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ABSTRACT 

Are stock market crashes related to deviations from the apparent fundamental share price? Using 

a switching-regression framework, we test whether apparent deviations help to predict the regime from 

which the next period's stock market return is drawn and the magnitude of returns in that regime. We 

find that the ex ante probability of a collapse rises before most actual crashes. Likelihood ratio tests 

confirm that regime switches are influenced by apparent deviations. 

RÉSUMÉ 

Les krachs sont-ils liés aux écarts que les cours des actions affichent par rapport à leur valeur 

fondamentale? Nous testons un modèle de régression avec changement de régime pour voir si les écarts 

ainsi observés permettent de prédire le régime de la période subséquente et l'ampleur du rendement des 

actions dans ce dernier. Nous constatons que la probabilité anticipée d'un krach augmente la plupart du 

temps avant que celui-ci ne se produise. Les tests du rapport de vraisemblance confortent l'hypothèse 

que les changements de régime sont influencés par les écarts observés. 
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I. INTRODUCTION 

The past decade has seen several large fluctuations in asset prices that are not easily explained 

by news about market fundamentals. The increase in the U.S. dollar in 1984-85, the rise of the price- 

earnings ratio on the Tokyo stock market in 1985-86, and the October 1987 world stock market crash are 

a few recent examples. One possible explanation for these fluctuations is the existence of speculative 

bubbles in asset prices. In a bubble model, asset prices may consist of two components, the market 

fundamental and a speculative bubble. A rational risk-neutral investor will hold an asset that is 

overvalued relative to its market fundamental so long as its expected rate of return equals the rate of 

return on a non-bubbly asset. If there is a chance that the bubble will collapse, then the expected return 

on a "bubbly" asset in the states where the bubble survives must be higher to compensate the investor for 

the possibility of collapse. This means the bubble component must be growing at a more rapid rate than 

the fundamental. Thus the existence of bubbles would not only account for occasional asset price crashes 

but also rapid run-ups in asset prices before a crash. 

The question we address is whether or not stock market crashes and the booms that precede them 

are related to apparent deviations from fundamentals as a model of bubbles would predict. We begin by 

showing how a simple bubble model leads to regime-switching behaviour in stock prices. In one regime, 

an apparent deviation from fundamentals grows from one period to the next; in the second, the apparent 

deviation shrinks. Linearizing this model gives us a system of three equations (one for returns in each 

regime and one for the probability of the bubble collapsing) that we can estimate using standard 

switching-regression techniques. 

We estimate the switching regression suggested by the bubble model on data for the Toronto 

Stock Exchange from 1956 to 1989. We then test for the influence of deviations from fundamentals by 

imposing three sets of parameter restrictions on the switching-regression model derived in section II. To 

allow for the apparent regime changes in stock market volatility, the first set of restrictions allows for 

different volatilities but no difference in expected returns between the two regimes and no role for 
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deviations from fundamentals. The second set of restrictions allows for differences in both volatility and 

expected returns between regimes along the lines of the mixture of normal distributions model estimated 

by Akgiray and Booth (1987), but provides no role for apparent deviations from fundamentals. The third 

allows apparent deviations to generate mean reversion in asset prices, but does not allow this effect to 

differ across regimes as our model of stochastic bubbles predicts. This should capture the apparent mean 

reversion in asset prices noted by Fama and French (1988), Poterba and Summers (1988), and Culter, 

Poterba and Summers (1991). The data reject all three sets of alternatives at conventional significance 

levels. 

In addition, we use the coefficient estimates from the switching regression to calculate the ex ante 

and ex post probabilities of a market crash. The ex post probability of a crash is based on the current 

period return; the ex ante probability is based on the apparent deviation from fundamentals in the 

previous period. We find that the ex post probability shows dramatic spikes which correspond to actual 

crashes. More surprisingly, we find that the ex ante probability of a crash typically rises before a crash, 

suggesting that deviations from fundamentals have some predictive ability for stock market regimes. 

As Rood and Hodrick (1986), among others, have shown, there is generally a way in which tests 

for bubbles can be reinterpreted in terms of the process driving fundamentals. While we provide a 

stochastic bubble example as a motivation for how stock market regimes might arise and why both the 

regime and the returns conditional on the regime would be predictable, we believe that our primary 

contribution is a new type of data description. If the stylized facts that emerge in our empirical work are 

not idiosyncratic to our data, then later studies may wish to offer and test competing explanations. 

