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NONPARAMETRIC TESTS FOR CHANGES IN THE CYCLICAL SENSITIVITY OF PRICES 

In a recent note (Armstrong 1983) I commented on the methodology used 

by Cagan (1975) to test for intertemporal changes in the cyclical 

sensitivity of prices. In that note I suggested that the Cagan's 

essentially descriptive methodology could be more effectively applied in 

the Canadian context if combined with some formal statistical analysis. 

In particular I suggested that some nonparametric statistical tests could 

be used to evaluate hypotheses concerning changes in various aspects of 

price behaviour over time. The purpose of this note is to provide some 

details concerning the computation of those test statistics and their 

particular relevance. 

Cagan used data for over one thousand U.S. product prices. For each 

of a number of post-World War II recession periods, using all the series 

available, he set up cumulative density functions for a measure of average 

price change normalized on inflation. He then computed various statistics 

(mean, variance, etc.) describing those empirical density functions and 

commented on the way in which the characteristics of the distributions 

changed over time. He did not comment on the statistical significance of 

any of the changes he observed. 

Behind the Cagan analysis is the implicit assumption that the product 

prices he considered represent the entire population of relevant prices in 

the economy. In the Canadian context far fewer than one thousand price 

series are available over a time span of useful length. In this context 

the question of whether or not changes in the cyclical behaviour of 

observed prices would hold up if data were available for all product 

prices in the economy is a much more compelling one. Discussion of 

differences between Cagan-style cumulative density functions should be 

supplemented with results of statistical tests of the significance of 

observed differences. 

A general caveat is necessary before I discuss particular hypotheses 

concerning differences between cumulative density functions of price 

changes, test statistics appropriate to the hypotheses and their economic 

interpretation. In order to use any statistical tests one must assume 

that the set of product prices used represents a sample drawn randomly 

from a population of such prices. A sample of prices selected based on 

the availability of data is patently non-random. From a practical point 

of view this problem is of secondary importance. More significant is the 

issue of whether or not the set of prices available includes 

disproportionate representation of products whose prices, according to a 
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priori evidence, are, for example, more sensitive to cycles than most 

prices in the economy. In the Canadian context, samples of sub-aggregate 

Consumer Price Index and Industry Selling Price Index series have been 

selected by including only those series for which data are available as 

early as the late 1940s and early 1950s. These sets of series are spread 

reasonably uniformly across aggregate groups, and do not include 

disproportionate representation of any particular product group. Thus, 

the assumption that each set of series represents a random sample from a 

population, while wrong, is probably not wrong in any important way. 

Now consider, for example, a set of Consumer Price Index 

sub-aggregate series selected on the basis of data availability. Suppose 

we make the plausible assumption that this set of series represents a 

random sample of Consumer Price Index series. Following the Cagan 

methodology we compute an appropriately normalized measure of price change 

for each series over each of the k recessions for which data are 

available. For each recession a cumulative density function of the 

price-change measures can be set up. What statistical tests can be used 

to examine the significance of differences between these sample densities? 

Two sorts of questions may be of practical interest. Each cumulative 

density function constructed is an empirical density based on a sample 

drawn from a population of product-price changes. The cumulative density 

function for each population is, of course, unknown. First, does the 

sample of prices examined provide evidence against the hypothesis that 

groups of two or more of the population densities are identical? If one 

denotes by F^(x) the cumulative density function for the population in 

recession i, we are interested in testing hypotheses of the general form 

H : F. (x) = F. (x) = ... = F. (x), for all x, (1) 
X1 L2 Xn 

where i{, i2 . .. in are unique and n£ k. The second type of 

question of practical interest concerns differences between particular 

characteristics of the population density functions. The moment 

corresponding to the probability density function for the population in 

recession i is defined by 

00 j 
m. . = / x f.(x)dx, (2) 

l j 1 l 

where f^(x) = dF^(x)/dx is the probability density function of the 

population of price changes during recession i. When j=l, m. = u ., 
X1 1 

the mean price change during recession l. The variance of price changes 

... 2 2 
during recession I is given by a = m. -ra. . Denote by m.the vector of 

1 X2 X1 "i 
moments for recession i, m. = (m. , m. ...;. Formally, the second 

-1 X1 . L2 
question of interest is: Do the price-change data contain any evidence 

against some null hypothesis of the form 
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H': g(ra^ ) = g(ra. ) = ...= gCriK ). (3) 
1 2 n 

Here g is a scalar-valued function, i^, i£ ••• in 
are unique and 

n < k. 

