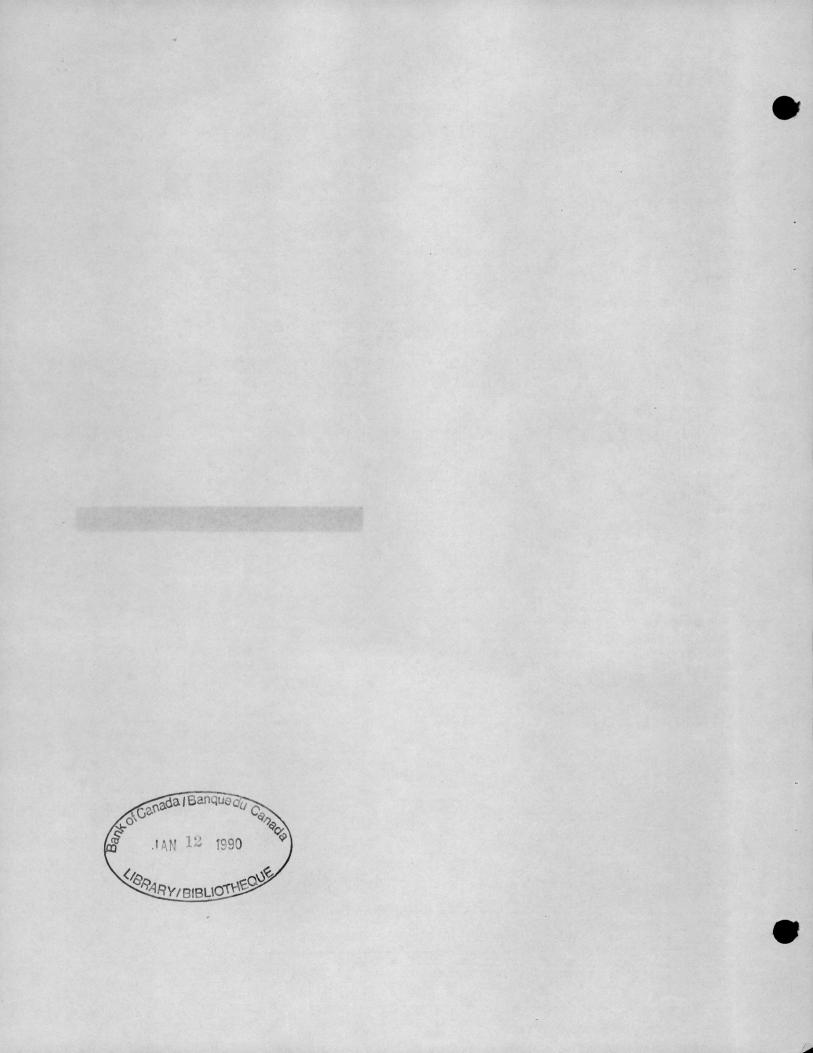
Bank of Canada. "The stock of automobiles in Canada : estimates relative to historical trends / Hung-Hay Lau and Louise Hyland. Dec. 1989.

HG 2706 .A79 1990-2 Working Paper 90-2/Document de travail 90-2


The Stock of Automobiles in Canada: Estimates relative to historical trends

by Hung-Hay Lau and Louise Hyland

Bank of Canada

Banque du Canada

THE STOCK OF AUTOMOBILES IN CANADA: ESTIMATES RELATIVE TO HISTORICAL TRENDS

Hung-Hay Lau and Louise Hyland Research Department Bank of Canada Ottawa, Ontario CANADA, K1A 0G9

December, 1989

Many thanks to Paul Jenkins, David Rose and Jack Selody for their comments on earlier drafts.

The views expressed here are those of the authors and should not be attributed to the Bank of Canada.

Abstract

The paper compares the consumer stock of passenger cars and light trucks in Canada with its "desired" stock, measured as the estimated historical trend. The actual and estimated desired stocks are measured in both physical units and new-vehicle equivalents, allowing for age distribution of the stock. The new-vehicle equivalents are derived from our estimates of the survival rates and resale values of automobiles of various vintages. Our analysis suggests that the stock of passenger cars and light trucks in Canada is still below historical trend values despite substantial increases in new vehicle sales ver the past 6 years.

Résumé

Dans la présente étude, les auteurs comparent le parc de voitures particulières et de camionnettes dont disposent les consommateurs au parc désiré, représenté par une estimation de la tendance passée. Les parcs effectif et désiré sont mesurés en unités réelles et en nombre équivalent de véhicules neufs, afin de tenir compte de la répartition par âge du parc de véhicules. Le nombre équivalent de véhicules neufs est dérivé d'estimations des taux de survie et des valeurs de revente de véhicules automobiles d'âges différents. Selon l'analyse effectuée, le parc de voitures particulières et de camionnettes Canada au demeure inférieur au parc désiré même si les ventes de véhicules neufs ont fortement progressé depuis six ans.

I. INTRODUCTION AND SUMMARY

This paper compares the stock of passenger cars and light trucks held in Canada by the *personal sector* with the "desired" stock, measured as the estimated historical trend. The results suggest that such stock is still below historical trend values, despite substantial increases in new-vehicle sales over the past six years.

The measurement of actual stock and the estimation of desired stock proceed through a number of steps. First, the total number of operating automobiles of all ages is estimated, based on new-motor vehicle sales and survival rates for various vintages. The stock data are broken down into several age groups. The average age of the stock of automobiles is also generated to provide information about the prospective replacement demand. Next, the stock in operating units is converted into units of newvehicle equivalents to take account of the age structure of the stock. This is achieved by combining the survival rates with the corresponding resale values of vehicles of the same vintage. Finally, the stock of motor vehicles in standard units and in newvehicle equivalents is expressed in units per person of driving-age (dividing by population 15 years and older) and in units per worker (dividing by the labour force) to account for changes in demographics and in employment. The resulting series are used to estimate trend values, which serve as proxies for desired stocks, notionally reflecting the influence of rising wealth and the declining relative price of motor vehicles over time.

II. STOCK OF MOTOR VEHICLES IN OPERATION

A. <u>Passenger Cars</u>

In this section, we briefly discuss Canadian auto statistics and our computations of the stock of automobiles in operation in terms of physical units.

1) Stock Data

To date, precise estimates of the stock of motor vehicles in operation are not available. A rough proxy is published by Statistics Canada in the form of registration data based on an add-up of provincial data (Catalogue No. 53-219). Currently, Statistics Canada publishes data on new registrations and total registrations for cars regardless of vintages. However, such data do not provide a reliable indication of the car stock. There are problems of double counting, of differences in registration year and of different definitions of passenger cars. The Statistics Canada data tend to overestimate the car stock, because some vehicles are registered in more than one province or territory during the same licence year, as people move from one province to another. This problem of double counting is particularly acute for Quebec, where registration data are based on transaction statistics. In consequence, a car that is sold three times in any given year is counted as three units. The accuracy of the all-Canada total registration data is also affected by interprovincial differences in the ending dates of the registration year, which vary from January 1 to March 31. Finally, there is also considerable variation in the definition of "passenger automobile." These variations are:

- ambulances and hearses are included only in P.E.I.;
- camper trucks, in New Brunswick;
- ambulances, hearses and school buses, in

Manitoba;

- motorhomes, in British Columbia where taxicabs are excluded;

- vans and four-wheel drive vehicles licensed with passenger plates, in Northwest Territories;

To overcome the problems with Statistics Canada's registration statistics, we have devised an alternative proxy. This new proxy also provides information about the number of cars of different vintages on the road -- data which are not currently available from registration statistics. Our proxy is given by:

$$K = (1 - s) * K_{-1} + QCARS / 4$$
 (1)

where K is the *stock* of cars in the current quarter, s is the *weighted* average scrappage rate for the universe of cars, K $_{1}$ is the one-period lagged value of the stock of cars, and QCARS is the *flow* of new car sales in the current quarter, seasonally adjusted at annual rates. From equation (1), it is clear that new car sales data play a key role in this estimate. Such data are preferable to registrations since they do not involve problems arising from double counting, differences in registration years, and misclassification of motor vehicle types. Relying on new car sales data provides the added bonus of a quarterly (or even monthly) time series, since monthly sales data are readily available. In contrast, registration data are available only on an annual basis and with considerable time lag.¹

¹When this paper was being written, registration data were available only prior to the year 1986. In contrast, new car sales data were available to the third quarter of 1988.