Section II explains our model of stochastic bubbles and how it generates regime switching in stock 

returns. It also shows how such a model fits into a switching-regression framework. Section III describes 

the data we use and the measure of fundamental stock prices used in the switching regression. Section 

IV reports the estimated switching model and summarizes several diagnostic tests of its fit. It also reports 

the ex ante and ex post probabilities of collapse. Section V tests the switching-regression model against 

the nested alternatives described above. Section VI discusses the interpretation of our empirical results 
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and suggests directions for further research. 

II. A STOCHASTIC BUBBLE INTERPRETATION OF REGIME SWITCHING 

This section provides an economic interpretation for the switching-regression relationships we 

estimate below. We will motivate them with a model of stochastic bubbles, using a generalization of the 

bubble model in Blanchard (1979) and Blanchard and Watson (1982). After describing its behaviour, we 

show how a first-order approximation of the model leads to the switching-regression model we estimate. 

Since we do not claim that bubbles are the only mechanism which could account for this kind of regime- 

switching behaviour and we do not explicitly consider other mechanisms, we do not consider the evidence 

of regime switching that we find to be definite evidence of the existence of bubbles. However, we feel 

it may give insight into why explanations involving bubbles recur over the centuries; the bubble model 

seems to describe some empirical regularities in asset prices that are not predicted by standard asset- 

pricing models. 

We begin by considering a simple asset-pricing model where risk-neutral investors choose between 

holding a risk-free asset that yields (1+r) in period t and a risky stock.1 For both assets to be held in 

equilibrium, it must be true that 

P, = (l+rr'-E,^) + D( (1) 

where P, and Dt are the stock's price and dividend at time t and E, denotes the expectation conditional 

on information available at time t. One possible solution to this equation defines the fundamental price 

There is an extensive literature noting restrictions on the admissibility of bubble solutions in this 
class of models, including Diba and Grossman (1987,1988) and Obstfeld and Rogoff (1983,1986). More 
recent work by Weil (1988) and Allen and Gorton (1991) has shown that these restriction are not 
robust to minor changes in the model. As our purpose in this section is to provide intuition for the 
presence of switching behaviour and not to contribute to the theoretical bubble literature, we have 
chosen to use this simpler model as an expository device. 
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to survive. This can be written as 

d #.) 
. ' < o 
T]bj 

Second, while some notable market crashes have occurred in a single day, in other cases a collapse may * 

occur over several months.2 To model this, we allow the expected value of the bubble conditioned on 

collapse to be non-zero, thereby allowing for partial collapses. We assume the expected size of a bubble 

in state C, which we define as ivP„ depends on the relative size of the bubble in the previous period, 

so 

E,(BtJC) = u(b,)-Pt 
(7) 

We further assume that u(0 is a continuous and everywhere differentiable function and that 

«(0) = 0 (8) 

1 > 
d u(bt) 

— 

> 0 (9) 

This ensures that I Bt I > I u(bt)Pt I, so a collapse means that the bubble is expected to shrink. Together 

with (4) it implies that the expected value of the bubble in state C cannot be larger than that in state S. 

Using these two generalizations together with (4) allows us to write our new bubble model as 

2The fall in the Tokyo stock exchange in the months following January 1990 is an example. 
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#,) 

1 -#,) 

(10) 

We can see that when q(bt)=q and u(bt)=0, this reduces to the Blanchard-Watson process. As before, the 

more likely S, the smaller expected capital gains in S need to be. Also, as the expected value of the bubble 

in state C ( u(bt)Pt ) rises, agents require smaller expected capital gains in state S to satisfy (4). 

It is straightforward to derive the expected excess returns R in each regime, where excess returns 

are the rate of return on the bubbly asset less the rate of return on the riskless asset 

Noting that conditional expected excess returns are a function of b„ we can take first-order Taylor series 

approximations of E,(Rt+1 I S) and E,(R,+11 C) with respect to bt around some arbitrary value b to obtain: 

(11) 

E,(R,JC) = u(bt) - (1 +r)bt 
(12) 

(13) 

(14) 

where 
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T» = - »<w] » _L£“ 
#)2 d bt q(b) 

1 +r ■ 
du(b) 

~db~ 

(15) 

Yci 
du(b) 

d b. 
-d +r) (16) 

Assuming r > 0, we can then prove that y > 0 and y^ < 0.3 

By dropping the expectations operator E, in equations (13) and (14), we can rewrite them as 

