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AVANT-PROPOS 

Cette étude a pour but d'exposer une méthode d'estimation 

des fonctions de gestion de portefeuille. Le modèle de base est 

formé d'un ensemble d'équations déterminant de façon exhaustive 

la répartition en différentes catégories d'un montant donné 

d'avoirs. Pour des raisons de cohérence, il faut que, pour tous 

les postes de l'actif, la somme des coefficients de l'avoir total 

soit égale à l'unité et que celle des coefficients des autres 

variables explicatives soit égale à zéro. Ces contraintes sont 

imposées lors de l'estimation simultanée du modèle. On y 

parvient en utilisant une version modifiée de la technique 

d'estimation des régressions en apparence indépendantes, 

développée par Zeliner. On obtient l'estimateur en utilisant 

d'abord les résidus provenant des régressions des moindres carrés 

ordinaires pour estimer la matrice de variance-covariance, puis 

en appliquant la méthode des moindres carrés généralisés. Etant 

donné qu'il s'agit ici d'une matrice de variance-covariance 

singulière, on a recours au concept d'inversion généralisée pour 

calculer l'estimateur des moindres carrés généralisés. En raison 

de la somme énorme de calculs qu'implique l'estimation 

simultanée, l'auteur présente une méthode utilisant les formules 

d'inversion de matrices sectionnées. On peut ainsi réduire 

considérablement les calculs à effectuer si une proportion 

significative des variables explicatives est commune à chaque 

équation. 

L'existence de délais d'ajustement est également abordée 

dans cette étude. Le modèle bien connu des ajustements de stocks 

ne peut être appliqué ici, parce qu'il ne tient pas compte des 

interrelations entre les avoirs. L'auteur étudie également un 



modèle proposé par Brainard et Tobin, dont il présente une 

version modifiée en imposant à tous les avoirs la même vitesse 

dfajustement. Cette méthode est illustrée à l'aide d'un exemple 

tiré du RDX2, modèle économétrique trimestriel de l'économie 

canadienne mis au point par le Département des recherches de la 

Banque du Canada. Les équations sont estimées pour huit 

catégories d'avoirs, dont la monnaie et plusieurs formes de dépOt 

dans les banques à charte et dans les sociétés de fiducie ou de 

prêt hypothécaire. 



ABSTRACT 

This paper is designed to present a procedure for estimating 

demand functions for assets subject to portfolio consistency 

constraints. The basic model consists of a set of equations 

determining the allocation of a given quantity of wealth among 

categories that exhaust the total. Consistency requires that the 

coefficients on total wealth sum to unity across all assets and 

that the coefficients on other explanatory variables such as 

rates of return sum to zero. These constraints are imposed on 

the coefficients by estimating the system of equations 

simultaneously. This is done with the use of a modified version 

of the technique introduced by Zellner for estimating "seemingly 

unrelated regressions". His estimator is obtained by first 

employing residuals from ordinary least squares regressions to 

estimate the variance-covariance matrix among the disturbances 

for each asset and then by applying generalized least squares. 

Since in the present case the variance-covariance matrix is 

singular, use is made of the concept of a generalized inverse to 

obtain the generalized least squares estimator. In view of the 

considerable computational burden involved in the simultaneous 

estimation, a method for calculating the coefficients is 

presented that uses the formulas for the inverse of a partitioned 

matrix. A considerable saving in computation can be realized by 

this means if a significant proportion of the explanatory 

variables appears in the equation for every asset. 

An additional problem taken up in the paper is the 

introduction of lagged adjustments. The familiar stock 

adjustment model cannot be imposed directly because it does not 

account consistently for the inteiactions among assets. A model 



proposed by Brainard and Tobin is discussed and a modified 

version of it is presented in which a common speed of adjustment 

is imposed on all assets. This procedure is illustrated by using 

an example drawn from RDX2, the quarterly econometric model of 

the Canadian economy developed in the Research Department of the 

Bank of Canada. Equations are estimated for eight assets 

including currency and several categories of deposits in 

chartered banks and in trust and mortgage loan companies. 

Cordon R. Sparks 

Queen's University 



ECONOMETRIC ESTIMATION OF CONSTRAINED DEMAND 

FUNCTIONS FOR ASSETS 

The purpose of this paper is to present a procedure for 

estimating demand functions for assets subject to portfolio 

consistency constraints. In Section I of the paper, the basic 

model is formulated and the nature of the econometric problem is 

indicated. Section II is a description of an estimation 

procedure that is a modified version of the technique for 

estimating "seemingly unrelated regressions" introduced by 

Zellner [17]. In Section III the problem of introducing lagged 

adjustments into the model is taken up, and in Section IV the 

estimation of constrained demand functions is illustrated by an 

example drawn from RDX2, the quarterly econometric model of the 

Canadian economy developed in the Research Department of the Bank 

of Canada. 