Strictly speaking, equation (1) requires a bench-mark measure of the stock at some point in time. While such information is not available, it can be approximated by cumulating car sales data over an extended period of time, using detailed data on survival rates for different vintages of cars.² To obtain a realistic benchmark stock for the first quarter of 1966, we apply equation (1) to new-car sales data beginning in the first quarter of 1946, using a rough estimate for the beginning stock. Equation (1) should provide a good stock proxy with twenty years of cumulated flows, even if the initial stock value is set to zero, because almost all cars will be scrapped within twenty years of initial sale.

The remaining data requirement of equation (l) is the aggregate survival rate (1 - s). It is replaced by detailed survival rates applied to cars of the corresponding vintages. As shown in the equation listed below, a quarterly car-stock series can be derived from car sales over the preceding 18 years (i.e. 72 calendar quarters), weighted by their corresponding survival rates.³ In Equation (2), C is QCARS divided by 4, since QCARS is measured at annual rates.

 $K = + .99925 * [(C) + (C)_{.1} + (C)_{.2} + (C)_{.3}]$ $+ .9873 * [(C)_{.4} + (C)_{.5} + (C)_{.6} + (C)_{.7}]$ $+ .9580 * [(C)_{.8} + (C)_{.9} + (C)_{.10} + (C)_{.11}]$ $+ .9475 * [(C)_{.12} + (C)_{.13} + (C)_{.14} + (C)_{.15}]$ $+ .9235 * [(C)_{.16} + (C)_{.17} + (C)_{.18} + (C)_{.19}]$ $+ .8845 * [(C)_{.20} + (C)_{.21} + (C)_{.22} + (C)_{.23}]$

²Alternatively, data on total car registrations could be used as a benchmark.

³Survival rates are also shown in Table 4. For simplicity, these rates are held constant for all quarters in the year.

+	$.8448 * [(C)_{.24} + (C)_{.25} + (C)_{.26} + (C)_{.27}]$
+	$.7870 * [(C)_{.28} + (C)_{.29} + (C)_{.30} + (C)_{.31}]$
+	$.7398 * [(C)_{.32} + (C)_{.33} + (C)_{.34} + (C)_{.35}]$
+	$.6460 * [(C)_{.36} + (C)_{.37} + (C)_{.38} + (C)_{.39}]$
+	$.4350 * [(C)_{.40} + (C)_{.41} + (C)_{.42} + (C)_{.43}]$
÷	$.3875 * [(C)_{.44} + (C)_{.45} + (C)_{.46} + (C)_{.47}]$
+	$.3013 * [(C)_{-48} + (C)_{-49} + (C)_{-50} + (C)_{-51}]$
+	$.2250 * [(C)_{.52} + (C)_{.53} + (C)_{.54} + (C)_{.55}]$
+	$.1750 * [(C)_{.56} + (C)_{.57} + (C)_{.58} + (C)_{.59}]$
+	$.1250 * [(C)_{-60} + (C)_{-61} + (C)_{-62} + (C)_{-63}]$
+	$.0500 * [(C)_{-64} + (C)_{-65} + (C)_{-66} + (C)_{-67}]$
+	$.0200 * [(C)_{-68} + (C)_{-69} + (C)_{-70} + (C)_{-71}]$

(2)

For passenger cars of any given vintage, the survival rate is computed by dividing the number of cars of that vintage in operation by the original number of units sold when the cars were new. While we reported in the earlier section that Statistics Canada does not break down total registration according to vintage, such data had in fact been published by R.L. Polks and Co. (Canada) Ltd for several years in the mid-1960s, for cars between one and ten years of age. The survival rates used in Equation (2) for cars 1 to 10 years old are the 1964-1968 average rates derived from these data. Because corresponding U.S. data were available for cars up to 15 years old, we used U.S. data for cars 11 to 15 years old in equation (2), after making an adjustment based on the Canada-U.S. difference in scrappage rates for cars of 1 to 10 years old. For cars 16 to 18 years old, the survival rates used in equation (2) are our best guess.

2) Stock by Age Groups

Equation (2) generates the total number of cars on the road regardless of age and age distribution. It is also quite simple to use new car sales data to generate an age breakdown of the car stock. By using the various parts of equation (2) we can break down the total car stock into several age groups. For example, the number of cars of four to six years of age, C46, can be generated by equation (3) below.

$$C46 = .9475^{*}[(C)_{.12} + (C)_{.13} + (C)_{.14} + (C)_{.15}] + .9235^{*}[(C)_{.16} + (C)_{.17} + (C)_{.18} + (C)_{.19}] + .8845^{*}[(C)_{.20} + (C)_{.21} + (C)_{.22} + (C)_{.23}].$$

In Table 1, we present our estimates of the total stocks along with four age groupings. These data are discussed in a subsequent section.

3) Reliability of the Estimates

To evaluate the reliability of our estimates, we compare the stock of automobiles generated by fitting equation (2) using data on total car sales (personal and non-personal sector) with data compiled by R.L. Polks & Co. and registration data published by Statistics Canada. For 1966, our second-quarter estimate of 5,032,872 units is 0.45 per cent higher than the 5,010,211 published by R.L. Polks & Co. for July 1, 1966, but it is 8.5 per cent *lower* than the Statistics Canada registration statistic of 5,499,527 units. Since the data published by R.L. Polks provide a better measure of the actual number of cars on the road, we believe that our estimates are reasonably accurate.

