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Abstract 

Simulation evidence is presented on the finite sample properties of two tests for stationarity 
recently proposed by Kwiatkowski, Phillips and Schmidt (1991) and Park (1990). Unlike 
earlier unit-root tests, these test the null of stationarity against the alternative of a unit root, 
thereby reversing the usual burden of proof We also examine the consequences of using the 
Kwiatkowski, Phillips and Schmidt test in conjunction with a standard unit-root test. These 
results suggest that the frequency of incorrect conclusions may be decreased relative to the 
application of only standard unit-root tests. Also, such a joint testing procedure may in 
some cases permit researchers to be more confident about their tests’ results. 

Résumé 

Les auteurs présentent les résultats des simulations qu’ils ont effectuées afin de vérifier les 
propriétés, avec des échantillons finis, des tests de stationnarité récemment proposés par 
Kwiatkowski, Phillips et Schmidt (1991) et par Park (1990). Au contraire des tests usuels 
de racine unitaire, ces deux approches présentent le cas de stationnarité comme 
Vhypothèse nulle à rejeter lorsque celle-ci est confrontée à l’hypothèse alternative de 
racine unitaire. Les auteurs examinent également les conséquences d’une utilisation 
conjointe du test de Kwiatkowski, Phillips et Schmidt et des tests types de racine unitaire. 
Les résultats indiquent que, avec cette approche, il est possible d’en arriver moins souvent 
à des conclusions erronées que si l’on n’applique que des tests usuels de racine unitaire. 
Par conséquent, cette approche conjointe peut dans certains cas accroître la confiance des 
chercheurs dans les résultats de leurs tests. 



1.0 Introduction 

Standard unit-root tests such as those of Dickey and Fuller (1979) and Phillips and Perron 

(1988) frequently do not reject the null of a unit root when they are applied to macroeconomic time 

series.1 The presence of a unit root raises serious questions both about the existence and nature of 

the business cycle and about the econometric methods used to draw inferences from 

macroeconomic data. However, many researchers have pointed out that unit-root tests have little 

power against stationary alternatives with high persistence and argue that the presence of a unit root 

is therefore unproven. For example, DeJong, Nankervis, Savin and Whiteman (1992) show that 

the Dickey and Fuller test is typically unable to distinguish between series with a unit root and 

stationary AR(1) series with an autocorrelation coefficient near unity. An alternative way to 

approach the question would be to use Bayesian methods to examine the probability that a unit root 

is consistent with the data.2 The results have generated considerable debate, however, and seem to 

be sensitive to normally innocuous assumptions about prior beliefs.3 We instead focus on a third 

approach, based on procedures designed to test the null of stationarity against the alternative of a 

unit root, thereby reversing the usual burden of proof. 

Recent papers by Kwiatkowski, Phillips and Schmidt (1991) and Park (1990) have 

proposed different tests of the null hypothesis of stationarity against the alternative of a unit root.4 

However, little is known about the finite sample behaviour of these new tests for stationarity, their 

robustness and their relative strengths and weaknesses. We attempt to address these questions by 

using Monte Carlo simulations to calculate the empirical size and power of these tests for selected 

data generation processes. We also examine the consequences of using these tests in conjunction 

with a standard unit-root test. By comparing the results of such tests to standard unit-root tests, one 

1. For example, see Abuaf and Jorion (1983) for evidence on real exchange rates, Diba and Grossman (1988) for 
the price-dividend ratio, Nelson and Plosser (1982) for output, and Rose (1990) for real interest rates. 

2. For an introduction see Sims (1988). 
3. See Phillips (1991a,1991b). 
4. Another test for stationarity has recently been proposed by Kahn and Ogaki (1992). However, the test’s 

applicability appears limited, as it does not extend to cases where the residuals are not white noise. Dejong, 
Nankervis, Savin and Whiteman (1992) propose both similar and non-similar tests for the null of stationarity. 
Unfortunately, their similar tests consider only the null of a specific AR root rather than a general null of 
stationarity, and their non-similar test will generally lack power due to nuisance parameter problems. 
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can hope to determine whether there is significant evidence of a unit root, or whether the data are 

simply uninformative. We find that in some cases the joint test helps to avoid erroneous 

conclusions. A simple Bayesian analysis suggests that for certain priors, the joint testing procedure 

will allow researchers to be more confident about their tests’ results when the two tests agree. It 

also introduces a significant probability that the two tests will fail to agree in their results. 

The next section briefly introduces the Kwiatkowski, Phillips and Schmidt (KPS) and Park 

tests. Section 3 presents our Monte Carlo design and the results on test size, power and robustness. 

Section 4 investigates the usefulness of applying the KPS test in conjunction with an existing unit- 

root test. Section 5 provides concluding remarks. 