I The Constrained Portfolio Model 

The basic model to be considered is represented by the 

following system of equations: 

m 

=I8x+u r = 1,2,...,n 
r , rs s r 

s = l 

where 

is the quantity of the rt^1 asset held, 

u is a disturbance term, 
r 

n 

x = I y is total wealth, and 
m , r 
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x, ,x.,x_,...,x , are other variables influencing asset choice. 
12 3 m-1 

The model determines the allocation of a given quantity of wealth 

among n categories that exhaust the total. The other explanatory 

variables are typically rates of return but may include other 

factors influencing portfolio choice as well. The model may be 

applied to households, firms, or financial institutions and its 

theoretical interest has been established in many recent 

contributions to the literature of financial model building - 

particularly by Tobin £15] and by Brainard and Tobin [3]« 

Since total wealth is included among the explanatory 

variables, constraints must be imposed on the coefficients to 

preserve the identity relating total wealth to the sum of its 

components. For example, any change in rates of return may cause 

a shift in asset choices, but the effect must sum to zero over 

the portfolio. Similarly, a change in total wealth must be 

distributed over the portfolio so that the effect sums to unity. 

Thus we have : 

n 

E 
r=l 

3 
rm 

1 

(2) 

n 

EB =0 s = 1,2,3,...,m-l 
rs 

In practice these constraints are frequently not imposed because 

demand functions are estimated for only a subset of assets that 

does not exhaust total wealth. However, as emphasized by 

J 
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Brainard and Tobin [3], failure to consider the constraints may 

lead to inappropriate implicit specification of the remaining 

demand functions. Peculiar behaviour may be implied, 

particularly when lagged adjustment models are used. If the 

residual assets are simply ignored, all the offsetting effects 

are automatically assigned to the missing equations. 

If the same set of explanatory variables is employed in each 

of the asset demand functions, the constraints of Equation 2 do 

not require the use of any special estimation procedure and it is 

easily shown that they will automatically be satisfied by 

ordinary least squares estimates of the equations taken one at a 

time. If, however, some coefficients are set equal to zero (as 

would be the case, for example, if some asset pairs are not 

substitutes), the constraints must be incorporated into the 

estimation procedure. This can be accomplished by combining all 

the demand functions into a single equation as follows: 

m 

E 3 
s = l 

Is 

m 
+ E B 

s = l 
2s 

m 
+ E B 

s = l 
ns 

u 

u. 

u 

(3) 

where each element in the partitioned vectors is to be 

interpreted as a vector of T observations. The equations can 

then be estimated simultaneously by running one regression on all 

nT observations and the constraints can be imposed by 



-4- 

substitution. However, it is clear that the usual assumption of 

homoscedasticity cannot be imposed on this combined regression, 

since, in general, the residual variance will not be constant 

across the assets. In these circumstances a simple procedure can 

be used; this is to obtain estimates of the variances from the 

least squares residuals and then to rerun the equations with the 

data appropriately weighted so as to eliminate 

heteroscedasticity. This is the method employed by Sparks [14] 

and Hendershott [7]. Following the technique used in an earlier 

paper by Gramlich and Kalchbrenner [5], Hendershott further 

reduces the number of independent parameters to be estimated by 

imposing symmetry on the interest rate coefficients. In terms of 

the notation introduced in Equation 1 above, he assumes that» 

6 =6 r,s = 1,2,...,m-l 
rs sr 

II Efficient Estimation of the Portfolio Model 

1. Estimation by Generalized Least Squares 

The estimation procedure suggested above, which allows for 

heteroscedasticity across assets, will still be inefficient if 

there is correlation between residuals for different assets. An 

efficient method has been suggested by Zellner [17] that involves 

the estimation of the variance-covariance matrix from the least 

squares residuals and then the application of generalized least 

squares. Zellner's method is based on the assumption that, for 
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each asset, the disturbances are homoscédastic and free of 

autocorrelation, but that there is a different variance for each 

asset and correlation between contemporaneous disturbances for 

different assets. In this case the variance-covariance matrix 

can be written in the following partitioned form; 

= v a iT (4) 

where 

1^ is a T x T identity matrix, and 

V is the n x n matrix of distinct variances and covariances. 