(3)

Table 1

Passenger Car and Trucks Stock by Age Group

	Passenger Car and Trucks Stock by Age Group				
	Total Stock	1-3 Years	4-6 Years	7-10 Years	11-18 Years
661	5100433	1949127	1319488	1251310	580510.8
662 663	5166608 5253688	1965848 2025704	1349321 1363148	1256834 1254371	594606.3 610464.7
664	5338221	2045807	1402348	1268691	621378.0
671	5413016	2059443 2086254	1453188 1501997	1271478 1280601	828911.8
672 673	5501853 5589482	2090557	1547168	1288921	832802.0 842838.3
674	5640415	2113752	1568911	1312643	845110.3
681	5722281 5803106	2129017 2131131	1606688 1654285	1335530	851046.9 850131.5
683	5892528	2147352	1716610	1377825	850740.3
684	5986952	2155774	1772196	1401003	657980.0
691 692	6083542 8185278	2172875 2202977	1625899 1841107	1419438 1448491	665330.8 872703.0
693	8251380	2215284	1896740	1460351	879027.8
694 701	8333958 6387677	2229145 2222330	1915550 1928012	1505143 1544663	684122.8 892872.8
702	8443624	2207136	1953139	1581900	701451.2
703	6501209	2211840	1956771	1628155	706444.4
704 711	8539356 6597600	2199392 2192981	1977755 1991898	1644859 1691604	717361.8 721119.0
712	8684361	2217277	1994076	1749124	723885.9
713	6768958	2231165	2009490	1799060	729244.8
714 721	6866183 8947303	2253274 2256739	2017942	1857092 1906056	737878.1 750095.1
722	7044322	2292946	2082400	1926778	762198.5
723	7131285	2310822	2074138	1962860	763446.0
724 731	7251790 7393724	2372898 2481647	2087148 2080189	2015482 2043996	778262.5 787912.8
732	7518468	2572495	2085713	2075581	804679.8
733	7624557	2640531	2069611	2103212	811305.1
734 741	7740304 7857053	2740200 2624444	2057034 2050899	2109800 2126949	833270.9 854762.8
742	7976581	2883426	2073991	2143958	875186.8
743	8103236	2949971	2087377	2187365	898524.8
744 751	8176287 8269215	2949802 2988670	2108978 2113060	2208040 2237486	909448.1 930001.3
752	8368694	3017267	2147440	2248173	955814.5
753 754	8479100	3069068 3136420	2164522 2223418	2263600 2265833	961911.8 1010963
754	8636431 8706795	3096275	2325910	2247923	1036688
762	8822715	3112515	2410913	2250818	1048472
763 764	8901188 9024477	3112460 3144789	2474529 2587077	2241577 2222214	1072621 1090400
771	9143870	3171083	2645349	2223223	1104217
772	9246480	3181142	2700339	2242344	1122657
773 774	9342310 9444000	3174286 3227056	2762907 2761904	2271712 2313505	1133407 1141537
781	9531152	3245921	2797278	2333377	1154578
762 783	9644560 9753343	3283974 3308775	2823495 2871526	2369667 2386986	1187426 1186058
784	9818357	3244536	2935722	2433909	1204193
791	9909128	3288477	2898155	2498824	1223675
792 793	10009504	3301278 3340772	2913569 2912851	2558224 2597779	1236538 1252610
794	10187346	3327656	2943137	2652824	1263732
801	10271473	3316443	2968578	2724927	1261529
802 803	10315299 10382194	3280995 3277234	2978072 2972033	2795474 2871746	1260760 1261184
804	10451853	3267319	3020096	2910980	1253460
811 812	10519039 10569113	3269143 3235844	3037832 3073225	2959468 2994210	1252798 1265636
813	10598929	3185192	3097012	3038964	1277785
814	10620407	3189674	3036961	3118157	1295618 1307263
821 822	10597236 10587602	3081884 3002811	3077621 3089658	3130370 3187160	1329076
823	10567812	2916902	3126149	3183820	1340943
824 831	10544238 10520570	2845048 2775405	3114306 3103996	3212647 3227847	1372242 1413325
832	10531067	2777239	3069978	3238884	1444969
833	10639765	2750600	3065909	3255049	1468210
834 841	10571187 10817959	2747360 2758789	3056797 3058263	3270473 3275715	1496541 1525214
842	10655896	2775198	3027424	3300239	1553037
843	10684163 10733413	2802170	2979820	3317311 3329162	1584866 1589582
844 851	10733413	2849983 2963126	2964690 2881643	3354932	1604211
852	10893908	3086303	2807596	3378856	1621154
853	10984996	3219485	2726931	3394304 3366093	1644279
854 881	11073165 11163252	3358790 3482829	2659363 2594458	3391899	1894269
862	11233058	3560878	2596369	3369337	1716477
863 864	11331500 11385192	3665811 3709856	2572218 2570265	3369662 3363917	1723911 1751157
864 871	11386192	3739852	25/0200	3341350	1777437
872	11520098	3799379	2599144	3328395	1793183
873 874	11580603 11643712	3846178 3881368	2625253 2670899	3302970 3273306	1806206 1818342
874	11708706	3892743	2778762	3208496	1830708
862	11773527	3890252	2892348	3141275	1849654
883 884	11836600 11900224	3881664 3864104	3017337 3147718	3066818 3022335	1870783 1866069
~~~	1 1 300664	~~~~	5147710		

Because registration data tend to over-estimate the actual stock, it is hardly surprising that our stock estimates are lower than Statistics Canada's registration figures. However, the discrepancy between our measure and that of Statistics Canada has widened in recent years to as much as 12.1 per cent.⁴ It is conceivable that the over-estimation problems associated with registration data may have worsened during the recent business cycle because of significant imbalances in economic activity among the various regions in Canada. These imbalances have led to a substantial increase in interprovincial migration and, in all likelihood, a corresponding increase in the number of cars registered in more than one province. It is also conceivable that part of the widening gap between our proxy and total registrations may be due to our assumption of a constant scrappage rate. If actual scrappage rates in the 1980s were lower than those used in equation (2), then there would be a downward bias in our carstock estimate over time. An obvious factor in the decline in scrappage rates in the 1980s is the reduction in highway speed limits from 112 kilometres per hour to 100 kilometres per hour. Other factors, such as the rapid growth in multicar households and improvements in car quality with respect to manoeuvrability and downsizing, may have also played a role. In any case, the downward bias is unlikely to be large, and it should not affect our conclusions.

#### 4) Average Age

Historically, purchases of automobiles have been procyclical, as they are highly sensitive to variations in income, consumer

⁴Since data by R.L. Polk & Co. are no longer available, we have only Statistics Canada statistics for comparison.

confidence and interest rates. Since auto outlays are postponed when economic conditions are adverse, the average age of the car stock tends to rise at such times. It is useful to look at this because the higher the average age, other things being equal, the greater the pent-up demand for autos. The age data can also provide useful information about expenditures on repairs.