2.0 Two Tests for the Null Hypothesis of Stationarity5 

The Dickey and Fuller (DF) and Phillips and Perron (PP) tests for unit roots are based on a 

test regression of the form 

y, = a + py,_i + vf. (1) 

where vt is assumed to be stationary.6 KPS propose a slightly different testing framework based 

on the model 

yt = rr + e,< (2) 

where 

rt = rt_l + ut, (3) 

ut is i.i.d. and ef is assumed to be stationary. Equation (2) decomposes yt into a random walk 

component rt and a stationary error. The initial value of the random walk component is treated as 

fixed and so serves as an intercept or the mean to which the series reverts. The null hypothesis of 

5. We consider only tests comparing hypotheses of a unit root without drift to stationary hypotheses. Extensions 
to the case of a unit root with drift and trend stationarity are straightforward. 

6. The tests differ in their treatment of serially correlated residuals. DF propose adding lagged differences to 
control for serial correlation, while PP propose the application of a nonparametric correction to the test statistic. 
In fact, the PP correction allows for more general dependence in the residual process, including conditional 
heteroscedasticity. 
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stationarity is a2
u = 0 or, equivalently, a2 = 0. 

The key insight of KPS is that this is simply a special case of the random coefficients model 

yt = xfit + et, (4) 

where 

P, = Pr_i 
+ M/> 

where imposing x, = 1 and = rt reduces Equation (4) to (2). This means that testing the null 

of stationarity against the alternative of a unit root is equivalent to testing the null of a constant 

coefficient model against the alternative of a random coefficient model. The appropriate Lagrange 

Multiplier test statistic works out to be 

T 

Is' 
LM = (« 

CE 

where 
t 

S, = O) 
i = 1 

^ 2 
and et is the residual from the regression of yt on a constant, & E is the usual estimate of the 

residual variance from this regression (residual sum of squared residuals divided by T-l), and T is 

the sample size. The distribution of this statistic is nonstandard and empirical critical values are 

provided by Monte Carlo methods. 

In the random coefficients literature, this derivation depends on the strong assumption that 

ef is i.i.d. normal with mean zero. KPS extend this test to the case where e; is serially correlated 

and may be heteroscedastic.7 The key difference is that the denominator of (6) is replaced with the 

Newey and West (1987) estimate of the long-run variance of et, denoted s2 (k), giving the KPS 

7. Any stationary ARMA process is acceptable. See KPS for a precise statement of the conditions £( must satisfy. 
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test statistic8 

(8) 

where k is equal to the lag truncation parameter and an additional factor T2 is used to normalize 

the numerator. 

An alternative test proposed by Park (1990) is based on the idea that if a variable follows a 

unit-root process, then ordinary least-squares standard errors are usually inappropriate and will 

tend to indicate that unrelated variables have a statistically significant relationship. Park’s J1 test 

adds one or more spurious variables to a regression of yt on a constant and tests whether they 

appear to be significant. If we know a priori that these regressors are superfluous, then their 

nominal significance in standard F- or t-tests is an indication of a spurious regression. The Park J1 

test statistic is of the form 

71 
RSSl-RSS2 

to2 (k) 
(9) 

where RSSj is the sum of yt's squared deviations from its mean, RSS2 is the residual sum of squares 

of the regression with a constant and the superfluous variables, and co2 (k) is the Newey and West 

estimate of the long-run residual variance of y, defined analogously to s2(k) above. Under the null 

hypothesis of stationarity, the test statistic is Chi-squared distributed with degrees of freedom equal 

to the number of superfluous regressors. The selection of the superfluous regressors is somewhat 

arbitrary, with any deterministic trend or unrelated stochastic process a legitimate choice. Park 

(1990) suggests polynomial time trends and pseudo-random walks. Park, Ouliaris and Choi (1988) 

note that in finite samples the power of the test appears to vary greatly with the number of 

superfluous regressors, although the selection of the superfluous variables quickly becomes 

unimportant as the sample size increases. They also found that using two or more variables 

8. Newey and West define j2(Jt) e2 + 2 £ "’(*.*) X where w(s,k) = i-s/(k+1), which ensures 
U= 1 s= 1 l = J + 1 

that the estimator is non-negative. Note that when k = 0, the estimator is simply the standard variance estimator. 
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generally gave better discriminatory power. In this paper, we include three time trends (linear, 

cubic and fifth order) as superfluous regressors, as this case is thought to have good power and is 

more useful to the applied researcher than that using pseudo-random walks.9 

3.0 Monte Carlo Experiment Design and Results 

In this section, we use Monte Carlo experiments to evaluate and compare the effects of 

different data generation processes (DGPs) on the size and power of the KPS and J1 tests. The 

simulated data are generated by an ARMA(1,1) model of the form 

yt = pyt-i 
+ ût+QÛ,-v (10) 

where û is i.i.d., with mean zero and constant variance equal to one and |0| < 1. For each 

experiment we perform 10,000 replications with the sample size T set equal to 50, 100 and 200 

observations, and we record the rejection frequencies using 5 per cent asymptotic critical values.10 

Various lag truncation parameters (0, 1, 2, 4 and 8) are used to evaluate the performance of the 

tests.11 To estimate the size of the tests, we set p= 0.85 for a range of MA parameters (-0.8, -0.5, 

0.0,0.5 and 0.8), while power is calculated by setting p=1.0 for the same range of MA parameters. 