If it is assumed that zero constraints are imposed on the mn 

parameters (g^) (so that p coefficients remain to be estimated) 

and also that the variables are replaced with vectors of T 

observations, the model can be written in matrix form as follows: 

y = XB + u 

(5) 
AB = a 

where 

y is a vector of nT observations on the n assets, 

X is a nT x p matrix of observations on the 

explanatory variables, 

8 is a vector of p coefficients. 

E = 

ailIT ai2IT •-- ainIT 

a21IT a22IT ‘'' a2nIT 

^l1! an2IT ••• ^n1! 
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u xs a vector of nT disturbances, 

A is a m x p matrix with rank m,* and 

a is a vector of length m with unity in the last 

position and zeros elsewhere. 

Then, the generalized least squares estimates are obtained by 

minimizing 

(y-Xb)' £ 1 (y-Xb) 

subject to the constraint 
(6) 

Ab = a 

(7) 
where 

b is a vector of p estimated coefficients. 

Under Zellner's assumptions it is not necessary to invert 

an nT x nT matrix, since Z'1 is given by 

E-1 = V'1 9 IT 

(8) 
In the present case, however, this method cannot be applied 

directly, because the constraints imply that the disturbances 

(ur) must sum to zero. This implies that the rows and columns of 

the matrix V will sum to zero so that V will be singular. Thus 

the inverse cannot be obtained as required in the application of 

generalized least squares, A solution to this problem has been 

provided by Barten [2 ] in a paper concerned with the analagous 

problem of estimating a system of demand equations for 

commodities. He suggests the use of the concept of the 
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generalized inverse, which can be applied to a singular matrix 

[2] p 82. 

Consider the n x n matrix G defined by 

0 

G V*1 • (9) 

0 ... 0 

where 

V* is the (n-1) x (n-1) matrix obtained by deleting 

the last row and column of V. Then G is by definition a 

generalized inverse of V since it satisfies the condition3 

VGV = V (10) 

To see this, we partition V as follows: 

’v* v" 

V = 
(11) 

v' s 

where 

v is a column vector of length n-1 and 

s is a scalar 

Carrying out the matrix multiplication, we obtain 
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VGV = V 

n-1 V^v 

0 ... 0 

V* V 

v'V^v 

Since the rows and columns of V sum to zero, we have 

V*u = -v 

or 

V* v = -u 

where 

u is a unit vector of length n-1. 

Similarly we have 

(12) 

(13) 

s = -v'u 

Substituting Equation 13 into Equation 14 we obtain 

(14) 

s = v,v"1v 

so that the matrix derived in Equation 12 is equal to V. 

Substituting G in place of the undefined inverse of V, we 

minimize 

(15) 

4 

(y-Xb) ' H(y-Xb) 
(16) 

subject to Equation 1, 

where 

H = G 0 IT 
(17) 

Introducing a vector Y of m Lagrangian multipliers, we minimize 
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Cy-Xb) ' H(y-Xb) + 2b'A'\ 

by solving the following equations; 

X'HXb + A1X = X'Hy 

Ab = a 

(18) 

(19) 

These equations can he written i 

X'Hy 

in the form. 

X'HX 

A 

A 

0 (20) 

The vector of estimated coeffici 

from: 

b = PX'Hy + C'a 

where 

P C' fvit.t, » .1 -1 

C D 

ents b can then be obtained 

(21) 

X'HX A' 

A 0 
(22) 

2‘ The Variance-Covariance Matrix of the constrained Estimator 

The variance-covariance matrix of the coefficients can be 

as follows: Given the model (Equation 5) and the 

properties of P and c implied by their definition (Equation 22, 

we can write 

b = PX'H(XB+u) + C'a = (I -C'A)8 + PX'Hu = 6 + PX' 
Hu 

(23) 
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Thus we have 

E[(b-B)(b-8)1] = E[PX'Huu'HXP'] 

- PX'HEHXP' 

= PX'HXP' 

since 

HEH = (GVG) O IT 

and4 GVG = G 

Simplifying further, we have 

PXHXP' = (I -C'A)P' 
P 

= P' 

= P 

(24) 

(25) 

(26) 

so that 

E [ (b-6) (b-B) ' ] = P 
(27) 

3. Estimation by a Two-Stage Procedure 

It can easily be seen from the form of G, defined by 

Equation 9, that the use of the generalized inverse to deal with 

the singularity problem has a simple interpretation. The 

estimator given by Equation 21 could be obtained by simply 

dropping out one asset and applying Zellner's method to the 

remaining n-1 assets. The effect of placing zeros in the last 

row and column of G is to eliminate the terms involving the 

coefficients in the nth asset from the minimand given in Equation 
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16. This raises the question of whether different estimates 

would be obtained for different choices of residual asset. This 

question has been considered by Powell [12] who has shown that 

the estimates are invariant with respect to the choice of the 

generalized inverse and therefore with respect to the choice of 

the residual asset. 