The weighted-average age of the entire stock of automobiles can be computed in a fashion similar to that of equation (2). Having obtained the stock of cars in units from equation (2), we convert this stock into its equivalent *age total*. This computation is shown by Equation (4), which cumulates the total age of the stock of automobiles in car-quarter units.

QUARTERS =.99925 * [(C) + 2*(C)] + 3*(C)] + 4*(C)]+  $.9873 * [5^{*}(C)_{4} + 6^{*}(C)_{5} + 7^{*}(C)_{6} + 8^{*}(C)_{7}]$ + .9580 *  $[9^{*}(C)_{,8} + 10^{*}(C)_{,9} + 11^{*}(C)_{,10} + 12^{*}(C)_{,11}]$ +  $.9475 * [13^{*}(C)_{.12} + 14^{*}(C)_{.13} + 15^{*}(C)_{.14} + 16^{*}(C)_{.15}]$ +  $.9235 * [17^{*}(C)_{.16} + 18^{*}(C)_{.17} + 19^{*}(C)_{.18} + 20^{*}(C)_{.19}]$ +  $.8845 * [21*(C)_{.20} + 22*(C)_{.21} + 23*(C)_{.22} + 24*(C)_{.23}]$ +  $.8448 * [25^{*}(C)_{.24} + 26^{*}(C)_{.25} + 27^{*}(C)_{.26} + 28^{*}(C)_{.27}]$ +  $.7870 * [29*(C)_{28} + 30*(C)_{29} + 31*(C)_{30} + 32*(C)_{31}]$ +  $.7398 * [33^{*}(C)_{.32} + 34^{*}(C)_{.33} + 35^{*}(C)_{.34} + 36^{*}(C)_{.35}]$ + .6460 *  $[37^{*}(C)_{.36} + 38^{*}(C)_{.37} + 39^{*}(C)_{.38} + 40^{*}(C)_{.39}]$ +  $.4350 * [41*(C)_{.40} + 42*(C)_{.41} + 43*(C)_{.42} + 44*(C)_{.43}]$ +  $.3875 * [45*(C)_{44} + 46*(C)_{45} + 47*(C)_{46} + 48*(C)_{47}]$ +  $.3013 * [49*(C)_{48} + 50*(C)_{49} + 51*(C)_{50} + 52*(C)_{51}]$ +  $.2250 * [53^{*}(C)_{.52} + 54^{*}(C)_{.53} + 55^{*}(C)_{.54} + 56^{*}(C)_{.55}]$ +  $.1750 * [57^{*}(C)_{.56} + 58^{*}(C)_{.57} + 59^{*}(C)_{.58} + 60^{*}(C)_{.59}]$ +  $.1250 * [61*(C)_{-60} + 62*(C)_{-61} + 63*(C)_{-62} + 64*(C)_{-63}]$ +  $.0500 * [65*(C)_{-64} + 66*(C)_{-65} + 67*(C)_{-66} + 68*(C)_{-67}]$ +  $.0200 * [69*(C)_{-68} + 70*(C)_{-69} + 71*(C)_{-70} + 72*(C)_{-71}]$ (4)

By dividing total age [the result of Equation (4)] by the total number of units [the result of equation (2)], we obtain the weighted-average age of the stock in calendar quarters. In Equation (5), weighted-average age is expressed in number of years.

AGE = (QUARTERS / K) / 4.0The results are shown in Table 2.

### 5) Average Age and Age Dispersion

The average age and the age distribution of cars are shown in Table 2, where it can be seen that average age has been trending up from 5.1 years in the mid-1960s to about 6 years in the mid-1980s.⁵ Since cycles in new car purchases tend to be self-perpetuating due to the timing of physical obsolescence, these cycles are also reflected in the general profile of the weightedaverage age computed above. From Table 2, it is clear that following periods of weak economic growth, the average age of the car stock increased as a result of the weakness in new car sales. As new car sales increased during the subsequent economic recovery, average age began to decline to more normal levels.

In drawing conclusions from average age data, it is instructive to examine the age dispersion of the stock data (see Table 3). Even if there is no change in the weighted average

(5)

^{&#}x27;Our estimate (about 6 years, currently), compares well with fragmentary evidence that is available. According to Mr. DesRosiers of DesRosiers Automotive Research Inc., the average age of passenger cars and *light trucks* on the road in Canada was 6.6 years in mid-1987. (See the April 18, 1988 issue of the *Globe and Mail.*) The discrepancy between our estimates and that of DesRosiers can be accounted for by his inclusion of light trucks, which last longer than passenger cars.

#### Table 2

#### New Car and Truck Sales Car and Truck Slock and Average Age

		Car and Truck	Stock and Average Age		
	Age	Sales	Stock	Age Sum	Stock/Capita
661	5.141044	764821.7	5100433	.1049+009	.393846
662	5.144342	654169.7	5166608	.1063+009	.396253
663	5.125543	748786.0	5253686	.1077+009	.400108
664 671	5.120622 5.119515	724267.4 701720.9	5338221 5413016	.1093+009 .1108+009	.403972 .406983
672	5.113585	753124.4	5501653	.1125+009	.410696
673	5.125161	679198.3	5569482	.1142+009	.412656
674 681	5.144484	681271.6	5640415	.1161+009	.415215
682	5.148237 5.152627	740052.1 741939.5	5722281 5803106	.1176+009 .1196+009	.418612 .421829
683	5.150140	782670.6	5892526	.1214+009	.425402
684	5.145851	610401.6	5966952	.1232+009	.429459
691	5.137931	631130.7	6083542	.1250+009	.433692
692 893	5.144601 5.149342	778616.6 796338.1	8165276 6251380	.1269+009 .1268+009	.436841 .439970
694	5.163465	779603.5	6333958	.1308+009	.442944
701	5.198090	677112.6	6387677	.1328+009	.443825
702	5.229865	692279.9	6443624	.1348+009	.444950
703 704	5.259571	702466.9 636407.4	6501209 6539356	.1368+009	.446042 .446017
711	5.304016 5.333770	716304.6	6597600	.1387+009 .1408+009	.447335
712	5.338241	839678.9	6684361	.1427+009	.450651
713	5.343766	837898.6	6768958	.1447+009	.453754
714	5.341680	696917.6	6866183	.1467+009	.458031
721 722	5.352886 5.347400	639114.5 921752.1	6947303 7044322	.1488+009 .1507+009	.461074 .465064
723	5.357013	865638.6	7131265	.1528+009	468330
724	5.338803	1025287	7251790	.1549+009	.473860
731	5.309812	1115521	7393724	.1570+009	.480486
732	5.292924	1063011	7518468	.1592+009	.486815
733 734	5.294491 5.285870	980739.0 1047642	7624557 7740304	.1615+009 .1837+009	.489695 .493925
741	5,277122	1081909	7857053	.1659+009	498217
742	5.268562	1080861	7976561	.1681+009	.502629
743	5.259373	1106798	6103236	.1705+009	.507161
744	5.285266	900849.6	6176267	.1729+009	.508485
751 752	5.293264 5.296698	1005472 1042274	6269215 8368694	.1751+009 .1773+009	.511340 .514311
753	5.298592	1079257	8479100	.1797+009	.517808
754	5.287426	1294065	8636431	.1820+009	.524267
761	5.289893	951932.8	6706795	.1842+009	.525519
762 763	5.290184	1128293	8822715 6901186	.1867+009	.529744 .531435
764	5.31 3684 5.308924	985394.5 1175697	9024477	.1892+009 .1916+009	.536106
771	5.308390	1184195	9143870	.1942+009	.540386
772	5.314770	1120562	9246480	.1966+009	.543612
773 774	5.331684	1077095	9342310 9444000	.1992+009	.546451 .549848
761	5.341613 5.356731	1126903 1081316	9531152	.2016+009 .2042+009	.552317
762	5.357799	1198059	9644560	2067+009	.556192
783	5.364771	1175756	9753343	.2093+009	.559936
784	5.389244	1031446	9818357	.2117+009	.561263 .563809
791 792	5.400827 5.408484	1135601 1180134	9909126 10009504	_2141+009 _2165+009	.566768
793	5.423539	1148463	10104009	2192+009	.569475
794	5.441445	1120039	10167346	.2217+009	.571328
801	5.461359	1116535	10271473	.2244+009	.573196
602 803	5.498457 5.525974	981650.5 1065784	10315299 10382194	.2269+009 .2295+009	.572689 .573623
804	5.551810	1084333	10451853	.2321+009	.574878
611	5.574682	1090634	10519039	2348+009	.576007
812	5.598993	1061648	10569113	.2387+009	.576329
613 614	5.635846 5.689674	970879.8 972557.6	10598929 10620407	.2389+009 .2409+009	.575862 .575164