V, ^so + Is I + ^SA* 1 

R 
C,I*1 \-0 

+ ycA 
+ ec,,.i 

(17) 

(18) 

To complete the switching-regression model, we need only combine (17) and (18) with an equation that 

describes the probability that an observed excess return R, corresponds to regime S (or regime C). The 

simplest way to do this would be to linearize q(bt), but then there is no guarantee that the resulting 

probabilities will be bounded between zero and one. We adopt the same solution used in Probit models 

by imposing the functional form 

PHregime S) = ct>(y + y -\bt\) (19) 

where o is the standard normal cumulative distribution function. Note that (6) implies y ^ < 0. 

3The proof for yci follows directly from (9). For ysi, we can use this condition and the fact that 1 > 
q(b,) > 0 to show that the second term in the expression is always non-negative. (6), (8) and (9) then 
together imply that the first expression is also non-negative, so their sum will be non-negative. 
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The three equations (17), (18) and (19) form a standard switching-regression model of the type 

described by Goldfeld and Quandt (1976) and Hartley (1978). Once the assumption of normality is 

imposed, estimates of the y's can be found by maximizing the likelihood function 

n her.1 + {i-^WYjMlK 
-yCo-\ib? (20) 

where ()> is the standard normal probability density function and <3^ ac 
are the standard deviations of 

P p . Note that this estimation technique not only allows us to recover consistent estimates of the Cc,i*i n 

parameters in both states, but it does not require assumptions about which regime generated which 

observation. Instead, it considers the probability that either regime may have generated a given 

observation and gives an optimal classification of observations into the underlying regimes, as we will 

see below. 

III. DATA 

The basic data used below to test for bubbles are monthly prices and dividends for the Toronto 

Stock Exchange. They cover the period from January 1956 to November 1989 and are month-end figures. 

Stock prices (Pt) are measured by the Toronto Stock Exchange Composite (300, weighted) Index, not 

seasonally adjusted, from Bank of Canada Review, series B4237. Dividends are calculated from the above 

prices and the corresponding dividend yield from Bank of Canada Review, series B4245. Excess returns on 

stocks are calculated as Rt = Pt+1/Pt + (DYt - it)/1200 - 1.0; where DY, is the above dividend yield series 

and i< is the Canadian interest rate on 90-day prime corporate paper in per cent per annum from Bank of 

Canada Review, series B14017. The results were not very sensitive to the choice of interest rate series as 

excess returns are dominated by the change in stock prices. 
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Choosing a measure of deviations from fundamentals for bubble tests must always be 

controversial, since the test result will hinge upon the measure chosen and there is no way to test the 

model of fundamentals under the alternative hypothesis that bubbles are present. However, we do not 

aim to prove rigorously the presence or absence of bubbles; our primary goal is data description. We 

therefore use an intuitive measure of deviations from fundamentals; we regress the log of the stock price 

index on the log dividend index and a constant and use the residuals as our measure of deviations from 

fundamentals.4 This specification has the advantage of being very similar to the log price-dividend ratio, 

a widely used measure of stock market valuation. This makes it interesting to relate our results to work 

on the relationship between price-dividend ratios and predictable asset market returns, such as Fama and 

French (1988). 

Our measure of apparent deviations from fundamentals is shown in Figure 1. This measure 

indicates that apparent deviations from fundamentals were greatest in 1987, just prior to the October crash, 

but were also large in 1973. The most negative apparent deviations came in mid-1982, near the trough 

of a severe recession, although the period from late 1974 to early 1980 also saw a large negative apparent 

deviation. 

IV. ESTIMATION OF SWITCHING MODELS 

Table I presents the estimated coefficients from the general switching model. Since the measure 

of deviations is, by construction, equal to zero on average, Yso and yco give us the average behaviour of 

stock returns in each regime. We see that, conditional on the bubble surviving, we expect an excess return 

of 0.55% per month (6.4% per annum). Conditional on its collapse, however, we expect losses of 4.9% per 