For sample sizes usually available in macroeconomics, this set of AR parameters is typical of the 

range in which the parameters of interest are thought to lie. DeJong, Nankervis, Savin and 

Whiteman (1992) present Monte Carlo results to show that the most commonly used unit-root tests 

can not reliably distinguish between such processes for typical sample sizes. Therefore, this is 

precisely the area of the parameter space in which better tests are most needed. Furthermore, 

restricting the number of AR parameters examined allows us to keep the number of permutations 

9. Results using three pseudo-random walks are available from the authors on request. 
10. The 5 per cent critical values are 0.463 and 7.815 for the KPS and J1 tests respectively. We begin data 

generation at T= -19 and discard the first 20 observations to minimize any problems associated with starting 
values. 

11. All simulations were performed on a Sun Sparcstation using RATS Version 3.1. 
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examined down to a manageable level.12 Finally, we note that our results for varying sample sizes 

can be interpreted either as cases where the span of the data varies for a given sampling frequency, 

or where the sampling frequency varies for a given data span. In the latter case, holding p constant 

at 0.85 while varying T implies we are changing the adjustment speed of the series. Therefore, 

results across different values of Tcan give insight into the test’s behaviour across different values 

of p.13 

Table 1 (p. 12) compares size for the KPS and J1 tests. For each lag length k, two rejection 

frequencies are reported; the first corresponds to the KPS test and the second to the J1 test. In 

general, both tests show large size distortions that tend to increase with the value of the MA 

parameter and decrease with the lag truncation length. The J1 test appears to be slightly more 

conservative than the KPS test across most DGPs and sample sizes. However, for sample size 

equal to 50 and truncation parameter equal to 8, the J1 test is too conservative, with size 

calculations less than the nominal size of 5 per cent. A striking feature of Table 1 is that for shorter 

truncation lags, the size of the tests tends to move in opposite directions (for a given k) over 

different sample sizes. That is, size distortion corresponding to the J1 test tends to increase for 

larger sample sizes, while that for the KPS test tends to decrease for larger samples. However, for 

lag lengths greater than 2, size distortions tend to move in the same direction.14 

Unadjusted power calculations appear in Table 2 (p. 13). The power of both tests declines 

with increases in k and decreases in the MA parameter. For samples equal to 50, the KPS test 

12. It has been suggested to the authors that we could reduce the number of permutations by using the automatic 
data-dependent bandwidth procedure suggested by Andrews (1991). However, the approach used above is 
more commonly used by the applied researcher and is also that suggested by the tests’ original authors. 
Furthermore, using the Andrews method may be problematic in the context of the KPS and Park tests since 
the regression residuals will have much more persistence than those in a DF or PP test, and Andrews notes that 
his estimator does poorly in such cases. Andrews and Monahan (1992) suggest the use of a prewhitened 
version of the Andrews estimator may be helpful, but we find that normally innocuous but necessary 
restrictions on the size of the prewhitening parameters are frequently binding for unit and near-unit roots. 

13. See Hakkio and Rush (1991) for a discussion. 
14. This is presumably because k should increase with T for consistency. Results in the literature provide various 

conditions for the increase of the truncation parameter as T -+ ~ that is sufficient for consistency. For example, 
depending on the underlying assumptions, the growth rate of k required for consistency can range from r1/4 

to r1/2. However, Newey and West (1987) assert that the specification of an appropriate asymptotic growth 
rate for k provides little guidance for the choice of the truncation parameter in finite samples. This makes valid 
comparisons across finite samples for a given k difficult. 
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maintains power better over the truncation parameters. For example, for a truncation parameter 

equal to 8, the power of the J1 test declines to less than 2 per cent for all DGPs examined, while 

the power of the KPS test does not fall below 30 per cent. However, for larger samples both tests 

appear to maintain a reasonable level of power overt Table 3 (p. 14) provides size-adjusted power 

calculations for each experiment. Again, the KPS test performs better than the J1 test for smaller 

sample sizes (50 observations). However, for larger sample sizes the J1 test appears to dominate, 

albeit slightly, the KPS test in size-adjusted power. This result is not really surprising once we 

recall the evidence suggesting that the J1 test is marginally more conservative than the KPS test in 

terms of empirical size. 