821	5.728482	783083.1	10597236	2426+009	.572061
622	5.776263	656366.7	10587602	.2446+009	.569798
823	5.831494	800020.1	10587812	.2465+009	.567014
824 831	5.879379 5.924367	629587.3 833016.0	10544238 10520570	.2480+009 .2493+009	.564265 .561536
832	5.946185	989840.0	10531067	2505+009	.560690
633	5.974915	953188.0	10539765	.2519+009	.559772
834	5.986561	1065036	10571167	.2531+009	.560111
841 642	5.989415 5.991331	1124208	10617959 10855896	.2544+009 .2554+009	.581163 .561694
843	8.000079	1073624	10684183	2564+009	.561704
644	5.997531	1160868	10733413	2575+009	.562863
651	5.984872	1241540	10803909	.2586+009	.565235
652	5.955901	1356516	10893906	.2595+009	.568506
853 654	5.932932 5.898412	1340912 1398092	10984996 11073165	.2607+009 .2613+009	.571899 .574732
861	5.879803	1342968	11163252	.2625+009	.577978
862	5.862059	1310488	11233058	2634+009	.579990
863	5.841106	1381404	11331500	2648+009	.583386
884	5.834965	1248140	11386192	.2657+009	.584436
671	5.829676	1250340	11441400	2668+009	.585437
872 673	5.808081 5.802076	1368012 1272480	11520098 11580603	.2676+009 .2668+009	.587500 .588565
674	5.802076	12/2480	11843712	2696+009	.589923
861	5.783543	1290152	11708708	2709+009	.591448
682	5.766243	1345332	11773527	.2718+009	.592856
863	5.758563	1306904	11836600	2726+009	.594097 .595637
884	5.746779	1322347	11900224	.2736+009	

1	<b>9</b>
	4

## Table 3

#### Car and Truck Stock and Percent Distribution

	г	Fotal Units	1-3 Years	4-6 Years	7-10 Years	11-18 Years
661	-	100433	38,21492	25.87011	24.53341	
662	5	166608	38.04910	26.11619	24.32610	11.36159 11.50864
663 664		253686 338221	36.55777 38.32376	25.94650 26.26996	23.67601 23.76617	11.61974
671	5	413016	38.04613	26.84614	23.48924	11.64013 11.61851
672 673		501653 569482	37.91912 37.53593	27.29984 27.77938	23.27945	11.50162
874		640415	37.47512	27.81553	23.14256 23.27210	11.54218 11.43726
681 682		722281	37.20574 36.72397	26.07778	23.33912	11.37740
683		892526	36.44195	26.50689 29.13199	23.56600 23.38259	11.20316 11.04349
684		986952	36.00788	29.60098	23.40093	10.99023
691 892		083542 185276	35.71727 35.73200	30.01375 29.86252	23.33243 23.49434	10.93657 10.91118
693	6	251380	35.43639	30.34114	23.36045	10.86204
694 701		333958 387677	35.19365 34.79090	30.24253 30.18331	23.76306 24.16193	10.80087 10.84389
702		443624	34.25302	30.31118	24.54984	10.88597
703 704		501209 539356	34.02197 33.83316	30.09858 30.24387	25.01312 25.15323	10.86635
711		597800	33.23906	30.19125	25.63969	10.96978 10.93002
712 713		684361 768958	33.17111	29.83198	26.18740	10.82954
714		866183	32.96172 32.81698	29.68684 29.38958	26.57809 27.04694	10.77336 10.74653
721		947303	32.48368	29.28350	27.43592	10.79693
722 723		044322	32.55028 32.40409	29.27748 29.08513	27.35222 27.80517	10.82004 10.70562
724	7	251790	32.72155	26.78115	27.79289	10.70443
731 732		393724 518468	33.56424 34.21568	26.13425 27.47518	27.64502	10.65651 10.70271
733	7	824557	34.83193	27.14270	27.58471	10.64068
734 741		740304 (857053	35.40171 35.94788	26.57563 28.10265	27.25733 27.07057	10.78536 10.87892
742	7	976561	36.14874	26.00107	28.87822	10.97198
743 744		103236 176267	36.40485 36.07761	25.75980 25.79390	26.74691 27.00548	11.08847 11.12302
751	8	269215	36.14212	25.55333	27.05802	11.24655
752 753		368694 479100	36.05422 36.19568	25.86040 25.52773	26.86408 26.69623	11.42131 11.58037
754	8	636431	36.31618	25.74462	26.23345	11.70579
781 762		706795 822715	[*] 35.56160 35.27842	26.71374 27.32620	25.81803 25.51162	11.90666
763		901188	34.96680	27.80000	25.18291	11.88378 12.05032
764 771		024477 143870	34.84732 34.67988	26.44572 26.93030	24.62429	12.08269
772		246480	34.40381	29.20397	24.31381 24.25079	12.07803 12.14145
773 774		342310 444000	33.97753 34.17043	29.57413 29.24506	24.31639 24.49709	12.13198 12.08743
781		531152	34.05591	29.34879	24.48159	12.11373
782 783		644560 753343	34.05002 33.92452	29.27552 29.44146	24.56999	12.10450
784		818357	33.94561	29.90034	24.47352 24.78937	12.16053 12.26471
791 792		909128	33.18634 32.98141	29.24732	25.21739	12.34897
793		0009504	33.06383	29.10802 28.82867	25.55695 25.71038	12.35364 12.39718
794 801		0187346	32.66460	26.89012	26.04038	12.40492
802		0271473 0315299	32.28790 31.80706	26.90117 26.87044	26.52908 27.10027	12.220100
803 804		0382194	31.56590	26.62625	27.66030	12.14756
811		0451853 0519039	31.26067 31.07835	28.89632 28.67747	27.65033 28.13439	11.99271 11.90982
812		0589113	30.81604	29.07742	26.32982	11.97675
813 814		0598929 0620407	30.05201 29.84512	29.22004 26.59652	26.87237 29.36005	12.05560 12.19933
821 822		0597238	29.08198	29.04174	29.54044 29.91385	12.33589 12.54369
823		0587602 0567812	28.36158 27.60176	29.18091 29.58180	30.12753	12.68894
824		0544238	26.96199	29.53562 29.50407	30.46827	13.01414
831 832		0520570 0531067	26.38075 28.37187	29.50407	30.88129 30.75552	13.43392 13.72101
833	10	0539765	26.09736	29.08897	30.88350	13.93019
834 841		05711 <b>67</b> 0617959	25.98916 25.96210	28.91636 28.80274	30.93767 30.85070	14.15682 14.36448
842	10	0855898	28.04378	28.41079	30.97101	14.57444
843 844		0684183 0733413	26.22732 28.55244	27.89006 27.62112	31.04886 31.01681	14.83378 14.80966
851	10	0803909	27.42643	26.87222	31.05294	14.84843
852 853		0893908 0984996	28.33054 29.30802	25.77217 24.82414	31.01602 30.89946	14.88129 14.96841
854		1073165	30.33270	24.01628	30.39865	15.25238
881		1163252	31.19905	23.24106	30.38271 29.90581	15.17720 15.28058
862 863		1233058 1331500	31.69999 32.35063	23.11364 22.69971	29.73624	15.21344
864	11	1385192	32.58492	22.57551	29.45858	15.38100
671 872		1441400 1520098	32.88702 32.98044	22.57383 22.56182	29.20403 26.89207	15.53514 15.56569
873	11	1580603	33.21224	22.88940	28.52157	15.59681
874 881		1643712 1706706	33.33446 33.24657	22.93683 23.71536	28.11222 27.40265	15.81652 15.83544
682	11	1773527	33.04236	24.56654	28.88084	15.71028
883	11	1836600	32.79374	25.49159	25.90962 25.39730	15.80507 15.68096
884	11	1900224	32.47085	28.45092	20.00/00	13.00000

•

between two points in time, the economic implications can be very different if there are variations in the age dispersion. For instance, there is no significant difference in average age for 1982Q3 and for 1987Q1. However, the age distribution of cars is very different in the two periods, with the proportion of 1-3 year old cars rising from 27.6 per cent to 32.7 per cent by 1987Q1. This difference in age composition suggests that the need for expenditures on repairs was substantially less in 1987 than in 1982, as was reflected in actual consumer expenditures.