4In a Lucas (1978) asset-pricing model where dividends follow a random walk with drift, the 
fundamental price can be expressed as P‘, = pD„ where p is a function of tastes and the parameters of 
the stochastic process for dividends. Since P, - pD, is the deviation from fundamentals, we regress P, 
on D, (taking logs to reduce heteroscedasticity) and use the residuals as our measure of bt. 
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month (45.4% per annum). On average, the probability of survival is O(yq0) = 97.6%, where O is the 

standard Gaussian cumulative density function (cdf). Thus the estimates from our switching regression 

reproduce the stylized fact that returns are characterized by large but infrequent crashes. Our estimates 

imply that the expected average excess return is 0.976*.0055 - .024*.0480 = 0.42% per month (5.2% per 

annum). The results therefore show an equity premium in our sample close to the 6% found in U.S. data 

by Mehra and Prescott (1985). It is also interesting to note that the volatility of returns is more than twice 

as large (measured by the standard deviation of the error term) in states where the bubble collapses as 

in states where it survives.5 

The ex ante probability of being in regime i at time t is defined as the probability conditioning 

on bt_], which is the size of the apparent deviation in the previous period. This probability is given by 

the formula <D(l(i) • (yq0 + yql • | bM | )) s P? where l(i) is 1 or -1, depending on the regime i. The ex post 

probability of regime i at time t also conditions on the realized excess return R, and is given by 

'X-'vfy A/ 

R -y -(y 'b ) t ho v hi i-iJ 

= Px (21) 

■a1 + (1 -PAH 
V 

■a' 

where (J) is the standard normal probability density function (pdf) and j*i. Note that these definitions 

imply that P? + P* = 1 and that P* + P* = 1- 

Figure 2 plots the ex ante and ex post probabilities of a collapse. The ex post probability of 

collapse is marked by distinct spikes which generally seem to coincide with actual market crashes. For 

example, we see spikes coinciding with crashes in 1957,1962,1969,1973,1974,1979,1981,1982 and 1987. 

sIn a Markov mixture of normals model of monthly U.S. stock returns from 1834 to 1987, 
Schwert (1989) finds that the variance of returns is about 2.3 times higher in the regime with negative 
mean returns. 
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What may be more interesting is the behaviour of the ex ante probability of collapse. Periods when the 

ex ante probability of collapse is highest end with a spike in the ex post probability, as can be seen in 

1972, 1974-75, 1982 and 1987. However, the converse is not always true. In some cases, such as 1969 or 

1979-80, there is a spike in the ex post probability of collapse without a corresponding rise in the ex ante 

probability. Of course, 1979-80 was a period when news arrived about oil shocks, so it would not be 

surprising if this was a period in which news about fundamentals was responsible for dramatic changes 

in stock prices. 

With few exceptions, the ex ante probability of collapse in any given month is relatively small (less 

than 20%). This tends to obscure the fact that large apparent deviations from fundamentals are associated 

with large cumulative probabilities of collapse. As Figure 3 shows, the cumulative ex ante probability of 

collapse rose above 90% before the 1962, 1969, 1973, 1979 and 1987 collapses.6 Again, there are several 

spikes in the ex post probability of collapse clustered around the 1979-80 oil shock which were not 

preceded by high cumulative probabilities of collapse. 

In the appendix, we present a variety of diagnostic statistics, the highlights of which are briefly 

summarized here. The raw returns show very strong evidence of negative skewness which is eliminated 

in the ex post residuals. The raw returns also show kurtosis; this is reduced in the ex post residuals but 

is still statistically significant. Finally, the Tukey Box plots in the appendix show a dramatic reduction 

in outliers, particularly negative outliers, from the raw returns to the ex post residuals. The common 

thread appears to be that the switching model does a good job of capturing crashes. 

To focus on an episode that may be of particular interest, we evaluate expected returns on the eve 

of the October 1987 crash when bt = 0.437. For this value of the apparent deviation from fundamentals, 

6In Figure 3, we calculate the cumulative probability of collapse as 

i - n K 
k-x 

where T is the last period in which P* < .75 and P? and P^ are the ex post and ex ante probabilities of 
survival in period t. 
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our estimates predict a monthly excess return of -12% conditional on a collapse7 and an ex ante 

probability of collapse of 29%. The cumulative ex ante probability of a collapse in the three-month period 

ending in October 1987 was 67%.8 

V. TESTS OF THE SWITCHING MODEL 

We can formally test how well the stochastic bubble model corresponds to the data by imposing 

parameter restrictions on the switching regression. Under the null hypothesis of no bubbles, the bubble 

measure should have no effect on which regime occurs, nor on the magnitude of returns in a given 

regime. By imposing different sets of parameter restrictions on the switching regression, we can mimic 

a variety of stylized facts about market returns. For example, by setting all the bubble coefficients equal 

to zero and imposing equal constants in the two regimes, we can reproduce the stylized fact of high and 

low volatility regimes described in Schwert (1989). A second set of parameter restrictions would apply 

if returns were generated by a simple mixture of normal distributions, as estimated by Akgiray and Booth 

(1987). Under a third set of parameter restrictions, our switching regression corresponds to the Cutler, 

Poterba and Summers (1991) regression test for mean reversion. 