In sum, as is the case with conventional unit-root tests, the KPS and J1 tests appear to suffer 

from size distortion and loss of power for certain data generation processes, and neither test clearly 

dominates the other. Both tests also appear sensitive to the specification of the truncation 

parameter. 

4.0 Joint Tests for Unit Roots 

KPS suggest using tests of the null hypothesis of stationarity in conjunction with tests of 

the null hypothesis of a unit-root. Using two tests means we may observe one of four possible 

outcomes. If the stationarity test rejects the stationary null and the unit-root test accepts the unit- 

root null, we would logically conclude that unit roots are present If the former test accepts the null 

of stationarity and the latter rejects the presence of unit roots, we would logically conclude that the 

data are stationary. If neither test rejects its null, we could conclude that the data are simply not 

sufficiently informative to distinguish between stationarity and a unit root. Finally, if both tests 

reject their nulls, we may suspect some kind of misspecification, since at least one of the tests must 

be suffering from Type I error. Note that the latter two situations do not allow us to draw 

conclusions about the presence of unit roots. 

To determine the value of using a joint test as opposed to a single traditional unit-root test, 

one must weigh the likelihood of producing conflicting and therefore inconclusive results against 
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the reduced probability of an incorrect conclusion. Since this in turn depends on the relative 

likelihood of encountering different DGPs and on the value one places on avoiding Type I or Type 

II errors, no definitive answer is possible. However, the results we present below should be enough 

to show applied researchers the kind of trade-offs involved. For compactness, we focus exclusively 

on results using the KPS test. 

In Table 4 (p. 15) and Table 5 (p. 16) we show the results of using a joint testing strategy 

on the same range of DGPs considered in the previous section. We use the same Monte Carlo 

framework described above to generate test statistics for both KPS and PP tests for each 

repetition.15 We then cross-tabulate these results for easier interpretation, comparing the results of 

a single-test strategy using just the PP test to the joint testing strategy. They show the frequency 

of incorrect conclusions using the PP test along side the frequency of incorrect, inconclusive and 

correct conclusions using the PP and KPS tests jointly.16 

Table 4 considers unit-root DGPs. We see that for non-negative MA parameters, both the 

single and the joint testing procedures produce few incorrect conclusions of stationarity, with the 

joint test always being more conservative than the single test. However, for negative MA 

parameters, the joint procedure reduces (often greatly) the number of incorrect conclusions 

produced by the single test. For example, with T= 100, k = 4 and 0 = -0.8, the frequency of such 

errors falls from 99.05 per cent with the PP test to 28.36 per cent with the KPS-PP test. The actual 

reduction tends to increase with T and decrease with k, which accords with the behaviour of the 

KPS test reported in Table 2 (p. 13). This comes at the cost of the ability to conclude that unit roots 

are indeed present in some cases when the MA parameter is non-negative. We see that while the 

frequency of the unit-root conclusion exceeds 99 per cent in several cases, it drops to just under 50 

per cent for small T and large k. This inability to correctly detect the presence of unit roots is due 

to the KPS test’s lack of power, as we can see by comparing the frequencies in the Unit Root 

15. We chose the PP test over the DF test, since the PP and KPS approaches use the same long-run variance 
estimators. Further, we use the normalized bias version of the PP test statistic, as Campbell and Perron (1991) 
assert that it is more powerful than the standard regression “t-test”. The PP Monte Carlo experiment results 
are available from the authors upon request. 

16. Henceforth, when the PP test is used in conjunction with the KPS test, we refer to this as the KPS-PP test. A 
more complete breakdown of test results is available from the authors. 
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columns in Table 4 (p. 15) with the power figures for the KPS test in Table 2. 

Table 5 (p. 16) shows the results for the stationary DGPs. Again, we find that the results 

differ depending on whether we consider negative or non-negative values of the MA parameter. 

For negative values, the single and the joint testing procedure produce nearly identical results. 

Even in 10,000 trials, many of these experiments failed to produce a single case of a conclusion 

that unit roots were present, and the frequency of such false conclusions is always below 3 per cent. 

For non-negative MA parameters, however, the single and joint tests give very similar numbers of 

incorrect conclusions in larger samples (T = 200), while for small samples and large truncation 

lengths (k = 4 and 8) the joint test produces far fewer incorrect conclusions than the single test. For 

example, with T = 50, 0 = 0.5 and k = 4, the single test fails to reject the unit-root null in 91.69 

per cent of all trials, while the joint test admits a unit-root result in only 28.94 per cent of the cases. 