Choice of a test procedure for a null hypothesis of form (1) or form 

(3) should be made only after consideration of the alternative hypothesis 

of particular interest. The size of a hypothesis-testing procedure, or 

the type I error probability associated with the procedure, is the 

probability that the procedure will lead to rejection of a null hypothesis 

that is in fact true. The power of a test is the probability that the 

null hypothesis will be rejected when it is actually false. Among a group 

of test procedures of the same size a desirable procedure is one with high 

power against the alternative of particular interest. Such a procedure 

will reject the null hypothesis with high probability if the alternative 

is true. 

Note that thus far nothing has been said about the particular form of 

the distribution functions for the population of price changes. 

Parametric tests of hypotheses of form (1) or form (3) involve assumptions 

that the distributions involved are members of particular parametric 

classes (normal or chi-squared, for example). Nonparametric test 

procedures do not require such assumptions. Parametric tests are more 

powerful than nonparametric procedures provided that the distributional 

assumptions they involve are correct. When these assumptions are 

incorrect, however, both the size and the power of a parametric test 

procedure can differ substantially from their theoretical values. 

Parametric tests are not particularly robust to departures from the 

assumptions. In the current context there is no a priori evidence that 

the density functions of price changes belong to any parametric class. 

Subsequent attention will focus on nonparametric test procedures. 

In the literature (e.g., Durbin, 1973, pp. 39-47) there are a number 

of tests for hypotheses of form (1) against the alternative that at least 

two of the cumulative density functions differ in an unspecified way. 

These tests are not particularly useful in the present context for two 

reasons. First, it is difficult to provide an economic interpretation of 

the results of such a test given the vague definition of the alternative 

hypothesis. The other objection is statistical. To illustrate this 

objection consider the simple hypothesis 

H^: F^(X) = F^(x), for all x. (4) 

The set of price changes for the available Consumer Price Index series 

during recession 1 is a sample of observations from cumulative density 

Fj. The nonparametric tests described by Durbin require a sample of 

observations from F2 that is independent of the sample of observations 
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from Fj. In our practical context we get a sample of observations from 

F2 by computing a measure of price change during recession 2 for each of 

the series used to obtain the sample from F^ . One would expect that if 

a particular price drops relatively far (compared to other prices) during 

recession 1 it should also drop relatively far during recession 2. Hence 

our sample of observations from Fj is not independent of the sample from 

F2. For these reasons, tests of hypotheses of form (1) will not be 

further considered here. 

We will now consider tests of hypotheses of form (3). A simple case 

of such a hypothesis suggests that the means of the probability density 

functions for the populations of price changes are equal during two 

recession periods: 

H ' : u. = u. . ( 5 ) 
0 1 j 

Two nonparametric test procedures for (5) against the alternative 

H!: u. > u. (5a) 
1 1- j 

will be discussed. Unlike parametric tests, these procedures do not 

require any assumptions about the form of the cumulative density function 

for recession i, Fj^. However, it is necessary to assume that Fj 

differs from F^, whatever the form of the latter, only in its mean. 

This assumption is sufficient for use of one nonparametric test procedure, 

the sign test. In order to use the second nonparametric procedure, the 

Wilcoxon signed rank test for paired samples, it is necessary to make the 

additional assumption that the probability density functions f^ and fj 

are symmetric about their means. For the cumulative density function such 

symmetry implies that 

F. ( y. - x) + F. ( y. + x) = 1, for all x. (6) 
11 11 

The Wilcoxon test is more powerful than the sign test if the true 

distributions have these symmetry properties, but it should not be used in 

the absence of symmetry. 