Volatility regimes can be characterized as a situation in which mean returns are identical across 

regimes, but there are periods of high and low volatility in the market. Formally, this would be the 

special case of the general switching model where = yCo = Ycv Ysi = Yci = Yqi = 0 but we allow crs = 

Var(eSl+1) ^ac = Var(eCt+1), so 

7This compares to the actual monthly excess return of -23% for the period from the end of 
September to the end of October 1987. 

8It is interesting to compare these results to those of Friedman and Laibson (1989), who look at the 
macroeconomic implications of a model similar to ours in that it involves infrequent large movements 
in stock prices. Using a diffusion-jump model applied to U.S. data, for example, they estimate the 
probability of a crash in the quarter before October 1987 as about 4%. The key difference between 
their approach and ours is that they do not incorporate the information contained in a measure of 
deviations from fundamentals. 
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where 

Ki = Yo + e,- 
(22) 

- N(0,as) with prob q 
eK1 - N(0,CTc) with prob \-q 

(23) 

Coefficient estimates for the volatility regimes case are presented in column two of Table I. The 

LR statistic should have a x2 distribution under the null with 4 degrees of freedom. As shown in the 

table, the actual LR statistic is 14.40. Since we reject this null, we conclude that the regimes differ in more 

than just their variances.9 This implies either that the information contained in the measure of deviations 

from fundamentals helps to determine which regime prevails or that the regimes have different expected 

values, or both. Both are implied by the bubble model presented in Section II. 

The second possibility we consider is that returns are well characterized by a mixture of normal 

distributions with different means and variances, but are unrelated to deviations of stock prices from 

fundamentals, which can be expressed as 

RM ~ Wyso,crs) with prob q 
Rt^ ~ MYC^C) with prob 1 -q 

for some constant q. This is the special case of the general model where Ysi = Yci = Yqi = 0. Coefficient 

estimates for the normal mixture case are presented in column three of Table I. The LR statistic should 

have a %2 distribution under the null with 3 degrees of freedom. As shown in the table, the actual LR 

statistic is 11.24. The rejection of the null of a normal mixture implies that apparent deviations from 

’Rejection of this null also implies a rejection of the single regime null since the latter is just the 
special case where as = ac. However, we cannot test directly whether we have one regime or two 
since the parameters of our alternative hypothesis are not identified under the null of only one regime. 
See Lee and Chesher (1984) for details. 
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fundamentals help to determine expected returns in each regime and/or which regime prevails. 

The third possibility we explore is that returns are predictable, but mean returns do not differ 

across regimes. To test this, we compare the general switching framework with the restricted case where 

deviations from fundamentals help predict returns but mean returns are the same across regimes and 

deviations have no predictive power for the probability of a given regime. The "mean-reversion case 

therefore sets y* = yco = Yo, Ysi = Yci = Yi, and yql = 0. It corresponds to the regression test for transitory 

components in stock prices in Cutler, Poterba and Summers (1991), except that we allow more flexibility 

for volatility by allowing the variances of returns to be drawn from high and low volatility distributions 

Ki = ?o + Vb< + e«-i (25) 

where 

e ~ N(0,a ) with prob q 
e - N(0,cc) with prob 1 -q 

(26) 

Coefficient estimates for the volatility regimes case are presented in column four of Table 1. The 

LR statistic should have a %2 distribution under the null with 3 degrees of freedom. As shown in the 

table, the actual LR statistic is 12.64. The coefficient estimates and the LR test suggest that there is more 

in the data than simple mean reversion. In particular, yQ1 is significantly different from 0, which implies 

that a large deviation from fundamentals makes a collapse more likely. 

VI. CONCLUSION 

We investigate whether stock market booms and crashes are linked to apparent deviations from 

fundamentals. We consider a model in which stock market returns arise from two possible states of the 

world. In the first, an apparent deviation from fundamentals survives from one period to the next; in the 
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second, the apparent deviation collapses. Econometrically, this corresponds to a switching regression in 

which deviations influence both the probability of collapse and the magnitude of returns conditional on 

survival or collapse. 