Again, this gain is offset by the inability to conclude that the DGP is stationary for a significant part 

of the parameter space, namely, in larger samples with negative MA parameters. While the PP test 

rejects the presence of a unit root over 97 per cent of the time in all such cases, the frequency of 

the stationary conclusion for the KPS-PP test varies from over 90 per cent to under 25 per cent, the 

frequency falling as T increases and 0 and k decrease. Again, the inability to correctly detect the 

stationarity of the DGP is due to the KPS test’s severe size distortion, as we can see by comparing 

the results in the Stationary Column in Table 5 with the size figures for the KPS test in Table 1 (p. 

12). 

As we stated at the outset of this section, whether the single or joint testing approach is 

superior in any well-defined sense will depend on the specific application and the relative 

importance the researcher places on Type I and Type II errors. However, an illustrative way to 

summarize our results would be to use a Bayesian approach and consider the ex ante and ex post 

probabilities of a unit root’s presence. For convenience, we consider the simple case of 

ARMA( 1,1) DGPs, and our priors place a probability of 0.5 on p = 0.85,1.0 and 0.2 on 

0 = 0.8, 0.5,0.0, -0.5, -0.8. In other words, we examine only the DGPs considered in our Monte 

Carlo experiments, with each one thought to be equally likely. Table 6 (p. 17) shows the resulting 
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ex post probabilities of having a true unit-root DGP conditional on the tests indicating the presence 

of a unit root (or in the case of the PP test, simply failing to reject the null). Table 7 (p. 17) shows 

the corresponding probabilities of having a truly stationary DGP conditional on the tests indicating 

stationarity. 

Table 6 shows that in large samples (T= 200) there is little difference between the PP and 

KPS-PP tests when detecting a unit-root. Both the single and joint tests allow us to have similarly 

high confidence in our results, particularly when we have k > 0. In short data samples (T = 50), 

the single test does not make us any more confident about our results, moving our ex post 

probabilities little from our prior of 0.5, while the joint test allows us to be more confident of our 

results, particularly for large k. Table 7 shows significant differences between the single and joint 

testing procedure in all sample lengths when we conclude that the series is stationary. Based on 

the single test, we would believe this conclusion to be true between 60 and 75 per cent of the time 

for most choices of k and T, while with the joint test these probabilities rise to the 70 to 95 per cent 

range. These results suggest that the joint testing procedure allows us to be most confident about 

our results when it indicates our series are stationary, or when it indicates our series have a unit 

root for small samples and large k. However, we should expect the joint test to produce frequently 

inconclusive results. As is shown in Table 8 (p. 17), using the same priors used to construct Table 

6 and Table 7, we should expect such results roughly 25 to 50 per cent of the time, but particularly 

in short samples with large k and in large samples with small k. 

Some may suspect that the superior reliability of the joint test is simply the result of 

comparing it to the PP test, which we know suffers from severe size distortion in the presence of 

negative MA parameters.17 Hence, we repeat the single and joint testing procedures comparison 

by replacing the PP test with the augmented Dickey-Fuller (ADF) test.18 The results (Tables 9 and 

10, p. 18) again suggest that the joint testing procedure will reduce the probability of an erroneous 

conclusion, especially for smaller samples and stationary DGPs. 

17. See Schwert (1987,1989). 
18. In the following experiment, we examine only the case for an arbitrary selected lag length of four. 
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We also examine whether the reduced probability of incorrect conclusions is a result of 

using two tests with opposite null hypothesis or simply a result of using two tests. To this end we 

compare the performance of the KPS-ADF test to the PP-ADF test (see Tables 9 and 10). For unit- 

root processes there is little disagreement between the ADF and PP tests except for large negative 

MA cases. Here the KPS-ADF test gives fewer stationarity conclusions than the PP-ADF test. 

However, for stationary processes the KPS-ADF test leads to appreciably fewer incorrect 

conclusions of unit roots, especially for smaller samples. For example, with p = 0.85, 0 = 0.0 

and T = 50, the PP-ADF test will result in a unit-root conclusion about 69.3 per cent of the time, 

whereas the KPS-ADF test reduces this to 27.7 per cent. 

5.0 Concluding Remarks 

Both the KPS and J1 tests appear to suffer from size distortion and loss of power for certain 

data generating processes, and neither test clearly dominates the other. Both tests also appear 

sensitive to the specification of the truncation parameter. Examining the consequences of using 

the KPS test in conjunction with standard unit-root tests suggests that the frequency of incorrect 

conclusions can often be reduced relative to that of a single standard unit-root test. One way to 

summarize these results is in a simple Bayesian framework. We find that the joint testing approach 

gives the most reliable results when the joint test indicates that the data are stationary or that the 

data have a unit root for small samples and large k. 
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Table 1: 
Empirical Size Calculations 