In making inferences from car-age and age-dispersion data, it should be noted that increases in multicar households over time should lead to an upward trend in the average age of cars associated with the decline in average annual mileage travelled per car.

#### B. Light Trucks

In recent years, vans, pick-up trucks and sport utility vehicles have gained considerable popularity among consumers.⁶ Because a significant portion of the sales of light trucks is at the expense of the sales of passenger cars, it is necessary to take into consideration the personal sector's stock of light trucks as well.

⁵In recent years, overall sales in motor vehicles were boosted by business sector purchases associated with the investment boom. As a result, overall sales figures tend to grossly exaggerate the strength of demand by the personal sector. Ideally, we should exclude business purchases of cars and trucks from the computation of the personal sector holding of the motor vehicle stock. With the help of Statistics Canada, we are able to improve the accuracy of our estimates substantially by excluding business purchases of trucks from the analysis. In the case of new pasenger cars, personal sector purchases are roughly equal to 85 per cent of total passenger car sales excluding fleet sales to businesses. Because data on fleet sales of passenger cars cannot be released for confidentiality reasons, we cannot adjust the car sales data to take account of business purchases. This shortcoming tends to overstate the stock of passenger cars held by the personal sector in recent years. In any case, this shortcoming is mitigated by the fact that an important part of fleet sales to rental companies will typically be sold as used cars to consumers within the first year.

As in the case of passenger cars, the stock of light trucks is computed by cumulating data on new truck sales adjusted for scrappage. It should be noted that data on new truck sales published by Statistics Canada include sales of heavy trucks, commercial vehicles, coaches and buses in addition to light trucks sold to both the personal and business sectors. Because business purchases represent an important part of total truck sales, it is crucial that such purchases be excluded from our estimation of personal sector motor vehicle stock. In this case, we are able to obtain data on personal sector purchases of light trucks (in terms of units) from Statistics Canada for the more recent period. Back data were estimated using constant dollar expenditures on light trucks based on the regression results using unit sales and constant dollar expenditures over the recent period when both sets of data are available.

#### III. CONVERSION TO NEW-UNIT EQUIVALENTS

In this section, we convert the motor-vehicle stock into units that are equivalent to new vehicles. We suggest that the desired level of vehicle stock held by individuals should be expressed in new-unit equivalents to compensate for the dispersion in vintages.⁷ The rationale is that the desired stock of autos is somehow measured in constant dollars. For a given constant dollar amount, one has a choice of owning a second older car or trading in the existing car for a newer one. In addressing questions about whether or not pent-up demand for motor vehicles has been fully satisfied, the new-unit-equivalent measure is more appropriate

^{&#}x27;A similar argument could be made with regard to the dispersion in prices (and by implication, the underlying values) of new cars to take account of the variations in the market share of luxury cars.

than simply counting units regardless of age. Because of the surge in motor vehicle sales in recent years, the average age of the motor vehicle stock has declined and the new-unit equivalent, per unit of the stock, has increased accordingly. By taking this decline into consideration, we show that more of the pent-up demand for motor vehicles has been met in recent years than indicated by the unadjusted data.

#### A. Passenger Cars.

The methodology used in converting the motor vehicle stock to its new-unit equivalent is identical for cars and for trucks. For illustration, consider the case of passenger cars. For the stock of any given vintage, its new-car-equivalent stock can be estimated by adjusting the car-sales data for the loss of resale value and for scrappage. Our adjustment for loss of resale value is based on information about the *resale* (or trade-in) values of cars of different vintages. This procedure assumes that resale prices accurately reflect the undepreciated value of used cars relative to the current vintage of new cars.

In the following equations used to compute the new-car equivalents (NK) for four subcategories of the car stock, the survival rate is multiplied by the resale value (expressed in fractions of the original new car price).⁸ These resale values

### <u>New Car Equivalents</u>

#### One-three years old

 $NK13 = .99925*0.725*[C + (C)_{.1} + (C)_{.2} + (C)_{.3}]$ + .9873*0.576*[(C)_4 + (C)_5 + (C)_6 + (C)_7]

⁴In our calculation, the resale values are held constant through all quarters in the same year as in the case of scrappage rates.

+ 
$$.9580^{*}0.445^{*}[(C)_{.8} + (C)_{.9} + (C)_{.10} + (C)_{.11}]$$
 (6)

$$\frac{4-6 \text{ years old}}{NK46} = .9475^{*}0.329^{*}[(C)_{.12} + (C)_{.13} + (C)_{.14} + (C)_{.15}] + .9235^{*}0.232^{*}[(C)_{.16} + (C)_{.17} + (C)_{.18} + (C)_{.19}] + .8845^{*}0.164^{*}[(C)_{.20} + (C)_{.21} + (C)_{.22} + (C)_{.23}]$$
(7)

7-10 years old

$$NK710 = .8448^{*}0.108^{*}[(C)_{.24} + (C)_{.25} + (C)_{.26} + (C)_{.27}] + .7870^{*}0.09^{*}[J28L(C)_{.28} + (C)_{.29} + (C)_{.30} + (C)_{.31}] + .7398^{*}0.07^{*}[(C)_{.32} + (C)_{.33} + (C)_{.34} + (C)_{.35}] + .6460^{*}0.05[(C)_{.36} + J37L(C)_{.37} + (C)_{.38} + (C)_{.39}]; (8)$$

# <u>11-18 years old</u>

$$\begin{aligned} NK1118 &= .4350^{*}0.02^{*}[(C)_{40} + (C)_{41} + (C)_{42} + (C)_{43}] \\ &+ .3875^{*}0.02^{*}[(C)_{44} + (C)_{45} + (C)_{46} + (C)_{47}] \\ &+ .3013^{*}0.02^{*}[(C)_{48} + (C)_{49} + (C)_{50} + (C)_{51}] \\ &+ .2250^{*}0.01^{*}[(C)_{52} + (C)_{53} + (C)_{54} + (C)_{55}] \\ &+ .1750^{*}0.01^{*}[(C)_{56} + (C)_{57} + (C)_{58} + (C)_{59}] \\ &+ .1250^{*}0.01^{*}[(C)_{60} + (C)_{61} + (C)_{62} + (C)_{63}] \\ &+ .0500^{*}0.01^{*}[(C)_{64} + (C)_{65} + (C)_{56} + (C)_{67}] \\ &+ .0200^{*}0.01^{*}[(C)_{68} + (C)_{69} + (C)_{70} + (C)_{71}]; \end{aligned}$$

# and with

Total new car equivalents

$$NK = NK13 + NK46 + NK710 + NK1118.$$
(10)

(9)