The data suggest that stock market booms and crashes are related to apparent deviations from 

fundamentals. We find evidence of regime switches in stock market returns that are influenced by 

apparent deviations from fundamentals. Our estimates are consistent with the stylized fact of large but 

infrequent crashes. The size of the apparent deviations from fundamentals has an important influence 

on both the probability and expected magnitude of a collapse. For example, using the apparent deviation 

just before the October 1987 crash, our estimates suggest a cumulative probability of collapse of 67% for 

the three-month period ending in October and a one-month loss conditional on collapse of 12%. Collapse 

probabilities tend to be followed by actual crashes. While some crashes are not predicted by our model, 

these include cases such as the 1979, when news about fundamentals may have strongly influenced prices. 

We believe there are two important directions for further research. The first is to determine 

whether our stylized fact — that apparent deviations from fundamentals influence both the regime that 

prevails in the stock market and the size of expected returns -- generalizes to other countries, time periods 

and asset markets. The second is to see whether a plausible model of equilibrium asset pricing could 

explain our results in terms of switching fundamentals. Whatever the ultimate interpretation, our paper 

highlights an aspect of the behaviour of stock market returns that has not previously received attention. 
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APPENDIX: DIAGNOSTIC STATISTICS 

To give a better picture of the switching-regression model's ability to explain excess returns, we 

run a series of tests for non-normality and serial dependence on the return series and the residuals of the 

switching model. The excess returns predicted by the model are just the weighted sum of the fitted values 

for the surviving and collapsing regime equations, where the weights are the probabilities that the 

observation came from that regime. Since these probabilities depend on the information we condition on, 

we constructed them in two different ways; once using the ex ante probabilities and once using the ex 

post. Since the ex post condition on all available information, this should reflect more accurately the 

model's explanatory power. Results are shown in Table Al. 

The first set of statistics test for the presence of serial correlation or persistence in the data. The 

Durbin-Watson and the Q-test(l) test for first-order serial correlation while the Q-test(12) tests all orders 

up to 12. The Durbin Watson tests find no significant serial correlation for any of the series. The Q-tests 

find weak evidence of serial correlation for all the series; the test statistics are always significant at the 

10% level but never at 1%. Clearly, the switching model does not reduce the evidence of serial correlation; 

if anything, it slightly increases it. Note, however, that these conclusions are based on the assumption 

of normally distributed errors required for the validity of these tests. As an alternative, we also report 

the standardized runs statistic, which is a non-parametric test for serial persistence and is robust to 

deviations from normality. It gives results quite different from those for the Q-statistic; there is weak 

evidence (i.e., significance between the 10 and 1% levels) of persistence for the raw returns series and the 

ex ante residuals, but this vanishes for the ex post residuals. 

The next section of Table Al tests for deviations from normality. As is common with financial 

data, there is very strong evidence of skewness in the raw returns series. While the ex ante residuals 

show almost as much skewness, the ex post series have none, showing that the model can effectively 

explain all the skewness in the data. A non-parametric analogue of the skewness test is the sign test, 

which tests whether the median of the distribution is equal to the sample mean. It gives a similar 
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conclusion, finding weak evidence of skewness in returns and the ex ante series, but none in the ex post. 

Tests of kurtosis also confirm the general finding that financial data tend to be "fat-tailed" relative 

to the normal distribution. Both model residual series have significant evidence of excess kurtosis, 

although the test statistics do show a steady decline from the raw series to the ex ante to the ex post. As 

a result, the Jarque-Bera test for normality, which simply combines the skewness and kurtosis tests, just 

fails to reject the hypothesis of normality at the 5% significance level for the ex post residuals, while very 

strongly rejecting it for the other series. We conclude that the switching regression model can explain 

most, but not quite all, of the deviations from normality found in our returns series. 

The final section of the table contains the results of Engle (1982)'s tests for first-order 

Autoregressive Conditional Heteroscedasticity (ARCH). ARCH models have been a popular way to model 

the observed "clustering" of volatility in financial data. Surprisingly, however, we find no evidence of 

ARCH in our raw returns, but some weak (not significant at the 5% level) evidence of it in our ex post 

residuals. This suggests either spurious evidence of ARCH, or that it is a statistical artifact of the model. 

Since there is no evidence of ARCH in the returns, it does not imply that the switching model has failed 

to capture an important feature of the data. 