However, it should be noted that if an initial run is made 

using ordinary least squares in order to estimate V, then to drop 

out one asset is not appropriate. In this case, V is replaced by 

an identity matrix, which is of course not singular, and is its 

own inverse. As can be shown, the ordinary least squares 

estimates obtained when one equation is dropped are not 

independent of the asset chosen for exclusion.5 Thus the two- 

stage procedure should be carried out in the following way: 

First obtain ordinary least squares estimates by using Equation 

21 with H obtained from Equation 17 and an identity matrix 

substituted for G. Use the estimated residuals to estimate V 

with the arbitrary choice of an omitted asset and form G by 

adopting the definition given in Equation 9. The coefficients 

can then be reestimated using generalized least squares. 

Alternatively, the first stage estimates could be obtained 

by simply applying unconstrained ordinary least squares to the 

equations individually. This would lead to an estimated V matrix 

that need not obey the singularity constraint. Thus the second 

stage estimates would no longer be invariant with respect to the 

choice of an omitted asset. Singularity could be insured by 

using all explanatory variables in all asset equations in tne 
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first stage, but this would lead to inefficient estimation of V 

if there were a significant number of zero constraints. Thus it 

seems preferable to proceed as suggested above and estimate the 

equations simultaneously at both stages.* 

4. Calculation of the Coefficients Using a Partitioned Inverse 

Unless the number of assets and explanatory variables is 

small, the computation of the estimated coefficients in Equation 

21 will be onerous, and will require the inversion of a matrix 

the dimension of which equals the number of coefficients (p) plus 

the number of constraints (m). For example, in the empirical 

model discussed below, there are eight assets and sixteen 

explanatory variables. The number of nonzero coefficients is 

seventy-five so that the matrix has dimension ninety-one. 

As noted above, the estimation procedure collapses to 

ordinary least squares applied to the equations taken one at a 

time if the same set of explanatory variables is used for each 

asset. This fact suggests that the computations in the general 

case can be simplified by an appropriate partitioning. Let us 

write the basic model given in Equation 5 as follows: 

Y = XB + u = Za + + u 
(28) 

where 

Z is the nT x nq matrix of observations of the q explanatory 

variables that appear in the equation for every asset, 

a is the corresponding vector of nq coefficients. 
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z* is the nT x (p-nq) matrix of observations on the remaining 

m-q explanatory variables, and 

a* is the corresponding vector of p-nq coefficients. 

Thus the matrix given in Equation 22, which is to be inverted, can 

be written 

X'HX A' 
A 0 

Z1 HZ Z'HZ* 
A' 

Z'HZ Z'HZ 
* * * 

A 0 

(29) 

If a significant proportion of the explanatory variables 

appears in every equation, a large saving in computation can be 

realized by using the fact that 

Z'HZ = (WW) ® G 

(30) 

where 

W is the T x q matrix of observations on the q common 

explanatory variables. 

Furthermore, the dimension of the matrix given in Equation 29 can 

be reduced by recognizing that the set of equations for the 

coefficients on the common variables combined with the 

corresponding constraints is redundant. These constraints will 

automatically be satisfied if the entire set of coefficients is 

estimated subject to the remaining constraints applicable to 

variables that do not appear in every equation. 

If redundancy is eliminated by dropping the equations for 

the coefficients on the common variables in the nth asset and 
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replacing them by equations derived from the constraints,7 the 

system of equations numbered 20 can be reduced to 

where 

M = 
(W'W) 0 G* 

I ... I 
q q 

(31) 

R = 

Z
;
HZ 

o 

s = 

ziHZ* A; 

G* is the (n-1) x (n-1) matrix obtained by deleting the 

last row and column of G, 

A** a*» ** are ps^s of the matrix A and of the vectors a 

and X that pertain to the m - q constraints on the 

noncommon variables, 

c is the vector of nq coefficients on the common variables, 

c* vector of p-nq coefficients on the remaining variables, 

B is the matrix composed of the first (n-1)q rows of Z'HZ^ 

bordered with q rows and m-q columns of zeros, and 

r is the vector of length nq obtained by taking the first 

(n-1)q elements of Z'Hy and the q relevant entries from 
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the vector a. 

