x2 

F\/D+ 

F^/D+ 
(AM) 

where 

D+ = r-'Zr,.,*, r3'2^, 
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F] = TT-'/2’Zy,.1y,--r
3/2Jdx,y,_, r‘£v, 

Fi = -r3/25>,Ay, r1/22>,-1'’,+r12>,_1Ay, r'Jv, 

Using the convergence results (a) to (f) from Lemma 3 yields, as T —» «> 

D+ => [g\<52d\WrdWr+ (1 - fl)"2aj] o2
d\W(r)2dr 

F[ => o*jw (r) 2drg2ovcdjW (r) dA/ (r) 

(r)rfW(r> + (l-a)_2a2]avaJV(r)dM(r) 

and the intended results follow immediately. 

Q.E.D. 

(A. 18) 

(A. 19) 

(A.20) 
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Table 1: 
Tests for Unit Roots 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) Tests 
Sample: 1965Q1 to 1992Q2 

a. Henceforth, we use the data-dependent lag length selection procedure advocated by Hall (1989). 
b. Unless otherwise specified, the long-run variance is estimated using a VAR prewhitening procedure sug- 
gested by Andrews and Monahan (1992). 
c. Henceforth, unit-root and cointegration critical values are calculated using the response-surface estimates 
reported in Table 1 of MacKinnon (1991) for the actual sample size used in computing the test statistics. 

Table 2: 
Tests for the Null Hypothesis of No Cointegration for the Demand for Money Equation 

Augmented Dickey-Fuller (ADF) and Phillips-Ouliaris (PO) Tests 
Sample: 1965Q1 to 1992Q2 

Regression 
ADF 
Lags 

ADF 
t-statistic 

PO 
t-statistic 

10 Per Cent 
Critical Value 

Constant -1.748 ■1.882 -3.509 

Constant & Trend -1.425 -2.260 -3.922 

Table 3: 
Test for the Null Hypothesis of Cointegration for the Demand for Money Equation 

Sample: 1965Q1 to 1992Q2 

Test statistic15 10 Per Cent Critical 
Value 

0.252 0.121 

0.087 0.069 

Regression 

Constant 

Constant & Trend 

Truncation 
Parameter8 

10 

10 

a. The truncation parameter is chosen according to INT (T1/2). This rate is usually satisfactory under 
both the null and the alternative (see Andrews 1991). 
b. Unlike the Phillips-Perron test, we use the Newey and West (1987) long-run variance estimator, as it 
can be shown that the test statistic for cointegration using a prewhitened kernel estimator with the plug- 
in bandwidth parameter is not consistent against the alternative of no cointegration. 
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Table 4: 

OLS Estimation of the Stock-Adjustment Demand for Money Equation 
Sample: 1965Q1 to 1992Q2 

Variable 
Parameter 

Estimate 

Newey-West 

Standard Errors® 
t-statistic 

Constant 0.093 0.142 0.653 

Real GDP 0.033 0.007 4.466 

90 day T-bill Rate -0.004 0.001 -7.813 

LDV 0.954 0.018 51.867 

a. We use Newey and West (1987) standard errors, as we found evidence of 
autocorrelation and autoregressive conditional heteroscedasticity in the residuals. The 
truncation parameter is set equal to the seasonal frequency (4). 

Table 5: 
Finite Sample Parameter Estimates of the Independent Variable 

Empirical Percentiles 

Sample 0.25 0.50 0.95 

25 0.252 0.157 0.019 

50 0.132 0.085 0.011 

100 0.069 0.043 0.005 

250 0.034 0.022 0.003 

500 0.014 0.009 0.001 

Table 6: 
Finite Sample Parameter Estimates of the Lagged Dependent Variable 

Empirical Percentiles 

Sample 0.25 0.50 0.95 

25 0.746 0.841 0.985 

50 0.867 0.916 0.999 

100 0.932 0.957 0.999 

250 0.965 0.978 0.999 

500 0.986 0.991 1.000 
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Table 7: 
Percentage of Rejections of the Null Hypothesis (b = 0) 

Table 8: 
Tests for Unit Roots 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) Tests 
Sample: 1948Q1 to 1991Q3 

Variables 
ADF 
Lags 

ADF 
t-statistic 

PP 
t-statistic 

10 Per Cent 
Critical Value 

Consumption 1 -1.238 -2.382 -3.142 

Disposable Income -1.855 -2.354 -3.142 

Table 9: 
Tests for the Null Hypothesis of No Cointegration for the Consumption Equation 

Augmented Dickey-Fuller (ADF) and Phillips-Ouliaris (PO) Tests 
Sample: 1948Q1 to 1991Q3 

Regression 
ADF 
Lags 

ADF 
t-statistic 

PO 
t-statistic 

5 Per Cent 
Critical Value 

Constant 1 -4.056 -4.918 -3.070 

Constant & Trend -3.933 -4.809 -3.537 
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Table 10: 
Estimation of the Consumption Equation 

Sample: 1948Q2 to 1991Q3 

Variable 
Parameter 
Estimate 

Newey-West 
Standard Errors* t-statistic 

Least Squares Estimation 

Constant 0.746 0.061 12.245 

Disposable Income 0.896 0.007 136.428 

Instrumental Variables Estimation 

Constant 1.065 0.236 4.514 

Disposable Income 0.865 0.024 35.494 

A Consumption -6.717 3.211 -2.092 

a. We use Newey and West (1987) standard errors because we found evidence of 
autocorrelated residuals for both regressions. The truncation parameter is set equal to the 
seasonal frequency (4). 

Table 11: 
Finite Sample Bias of the Long-run Parameter 

Least Squares versus Instrumental Variables Estimation 
^ = 0.2 

Least Squares Estimates Instrumental Variables Estimates 

a 0.95 0.75 0.50 0.25 0.95 0.75 0.50 0.25 

T=25 -0.768 -0.308 -0.107 -0.043 0.600 -0.217 -0.020 -0.012 

T=50 -0.778 -0.202 -0.062 -0.018 0.429 -0.044 -0.008 -0.002 

T=100 -0.458 -0.105 -0.035 -0.011 -0.083 -0.010 -0.005 -0.002 

T=200 -0.339 -0.061 -0.014 -0.006 -0.037 -0.005 0.001 -0.001 

T=500 -0.172 -0.025 -0.007 -0.003 -0.007 -0.002 -0.001 -0.001 
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