Another view of the model's fit can be seen from the Tukey Box plots shown in Figure Al. The 

height of the rectangle drawn for each residual and returns series shows its inter-quartile range and the 

line bisecting the rectangle indicates the median. The T-bars on each side indicate 2.5 times the inter- 

quartile range,10 and all observations falling outside this band are indicated with a We see that the 

switching model moves the median closer to zero, but has little effect on the inter-quartile range. Much 

of the difference comes in the tail of the distributions, where the ex post residuals show fewer outliers, 

especially negative ones. This suggests that the bubble model has more power to explain crashes than 

bull markets, and is also consistent with the large reduction in skewness we noted above. 

10For a normal distribution, this should cover all but about 9% of the data. Given our 406 observations, we 
would expect about 35 observations to lie outside this range. 
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Table I: Estimates of The General Switching Model 
and Nested Null Hypotheses 

General 
Switching Volatility 

Model Regimes 

Yso 

Ysi 

Yco 

Yci 

Yqo 

Yql 

ac 

p - Value 

0.0055 
(.0024) 

-0.0122 
(.0142) 

-0.0492 
(.0352) 

-0.1749 
(.0923) 

1.9704 
(.4500) 

-3.2317 
(1.4547) 

0.0381 
(.0019) 

0.0811 
(.0266) 

0.0041 
(.0021) 

1.1144 
(.3683) 

0.0366 
(.0027) 

0.0832 
(.0149) 

692.90 

14.40 

0.0061 

Normal 
Mixture 

0.0063 
(.0025) 

-0.0189 
(.0149) 

1.0412 
(.3288) 

0.0360 
(.0026) 

0.0775 
(.0115) 

694.48 

11.24 

0.0115 

Mean 
Reversion 

0.0043 
(.0021) 

-0.0168 
(.0118) 

1.0298 
(.3802) 

0.0360 
(.0028) 

0.0795 
(.0136) 

693.78 

12.64 

0.0055 

Log - 
Likelihood 700.10 

Likelihood Ratio 
Test Against General 
Switching Model 
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TABLE Al - Switching Regression Diagnostics 

Test Statistic 
Durbin-Watson 
Q-test (1) 
Q-test (12) 
Runs Test 

Skewness 
Sign Test 
Kurtosis 
Jarque-Bera 

Returns 
1.80 
4.00 (.0455) 

20.11 (.0650) 
-1.84 (.0656) 

-0.59 (.0000) 
2.03 (.0419) 
2.68 (.0000) 

115.92 (.0000) 

Ex Ante 
1.76 
5.91 (.0151) 

21.81 (.0397) 
-1.90 (.0571) 

-0.57 (.0000) 
2.23 (.0255) 
1.88 (.0000) 

73.30 (.0000) 

Ex Post 
1.78 
4.82 (.0281) 

22.47 (.0326) 
-1.41 (.1580) 

-0.08 (.5322) 
0.74 (.4566) 
0.59 (.0154) 
5.93 (.0515) 

ARCH (1) 0.13 (.7234) 0.88 (.3491) 3.11 (.0778) 
NOTES: 

Figures in () are significance levels. Values close to 0 imply 
rejection of the null. 

The Q-test is the Ljung-Box portmanteau test for serial correlation 
up to the nth order. It is distributed x2(«) under the null of no 
serial correlation. 

The Runs test is a non-parametric test for persistence and has a 
standard Gaussian distribution under the null. 

The Skewness and Kurtosis statistics are those suggested by 
Kendall and Stuart (1958). Significance levels are based on 
transformations of these statistics which should have a standard 
normal distribution under the null. 

The Sign test is a non-parametric test of whether the median is 
zero and has a standard normal distribution under the null. 

The ARCH test is Engle (1981 )'s test for a first order ARCH 
process and is %2( 1) under the null. 

The Jarque-Bera test for normality combines both skewness and 
kurtosis and is x2(2) under the null of normality. 
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Figure 1 - Deviations from Fundamentals 

Residuals from Regression of TSE log Prices on log Dividends 



Figure 2 - Probabilities of Bubble Collapse 
Ex Ante 



Figure 3 - Cumulative Ex Ante Probabilities of Collapse 
Critical Value = .75 



Figure \l:. Distribution of TSE Stock Returns 
Comparision of Raw Returns and Switching M odel Residuals 

Monthly 
Rate 
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Returns Ex Ante Residuals Ex Post Residuals 
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