The inverse of the above partitioned matrix can be obtained 

as follows: 

M B]"'
1 

R S 

where 

N = M_1[I - BE], nq 

E = -F^RM-1, 

Q = -M^BF-1, 

F = S - RM 1B, and 

(WW)'1 0 0 

(WW)'1 0 (-U'VJ Iq 

Thus the inversion of the q x q matrix WW and the (p+m-nq-q) x 

(p+m-nq-q) matrix F is required. In the example discussed below, 

these dimensions are six and thirty-seven, respectively, so that a 

considerable saving is achieved by partitioning rather than by 

direct inversion of a matrix of dimension ninety-one. 

Ill Lagged Adjustments 

N Q 

-1 (32) 

1 The Brainard-Tobin Model 
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In this section the problem is considered of incorporating 

adjustment lags into the demand functions while maintaining the 

consistency constraints. That old reliable workhorse the stock 

adjustment model cannot be imposed directly since it does not 

account consistently for the interactions among assets. If it is 

assumed that the change in the holdings of each individual asset 

depends on the gap between the desired and lagged actual stock 

and if a function of observables is substituted for the desired 

stocks, a set of relationships is obtained in which the lagged 

stock of each asset appears in only one equation. Thus the 

consistency constraints would require the lagged stocks to enter 

with zero coefficients. To get around this difficulty, Brainard 

and Tobin [3] postulate a model of the following form: 

m n 
Ay = I6x-Iy y 

r , rs s , rt/t , 
s=l t=l -1 

<5 Ax 
r m (33) 

The change in holdings of each asset is assumed to depend on the 

gaps between desired and actual holdings of all assets and the 

change in total wealth. The coefficients Yrt represent the 

response of the rth asset to the gap between the desired and 

actual stocks of the tth asset. The consistency constraints can 

be derived by summing over the n equations of the model in 

Equation 33 as follows: 

ZAy 
r r 

m-1 
Z 

s = l 

(ES )x + EB x 
r rs s r rm m £(£Y )y + (E6 )Ax rr m 

Rearranging the terms involving total wealth, we obtain 
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m-1 

Thus we must have 

EB = 0 
r rs 

s=l,2, ... , m-1 

(34) 

Ey = 1 - EÔ 
r rt r r 

Note that the third condition implies that Ey^ is independent of 

t.« 

An additional set of n constraints is required because of 

the exact linear dependence between the explanatory variables 

eliminate the change in wealth term, but Brainard and Tobin £3] 

choose to eliminate the lagged stock of one particular asset from 

all equations. Since Ladenson £8] p 1007 seems to argue to the 

contrary, it is perhaps worth emphasizing that the choice of 

constraint to eliminate the redundancy is entirely arbitrary and 

has no effect on the substance of the model. In terms of the 

notation used here, Ladenson argues that: if the coefficients Brm 

(r=l,2,...,n) are set equal to zero, then it is assumed that 

asset demands adjust instantaneously to a change in wealth, 

while, if the coefficients 6r (r=l,2,...,n) are set equal to zero, 

it is assumed that asset demands adjust to a change in wealth at 

the same speed as they adjust to changes in other variables. 

X , X - X 
, and the set of lagged stocks. One option is to mm m 

-1 
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This interpretation is clearly invalid because the reaction to a 

change in wealth will not depend on the particular constraint 

used to eliminate the redundancy. Since it is impossible to 

identify separately the influence of wealth, the change in 

wealth, and the set of lagged stocks, Ladenson's distinction is 

meaningless. 

2. The RDX2 Model 

In the financial sector of the RDX2 model of the Canadian 

economy, a modified version of the Brainard-Tobin model is used.® 

In order to reduce the number of parameters to be estimated 

further restrictions are introduced on the speed of adjustment 

coefficients, namely 

r/t 

(35) 

Y rr Y 

Thus a model with a common speed of adjustment is considered 

that takes the form 

m 

E 
s = l 

6 x 
rs s 

+ 6 Ax 
r m (36) 

The consistency constraints are 
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ZB =0 s=l, 2, ..., m-1 
r rs 

(37) 