It is important to note the implications of the assumption required 

by both the sign test and the Wilcoxon test. Essentially these are tests 

of a hypothesis of form (1) with respect to a specific alternative; 

namely, that the difference between the cumulative density functions is 

due exclusively to a difference between the means of the distributions. 

We will return later to a discussion of the implications of violation of 

this assumption. 

Computation of a sign test for (5) is straightforward. Suppose that 

ra price series are available. It is necessary to determine the number of 
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prices that do not drop as quickly in recession i as in recession j. 

Suppose that there are s such series. The number s should be compared to 

the distribution of this quantity when the null hypothesis is true, the 

binomial distribution with ra trials and success probability 1/2. Values 

of s greater than the 100 a % point of the binomial cumulative density 

function provide evidence against (5) in favour of (5a) at the 100 a % 

level of significance. Appropriate tables of the binomial distribution 

can be found in Pearson and Hartley (1976a, pp. 210-211). 

To compute a Wilcoxon paired rank test of (5), it is necessary to 

calculate, for each price, the difference between its change in recession 

i and in recession j. These differences must then be ranked from 1 to m, 

in order of increasing absolute value. The test procedure uses the sum of 

the ranks associated with positively signed differences. The distribution 

of this sum when (5) is true is tabulated in Pearson and Hartley (1976b, 

p. 231) for small m. For larger m the distribution can be approximated 

using the normal distribution (Pearson and Hartley, 1976b, p. 49). Large 

values of the test statistic relative to this distribution provide 

evidence against (5) in favour of (5a). 

Before discussing the importance of the assumptions underlying the 

sign test and the Wilcoxon paired rank test we will consider the problem 

of testing a hypothesis more general than (5). In particular consider 

Hi: “i, ' "i, ■ ••• * "i 
1 z n 

(7) 

where i^, i2 ... in are distinct and nj£ k. Choice of an appropriate 

test procedure for (7) depends on the alternative hypothesis of interest. 

Most relevant in the current context is an alternative suggesting a time 

ordering, 

(8) 

Three test procedures for (7) that are particularly powerful against 

alternative (8) are discussed, all of which operate in general as 

follows. For each price series one selects the subset of the data on 

price changes related to recessions ij, i£ ••• in and computes a 

statistic. These statistics are then added across all m prices and 

compared to the distribution of the sura computed assuming H^ is true. The 

distributional assumptions required for the sign test are necessary in 

each case. The extra symmetry assumption needed to use the Wilcoxon 

paired rank statistic is not necessary. 

The first test procedure uses the Spearman coefficient of rank 

correlation. For each price series, the changes in the price during the 

recession periods involved in the hypothesis are ranked from 1 to n in 

ascending order. From each of these ranks the rank corresponding to the 
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time-ordering of the relevant recession is subtracted. Spearman's 

coefficient of rank correlation is then computed. 

n 2 2 
R = 1 - 6 Z d. /(n(n -1)) (9) 

i=l 1 

where d^, i=1,2 ... n are the rank differences. There are m of the 

statistics, one for each price. The hypothesis (7) can be tested versus 

alternative (8) by adding the m calculated values of R and comparing the 

sum to its distribution computed assuming (7) is true. Values of the sum 

greater than the 100(1- a )% point of this distribution provide evidence 

against (7) in favour of (8) at the 100(1- a)% level of significance. The 

distribution of (9) is tabulated (e.g., Gibbons, 1976, pp. 417-418). 

Writing a computer program to compute the distribution of a sum of m 

independent Spearman rank correlations, each based on n observations, is a 

simple computational task. 

The other two test procedures for (8) are analogous. One procedure 

uses Kendall's tau ( T), a rank correlation coefficient. It is necessary 

to rank the set of relevant changes in each price in ascending order. 

Then this set of ranks should be arranged according to the time-ordering 

of the recessions. For example suppose that there are three recessions; 

the most negative price movement occurs in recession 2, the most positive 

movement in recession 3. The appropriate arrangement of ranks is 

(2,1,3 }. To compute the Kendall's tau it is necessary to consider every 

ordered pair of ranks drawn from this set, namely (2,1), (2,3) and (1,3). 

For each ordered pair the second rank is subtracted from the first. 