Kwiatkowski, Phillips and Schmidt (KPS) and Park (Jl) Tests 
DGP: yt = + ^ + 

0 1 

e KPS Jl KPS Jl KPS Jl KPS Jl KPS Jl 

-0.8 T=50 

T=100 

T=200 

12.29 

13.90 

15.44 

11.87 

12.81 

14.42 

10.16 

12.63 

13.74 

9.25 

10.77 

12.71 

8.87 

11.42 

13.00 

6.44 

9.84 

11.16 

7.53 

9.74 

11.28 

2.99 

7.33 

8.82 

3.86 

7.05 

8.53 

1.34 

4.52 

6.87 

-0.5 T=50 

T=100 

T=200 

59.22 

68.96 

75.44 

67.63 

65.48 

64.57 

44.96 

52.77 

58.04 

54.30 

50.40 

49.02 

34.71 

41.96 

45.58 

40.83 

39.34 

38.01 

23.38 

27.87 

32.20 

17.80 

23.50 

25.11 

10.53 

16.71 

18.99 

I. 24 

7.28 

II. 58 

0.0 T=50 

T=100 

T=200 

81.57 

88.25 

91.36 

88.36 

81.24 

78.11 

58.95 

67.14 

70.14 

72.34 

61.40 

58.19 

44.52 

52.30 

55.05 

56.66 

48.03 

45.55 

28.86 

33.04 

36.58 

26.08 

27.28 

28.54 

12.74 

18.84 

20.43 

1.36 

7.73 

13.09 

0.5 T=50 

T=100 

T=200 

85.94 

90.36 

93.03 

89.80 

83.15 

78.98 

61.28 

69.33 

73.12 

74.29 

64.74 

60.39 

45.82 

52.01 

57.20 

60.19 

49.56 

46.62 

29.27 

34.43 

36.38 

27.11 

27.76 

29.19 

12.43 

19.09 

20.50 

1.01 

8.71 

13.35 

0.8 T=50 

T=100 

T=200 

85.70 

90.96 

93.68 

90.66 

83.50 

79.47 

62.42 

69.47 

73.00 

75.30 

64.53 

60.38 

45.91 

52.55 

56.19 

59.27 

49.45 

46.28 

29.76 

33.41 

37.94 

27.14 

28.12 

29.66 

12.78 

19.35 

21.18 

1.34 

8.65 

12.84 

Note: The values in Tables 1 through 10 are in percentage form. 
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Table 2: 
Empirical Power Calculations 

Kwiatkowski, Phillips and Schmidt (KPS) and Park (Jl) Tests 
DGF: y, = ?,_, + «, + ee,_j 
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Table 3: 
Size-adjusted Power Calculations 

Kwiatkowski, Phillips and Schmidt (KPS) and Park (Jl) Tests 
DGP:y, = y,Tl + «,+ »*,., 
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Table 4: 
Comparison of Conclusions Given by the PP Test and the KPS and PP Tests 