are taken from various issues of the Canadian Red Book - Official Used Car Valuations.⁹ In our opinion, the resale values used in this paper (shown in Table 4) are a reasonably good approximation of the resale market, as they are based on the arithmetic means of resale values of six popular models over a seven-year period. The total stock of cars (NK), measured in new-car equivalents, is given by the sum of the four subcategories, NK13, NK46, NK710 and NK1118. Data for these series and their per-cent shares are shown in Table 5.

#### Table 4

#### Survival Rates and Resale Values of Cars

<u>Car Age</u>	<u>Survival Rate</u>	<u>Resale Value</u>
1	99.925	72.5
2	98.73	57.6
3	95.80	44.5
4	94.75	32.9
5	92.35	23.2
6	88.45	16.4
7	84.48	10.8
8	78.70	9.0
9	73.98	7.0
10	64.60	5.0
11	43.50	3.0
12	38.75	2.0
13	30.13	1.0
14	22.50	1.0
15	17.50	1.0
16	12.50	1.0
17	5.00	1.0
18	2.00	1.0

Because no attempt is made to adjust these used-car prices for inflation before they are matched with the original new car prices, our estimate of the new-car-equivalent stock is biased upward.

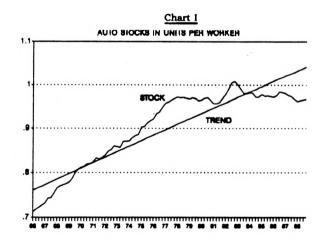
#### (Per Cent)



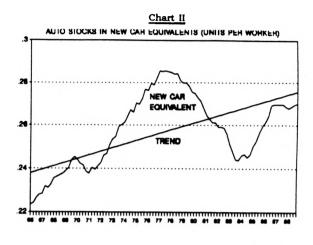
Table 5

#### New-Vehicle Equivalent Units and Percent Distribution

	Total Units	1-3 Years	4-6 Years	7-10 Years	11-18 Years
661	1599679	72.50013	20.38240	6.396657	.720815
662 663	1614338 1649598	72.13535	20.72931	6.404245	.731094
664	1674381	72.45517 72.06986	20.53390 20.91126	6.276324 6.284161	.734606
671	1692311	71.57389	21.46416	6.221975	.734699 .740172
672 673	1720264 1733836	71.35340	21.76471	6.153516	.728371
674	1743804	70.68293 70.59600	22.42602	6.159626	.731423
661	1762642	70.26323	22.45494 22.73828	6.223226 6.274005	.725834
682	1780949	69.72951	23.19854	6.360163	.724485 .711766
683 684	1808465	69.34427	23.87320	6.287921	.694612
691	1838059 1867981	66.84748 66.55945	24.15637	6.303133	.693016
692	1887327	66.68319	24.45295 24.24281	6.294522 6.376553	.893076
693	1909673	66.39066	24.54889	8.366484	.695450
894	1925953	66.23824	24.55140	6.519817	.690543
701 702	1920064 1916735	67.66189	24.67729	6.740289	.700526
703	1917624	87.32356 67.15203	25.04404 24.97342	6.921433	.710969
704	1903455	66.78235	25.20628	7.159729 7.275790	.714825 .736580
711	1904904	66.46429	25.33552	7.463949	.736240
712 713	1929430 1952343	66.56946	25.08984	7.611527	.729173
714	1986839	66.43448 66.45680	25.07644 24.93088	7.760495	.728584
721	2009608	66.27107	24,98990	7.888696 6.008687	.723626 .730343
722	2043389	66.47619	24.86296	7.924581	.734274
723 7 <b>24</b>	2065958	66.44287	24.76678	6.042650	.725703
731	2116570 2164219	66.98319 66.19115	24.33575 23.31949	7.958252 7.778938	.722813
732	2234866	69.01559	22.55970	7.714202	.710426 .710507
733	2272432	89.60077	22.06203	7.630291	.706903
734 741	2315014	70.48464	21.30519	7.494382	.715784
742	2357505 2399413	71.02446 71.12024	20.84092 20.81836	7.408459	.726158
743	2450200	71.36640	20.63233	7.328691 7.258755	.732707 .7 <b>425</b> 13
744	2455206	70.82907	21.05610	7.369115	.745723
751 752	2475960	70.70448	21.12535	7.414625	.755546
753	2499544 2532833	70.46161 70.53049	21.37252 21.32897	7.395141	.770737
754	2605674	70.58249	21.45382	7.356965 7.173624	.783672 .790089
761	2610434	69.55608	22.54632	7.087239	.810363
762 763	2642589	69.16365	23.05719	6.975614	.803342
784	2649838 2684457	66.69215 66.50740	23.57405 23.94364	6.914372	.619427
771	2724120	66.42094	23.94364	6.732559 6.621880	.816404 .808573
772	2745379	66.13578	24.39630	6.851388	.816537
773 774	2765172	67.65996	24.83629	6.691963	.811790
761	2779974 2794646	67.88394 67.86611	24.50437 24.47427	6.801211	.610486
762	2623621	67.95253	24.33190	6.845541 6.904934	.614086 .610642
783	2855596	67.92363	24.36691	6.895007	.614451
784 791	2848189 2867826	66.80724	25.25877	7.104110	.829880
792	2686216	67.07011 66.88347	24.78694 24.79222	7.325414 7.482691	.837530
793	2905204	67.09640	24.48497	7.575323	.841622 .844314
794	2914133	66.79627	24.63347	7.723832	.846426
801 802	2926531 2903892	66.35720 65.83326	24.92644	7.881715	.834643
803	2902930	65.56779	25.21049 25.25743	6.120898 6.342893	.836362 .631661
804	2903498	65.41563	25.39428	6.369432	.820653
611 612	2907183	65.27714	25.46423	6.439094	.619545
613	2902610 2883606	84.84114 64.16388	25.80562 26.29462	6.516794	.834444
614	2961667	64.10092	25.99492	6.690005 9.025834	.651493 .678325
821	2807362	63.15319	28.76451	9.176109	.906198
622 823	2785991 2719407	62.40001	27.25426	9.409163	.936542
824	2877119	61.51082 60.77947	27.95953 28.40199	9.567894 9.814019	.961760
631	2641984	60.17058	28.71976	10.04786	1.004515 1.061799
632	2633687	60.49360	28.29317	10.11716	1.096060
833 834	2624397	60.45377	28.22844	10.19455	1.123246
841	2634651 2661890	60.61338 61.00970	28.06167 27.73428	10.16130	1.143649
842	2680560	81.35955	27.35283	10.10414 10.12453	1.151872 1.163089
843	2696286	61.94293	26.71803	10.15585	1.183189
844	2722918	62.64428	26.18457	10.00516	1.165997
651 852	2767107 2625509	64.10025	24.82510	9.920771	1.153874
853	2887902	65.44904 66.66946	23.64268 22.39096	9.770852 9.813854	1.137 <b>428</b> 1.126018
854	2951080	66.20578	21.28730	9.365146	1.141772
661	3004654	89.18910	20.45773	9.237015	1.116154
862	3042586	69.61302	20.27862	8.993552	1.114901
863 864	3099686 3122515	70.20730 70.23145	19.88378	8.816543	1.092378
671	3146614	70.23145	19.95098 20.24992	6.724045 8.628793	1.093530 1.105180
872	3184427	70.09616	20.32004	6.485625	1.098177
673	3207370	70.04734	20.52993	8.325612	1.097118
674	3234775	69.92129	20.81646	8.168342	1.093906
661	3259004 3282836	69.55031 89.01998	21.47642 22.24140	7.884183 7.644782	1.089109 1.093854
882				1.044/02	
882 883	3304311 3326151	66.42203	23.09057	7.387210	1.100182


B. Light Trucks

In a similiar fashion, the stock of trucks in operation is translated into equivalent units of new trucks by taking account of the changes in age structure over time. Because most trucks on the road are of more recent vintage than the stock of passenger cars, the per-unit new-vehicle equivalent is correspondingly higher for trucks. As a result, the inclusion of light trucks further boosts the consumer stock of motor vehicles in new-vehicle equivalents. By combining the stock of light trucks with that of passenger cars, we make the extreme assumption that cars and light trucks are perfect substitutes. This assumption implies that a consumer purchasing a light truck would not buy a car over the service life of the vehicle. Because trucks and cars are unlikely to be perfect substitutes, our assumption imparts a upward bias to the actual stock relative to its desired level.