Suppose that there are u positive differences. (In the example u = 2.) 

The Kendall coefficient of rank correlation is 

x= l-4u/(n(n-l) ) . (10) 

The distribution of (10) when (7) is true is tabulated in Gibbons 

(p. 420). To test (7) it is necessary to add the tau statistics computed 

for each price and compare the sum against the distribution of a sum of m 

independent Kendall tau statistics, each based on n observations, computed 

assuming (7) is true. Unusually large values of this statistic provide 

evidence against (7) in favour of (8). The distribution of a sum of m 

independent Kendall tau statistics is not tabulated but can be computed 

with relative ease. 

The third test procedure is based on the peak test originally 

proposed by Goldfeld and Quandt (1965) to test for the heteroscedasticity 

of regression residuals. For each price, the relevant price-change 

measures are arranged according to the time-ordering of the recessions. 

This sequence is denoted by (p^, P2 ••• pn }• In this sequence 
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pj is a peak if j * 1 and, for all i<j, p^<Pj. It is necessary to count 

the number of peaks that occur for each price. These statistics are 

added, and the sura is compared to the appropriate distribution computed 

assuming that the null hypothesis is true. Goldfeld and Quandt tabulate 

density functions for a single peak statistic when (7) is true. Some 

computer programming is necessary to calculate the distribution of a sum 

of such statistics. Unusually high values of this sum provide evidence 

against (7) in favour of (8). 

Alternative hypothesis (8) is called a composite hypothesis because 

there are a large number of cumulative density functions, 

F. , F. , ... F. , for which it is satisfied. When cumulative density 

/l .-L2 \I ... . c , 
functions are specified, except for some unknown parameters, for most 

tests of a simple hypothesis against a composite alternative there is one 

test procedure of a certain size that is more powerful than all others of 

the same size. This is not the case in a nonparametric context. Each of 

the three test procedures described above is most sensitive to slightly 

different choices of F^'s satisfying (8). Use of more than one test 

statistic for (7) should increase the chances of rejecting the null 

hypothesis, HQ, when it is in fact incorrect. 

Recall the assumption about the population distributions of price 

changes introduced at the beginning of this discussion. To test for 

differences between the means of distributions it is necessary to assume 

that, regardless of their parametric form, the distributions differ only 

in their means. What are the implications of violation of this 

assumption? A test procedure may lose power. The most important problem 

is that it is no longer possible to control the type I error of a test 

procedure. If actual distributions have the same means but differ in 

terras of variance, skewness or other characteristics, true null hypotheses 

concerning means may be rejected more than 100 a % of the time using a test 

of size a . 

What should be done to guard against the undesirable effects of 

violation of the assumption? Hawkins (1980) has a suggestion. Before 

using nonparametric tests for means, one should adjust each sample of data 

— in this case each group of observed price changes from a particular 

recession so that all samples have the same sample variance. This can 

be achieved by dividing each sample through by a constant determined using 

the relationship Var(ax) = a2Var(x). In principle it would be possible 

to perform further adjustments to correct for differences in sample 

skewness and kurtosis. Note that these corrections are only approximate 

since they equate sample characteristics rather than population 

characteristics. The properties of the corrections have not been much 

investigated in the statistical literature. Lehmann (1975) demonstrates 

that use of a mean correction when testing for variance differences is 

acceptable in the sense that type I error probabilities can be controlled, 

if the samples involved are large enough. Apparently no one has examined 
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the use of a variance correction before testing for equality of means. In 

practice, test statistics should be computed with and without this 

correction in order to obtain some indication of the importance of the 

assumption for the test results. 

Finally it is necessary to address the issue of testing for 

hypotheses concerning characteristics of population distributions of price 

changes other than their means. Such tests can be conducted using any of 

the test statistics described above after an appropriate initial 

transformation of the data. To test for equality of variances each price- 

change measure should be squared before the procedures described above are 

applied. Skewness and kurtosis can be examined using third and fourth 

powers. Remember that in each case one assumes that the price-change 

distributions under study are identical except for the characteristic of 

interest. Sample mean and variance corrections should be used whenever 

relevant to check the importance of this assumption for test results. 
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