DGP: y, = y,_ j+ tf,+ e^-i 

pp 

Stationary 

T= 50 T=100 T=200 

PP-KPS 

Stationary 

T= 50 T=100 T=200 

PP-KPS 

Inconclusive 

T= 50 T=100 T=200 

PP-KPS 

Unit Root 

T= 50 T=100 T=200 

-0.8 99.55 

98.61 

98.57 

98.85 

99.66 

99.86 

99.22 

98.83 

99.05 

99.64 

99.97 

99.09 

98.67 

98.46 

99.12 

38.37 

43.37 

47.34 

55.31 

68.82 

14.19 

17.27 

20.90 

28.36 

39.10 

2.58 

4.03 

5.97 

9.56 

19.36 

61.18 

55.24 

51.23 

43.54 

30.84 

85.67 

81.95 

77.93 

70.69 

60.54 

97.39 

95.06 

92.70 

88.90 

79.76 

0.45 

1.39 

1.43 

1.15 

0.34 

0.14 

0.78 

1.17 

0.95 

0.36 

0.03 

0.91 

1.33 

1.54 

0.88 

-0.5 57.66 

47.76 

48.13 

52.59 

59.05 

63.55 

49.17 

46.53 

49.60 

56.00 

65.96 

47.55 

42.06 

42.46 

47.90 

10.30 

17.50 

22.49 

30.94 

44.75 

1.60 

5.21 

8.67 

17.50 

28.62 

0.19 

0.77 

1.83 

5.79 

13.69 

47.42 

31.71 

29.64 

27.86 

25.54 

61.95 

43.99 

38.24 

34.15 

31.45 

65.77 

46.78 

40.23 

36.89 

35.33 

42.28 

50.79 

47.87 

41.20 

29.71 

36.45 

50.80 

53.09 

48.35 

39.93 

34.04 

52.45 

57.94 

57.32 

50.98 

0.0 4.61 

5.01 

4.83 

5.73 

4.06 

4.69 

5.11 

5.63 

5.92 

6.12 

5.23 

5.06 

4.69 

5.35 

5.96 

1.66 

3.33 

3.74 

4.99 

3.91 

0.44 

1.68 

2.77 

4.00 

5.25 

0.05 

0.38 

0.81 

1.87 

3.82 

5.16 

11.42 

19.31 

30.60 

50.58 

4.41 

5.56 

8.34 

15.75 

27.65 

5.18 

4.78 

4.59 

6.71 

13.57 

93.18 

85.25 

76.95 

64.41 

45.51 

95.15 

92.76 

88.89 

80.25 

67.10 

94.77 

94.84 

94.60 

91.42 

82.61 

0.5 0.23 

1.67 

1.87 

1.31 

0.49 

0.35 

1.60 

2.21 

2.49 

1.63 

0.40 

1.62 

2.40 

2.99 

2.93 

0.11 

1.22 

1.54 

1.29 

0.48 

0.05 

0.63 

1.30 

1.95 

1.56 

0.00 

0.18 

0.62 

1.46 

2.08 

2.85 

11.44 

21.26 

33.44 

53.10 

0.02 

3.49 

7.14 

16.34 

30.46 

0.41 

1.71 

2.77 

5.40 

13.49 

97.04 

87.34 

77.20 

65.22 

46.42 

99.93 

95.88 

91.56 

81.71 

67.98 

99.59 

98.11 

96.61 

93.14 

84.43 

0.8 0.21 

1.20 

1.51 

1.09 

0.33 

0.25 

1.32 

2.16 

2.12 

1.30 

0.25 

1.78 

1.98 

2.75 

2.50 

0.16 

0.91 

1.33 

1.03 

0.32 

0.07 

0.54 

1.31 

1.56 

1.26 

0.02 

0.16 

0.46 

1.25 

1.83 

3.05 

13.51 

20.45 

32.63 

53.20 

0.62 

3.90 

7.50 

16.52 

30.47 

0.25 

1.91 

2.30 

5.44 

13.58 

96.79 

85.58 

78.22 

66.34 

46.48 

99.31 

95.56 

91.19 

81.92 

68.27 

99.73 

97.93 

97.24 

93.31 

84.59 
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Table 5: 
Comparison of Conclusions Given by the PP Test and the KPS 