#### IV. STOCK ESTIMATES RELATIVE TO TREND VALUES

#### 1) Per-Capita Stock and Trend

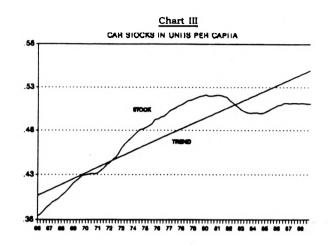
The auto stock (in units of new-motor-vehicle equivalents for total cars and trucks) by itself is not a good indicator of demand in the auto market, as it is likely to be affected by changes in factors such as the driving-age population and a general



upward trend reflecting rising national wealth. We feel that the stock series (K and NK) scaled by data on employment would represent a better measure for purposes of assessing actual relative to desired stocks.¹⁰ We feel that the per-worker (as opposed to the per capita) measure is a better indicator of prospective demand in the very near term. For instance, the recent strength in employment has led to a surge in auto

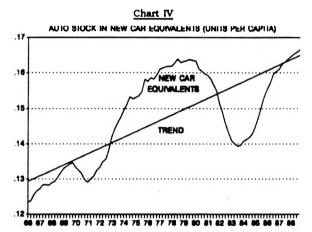


demand over and above the demographic requirements.


In Charts I and II, estimates of the stock of motor vehicles per worker are plotted against linear trends.¹¹ Chart I shows that the number of motor vehicle units per worker reached a peak of 1.01 in the fourth quarter of 1982 and has since declined noticeably. In terms of new-car equivalents shown in Chart II, however, the situation is rather different. The stock of new car equivalents per worker reached a peak of 0.29 units in all the four quarters in 1977 and then fell to 0.24 by the second half of 1983. Following the strength in sales in 1985 and 1986, this ratio recovered to 0.27 by 1986Q3. From these two charts, it could be concluded that the current per-worker stock is substantially below its trend value.

In Charts III and IV, these measures are scaled by data on

¹⁰Alternatively, these stock data can be scaled by data on the number of households. However, a time series on per household stock of autos is likely to be misleading as household size fluctuates over the business cycle and diminishes over time due to social and demographic factors which affect birth, death and divorce rates.


¹¹By including data for the 1980s, there is a risk that the trend values impart a significant downward bias to the desired stock. For instance, the trend line plotted using pre-1980 data has a much more pronounced upward trend.

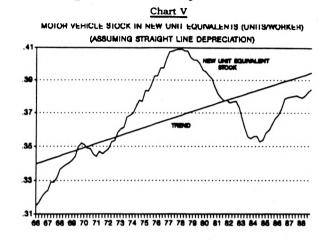
the driving-age population. This procedure abstracts from the cyclical effects captured by employment, although we believe the business cycle has a substantial impact on auto demand. These results indicate that there is a significant upward trend in



per-capita desired stock of automobile both in units and new car

equivalents. It is clear from Chart III that the current percapita number of units is substantially below trend, even after including trucks sold to the personal sector although the gap between actual and desired levels has widened less in recent years than is depicted in Chart I. In Chart IV, when

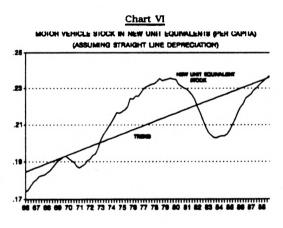



we consider the fact that the passenger cars and light trucks sold in recent years are of very recent vintage, it can be seen that the current level of new-vehicle-equivalent units per capita is roughly in line with the trend value plotted over the 1966-1988 period. However, if we consider the reality that light-truck sales are not entirely at the expense of passenger cars, then the current level of this measure would still be below trend. As noted above, there is a risk that the trend value understates the desired level of the motor vehicle stock.

#### 2) Sensitivity to Depreciation Assumptions

It seems likely that the estimates presented may be sensitive

to assumptions about the depreciation in car values.


An alternative way of computing new-car equivalents is to set a depreciation schedule judgmentally and subtract the accumulated depreciation from the stock to get a "net stock" concept



instead of using resale values. Our first thought was to use a constant exponential depreciation rate. It turns out that this is similar to the resale values we use in our computation above. By way of alternative, we have chosen an extreme case of the standard straight-line depreciation schedule for the first 8 years' life span. Assuming a cumulative depreciation of 91 per cent in the course of the first 8 years, we reduce the value of the car by a constant fraction of 0.1138 per year.¹² For vintages of between 9

and 18 years, the remaining values are identical to those shown in Table 4.

The alternative per-capita stock series are presented in Charts V and VI. The movements of the alternative series are remarkably similar to those based on resale values, in spite of a large



¹²For recent vintages, this is much smaller than is reflected in resale values. For example, resale values show a depreciation of 27.5 per cent in the course of the first year.

difference in units per capita.

#### IV. CONCLUSION

We conclude that the new-motor-vehicle-equivalent stock estimates on a per-worker or per-driving-age-population basis are the best for purposes of analysing differences between actual and desired stocks. This analysis also reveals that our scrappage and depreciation rates are realistic and that alternative assumptions about depreciation rates are unlikely to alter the results significantly. Once these scrappage and depreciation rates are obtained, it is sufficient to use only new vehicle sales data to generate car stock data in terms of new-vehicle equivalents.

Viewed both from the per-capita and per-worker basis, our analysis leads us to conclude that the current stock of motor vehicles is below its desired level as proxied by its historical trend value. Moreover, the current stock is still far below the level recorded during the 10-year period between 1973 and 1982, even after adjusting for differences in age distribution over time.

# Bank of Canada Working Papers

	Title	Author
89-1	A Regime Switching Approach to Uncovered Interest Parity	S. van Norden
89-2	Monthly Estimates of Canadian GDP and its Price Deflator	S. Kozicki
89-3	Estimates of the NAIRU Using an Extended Okun's Law	R. Ford and D. Rose
89-4	On the Aggregate Implications of Optimal Price Adjustment	B. Cozier
89-5	Efficiency Wages: A literature survey	T. Fisher
90-1	The Dynamic Effects of Exchange Rate Changes on Canada's Trade Balance, 1982-1987	R. Dion and J. Jacob
90-2	The Stock of Automobiles in Canada: Estimates relative to historical trends	H. Lau and L. Hyland

Single copies of Bank of Canada papers may be obtained from:

Publications Distribution Bank of Canada 234 Wellington Street Ottawa, Ontario K1A 0G9