DGP: yt = 0.85y,_ x + Qt + 0tf,_ j 
and PP Tests 

pp 

Unit Root 

T= 50 T=100 T=200 

PP-KPS 

Unit Root 

T= 50 T=100 T=200 

PP-KPS 

Inconclusive 

T= 50 T=100 T=200 

PP-KPS 

Stationary 

T= 50 T=100 T=200 

-0.8 0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

12.29 

10.16 

8.87 

7.53 

3.86 

13.90 

12.63 

11.42 

9.74 

7.05 

15.44 

13.74 

13.00 

11.28 

8.53 

87.71 

89.84 

91.13 

92.47 

96.14 

86.10 

87.37 

88.58 

90.26 

92.95 

84.56 

86.26 

87.00 

88.72 

91.47 

-0.5 1.19 

2.93 

2.69 

1.79 

0.99 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.17 

2.55 

2.19 

1.19 

0.43 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

58.07 

42.79 

33.02 

22.79 

10.66 

68.96 

52.77 

41.96 

27.87 

16.71 

75.44 

58.04 

45.58 

32.20 

18.99 

40.76 

54.66 

64.79 

76.02 

88.91 

31.04 

47.23 

58.04 

72.13 

83.29 

24.56 

41.96 

54.42 

67.80 

81.01 

0.0 72.20 

69.05 

67.32 

67.80 

73.84 

22.28 

22.73 

21.48 

20.74 

19.37 

0.02 

0.03 

0.01 

0.09 

0.12 

64.71 

48.10 

37.33 

25.33 

11.24 

21.87 

20.05 

16.05 

11.27 

7.03 

0.02 

0.03 

0.07 

0.07 

0.09 

24.35 

31.80 

37.18 

46.00 

64.10 

66.79 

49.77 

41.68 

31.24 

24.15 

91.34 

70.11 

55.01 

36.53 

20.37 

10.94 

20.10 

25.49 

28.67 

24.66 

11.34 

30.18 

42.27 

57.49 

68.82 

8.64 

29.86 

44.92 

63.40 

79.54 

0.5 96.91 

88.73 

87.75 

91.69 

97.85 

81.40 

52.43 

47.49 

49.73 

63.43 

14.93 

1.89 

1.11 

1.61 

2.75 

84.46 

58.41 

44.29 

28.94 

12.37 

76.26 

42.78 

31.62 

23.89 

16.87 

14.76 

1.80 

0.98 

1.19 

1.44 

13.93 

33.19 

44.99 

63.08 

85.54 

19.24 

36.20 

36.26 

36.38 

48.78 

78.44 

71.41 

56.35 

35.61 

20.37 

1.61 

8.40 

10.72 

7.98 

2.09 

4.50 

21.02 

32.12 

39.73 

34.35 

6.80 

26.79 

42.67 

63.20 

78.19 

0.8 98.06 

90.83 

89.97 

93.58 

98.80 

87.78 

5.7.49 

51.49 

52.86 

70.61 

25.11 

2.23 

1.55 

1.91 

3.80 

84.99 

60.29 

44.63 

29.54 

12.78 

81.97 

46.99 

34.32 

24.31 

17.66 

24.83 

2.15 

1.28 

1.47 

2.12 

13.78 

32.67 

55.37 

64.26 

86.02 

14.80 

32.98 

35.40 

37.65 

54.64 

69.13 

70.93 

55.18 

36.91 

20.74 

1.23 

7.04 

8.75 

6.20 

1.20 

3.23 

20.03 

30.28 

38.04 

27.70 

6.04 

26.92 

43.54 

61.62 

77.14 
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Table 6: 
Bayesian Ex Post Probabilities of a Unit Root 

Conditional on Significant Evidence of a Unit Root 

Phillips-Perron Test 

T=50 T=100 T=200 

55.72 

57.89 

58.21 

57.19 

55.34 

63.38 

72.15 

74.10 

73.43 

68.61 

89.12 

98.81 

99.24 

98.97 

98.08 

T=50 

PP-KPS Test 

T=100 

58.353 

64.70 

68.68 

73.71 

82.06 

64.76 

75.35 

79.90 

83.14 

85.43 

Table 7: 
Bayesian Ex Post Probabilities of a Stationary Series 
Conditional on Significant Evidence of Stationarity 

Phillips-Perron Test 

T=50 T=100 T=200 

58.81 

61.70 

61.96 

60.57 

58.28 

64.65 

70.16 

70.96 

70.29 

67.79 

72.80 

76.17 

76.85 

76.56 

75.69 

T=50 

PP-KPS Test 

T=100 

73.76 

73.08 

72.44 

69.31 

64.30 

89.28 

89.04 

87.79 

84.80 

80.21 

Table 8: 
Probabilities of an Inconclusive Result with the PP-KPS Test 

T=200 

89.23 

98.86 

99.33 

99.20 

98.82 

T=200 

97.87 

97.46 

96.57 

94.53 

90.90 
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Table 9: 
Comparison of Conclusions Given by the ADF Test and the KPS and ADF Tests 

DGP: yt = yl_l + ût + Qût_1 

ADF PP-ADF KPS-ADF KPS-ADF 

Stationary Stationary Stationary Unit Root 

e T=50 T=100 T=200 T=50 T=100 T=200 T=50 T=100 T=200 T=50 T=100 T=200 

-0.8 

-0.5 

0.0 

0.5 

0.8 

15.89 28.16 36.03 

4.31 5.54 5.14 

4.69 5.17 4.57 

4.05 4.13 4.70 

3.58 3.46 3.68 

15.88 28.16 36.03 

3.71 5.06 4.86 

1.33 2.41 2.49 

0.60 1.12 2.06 

0.36 0.86 1.46 

14.31 17.37 8.45 

3.23 2.92 1.64 

3.12 2.52 1.39 

2.80 2.16 1.18 

2.14 1.51 0.98 

43.37 59.66 62.79 

61.98 78.39 91.13 

63.82 80.03 91.59 

64.22 80.87 91.20 

63.79 80.57 91.98 

Table 10: 
Comparison of Conclusions Given by the ADF Test and the KPS and ADF Tests 

DGP: yt = 0.85y,_ l + ûl + Qû[_l 

ADF PP-ADF KPS-ADF KPS-ADF 

Unit Root Unit Root Unit Root Stationary 

T=50 T=100 T=200 T=50 T=100 T=200 T=50 T=100 T=200 T=50 T=100 T=200 

-0.8 

-0.5 

0.0 

0.5 

0.8 

54.28 3.20 0.00 

85.80 49.81 2.29 

89.00 64.08 8.97 

90.49 69.37 13.09 

93.29 77.52 21.59 

0.00 0.00 0.00 

1.79 0.00 0.00 

63.93 19.48 0.04 

85.64 46.34 1.15 

89.24 50.56 1.41 

6.28 1.08 0.00 

22.67 19.67 1.44 

27.72 27.17 5.35 

28.93 29.96 7.84 

28.44 30.56 12.08 

44.94 88.27 88.85 

13.46 41.94 68.11 

10.27 30.17 61.14 

8.95 25.80 57.98 

6.29 19.51 54.50 
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