Z(B +6 
r rm 

1 

Y = 1 - Z6 
r r 

In this context, the coefficients on the change in wealth 

can be interpreted as an inertia effect that accounts for the 

temporary allocation of an increase in wealth while the stock 

adjustment process works itself out. The impact effect on the 

rth asset of an increase in wealth consists of two parts: first 

there is the stock adjustment component that equals Y times the 

long run equilibrium effect of wealth on the r asset, and 

second the inertia effect represented by 6^. The constraints 

ensure that these effects just exhaust the change in wealth as it 

is distributed among the assets. In subsequent periods the 

change in wealth is reallocated until the long-run desired 

portfolio is reached. On the other hand for certain values of 

the coefficients, the lagged adjustment is short-circuited. In 

particular, should 

B + 6 = - B 
rm r y rm 

^ th 
then the impact effect and the equilibrium effect on the r 

asset are identical. A general condition for a zero lag wealth 

effect can be derived to cover Equation 33, although such a 

condition does not take the form 6^ = 0 as claimed by Ladenson. 

IV Empirical Results 
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In order to illustrate the specification and estimation 

procedure discussed above, a modified form of the model used to 

determine liquid asset holdings in RDX2 [6] is estimated. Demand 

functions for eight assets are considered. These include 

currency, three types of bank deposits, two types of deposits in 

trust companies and mortgage loan companies (which are the major 

nonbank deposit-taking institutions in Canada), Canada Savings 

Bonds, and liquid marketable securities net of short-term bank 

loans. The definitions of the variables used are as follows: 

ANFN Government of Canada marketable debt held by the general 

public plus short-term paper outstanding less chartered 

bank day, call, and short loans 

CSB End-of-quarter stock of Canada Savings Bonds 

CUR Currency held outside chartered banks 

DDE Demand deposits in chartered banks (excluding float. 

Government of Canada deposits, and personal chequing 

accounts) 

DNPTB Nonpersonal term and notice deposits in chartered 

banks 

DPB Personal savings and personal chequing accounts in 

chartered banks 

DSTL Chequable and nonchequable demand and savings deposits 

in trust and mortgage loan companies 

DTTL Receipts and guaranteed investment certificates deposited 

in trust and mortgage loan companies 

The dependent variables in the regressions are the 

proportions of total wealth held in each form and therefore the 
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constant terms are constrained to sum to unity.Portfolio 

scale effects are allowed for by including the reciprocal of 

total assets among the explanatory variables. Since levels 

rather than first differences are used for the dependent 

variables, the coefficients on the lagged dependent variables are 

interpreted as 1 minus the speed of adjustment. 

The explanatory variables used cure defined as follows: 

A Total liquid assets 

QC1, QC2, QC4 Seasonal dummies for the first, second, and 

fourth quarters, respectively 

QDBA Dummy variable for revisions of the Bank Act, which governs 

the operations of chartered banks (unity from 3Q67 

forward) 

RCSB Rate of interest on Canada Savings Bonds 

RNPT Rate of interest on nonpersonal term and notice deposits 

RPD Rate of interest on personal deposits 

RST Weighted average of rate of interest on Government of 

Canada bonds (1-3 years) and 90-day paper 

RSTL Rate of interest on trust and mortgage loan savings 

deposits 

RTTL Rate of interest on trust and mortgage loan certificates 

Y Gross national expenditure in current dollars 

The income variable, which is included to represent the effect of 

transactions requirements on the choice of assets, is expected to 

enter positively in the equations for assets that serve as, or 

are close substitutes for, a medium of exchange. 
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The regression coefficients obtained by using quarterly 

data for the period 2Q56-3Q72 are shown in Table 1. Certain 

aspects of the results should be noted. First, a modification 

was introduced because of the low speeds of adjustment that were 

obtained when the model outlined above was fitted. To allow for 

the possibility of a faster speed of adjustment for demand 

deposits (DDB), the lagged stock of this asset was included in 

the equations for demand deposits (DDB) and ANFN. A different 

reaction lag for currency is similarly permitted by including the 

lagged stock in the equations for currency (CUR) and for 

chartered bank personal deposits (DPB) . The coefficients imply 

speeds of adjustment of 46% and 35% per quarter for CUR and DDB, 

respectively, compared with 14% for the other assets. 

In view of the problem of multicollinearity among interest 

rates, the range of possible substitution effects was narrowed 

down by dividing the assets into two groups with zero cross- 

elasticities between assets not in the same group. The first 

group of assets (Equations 1-4) is held primarily by households 

that have relatively small portfolios, whereas the second group 

(Equations 6-8) comprises assets held primarily by businesses or 

by households that have relatively large financial portfolios. 

Substitutability was permitted between the marketable securities 

variable (ANFN) and assets in both groups. Within the first 

group significant substitution effects were obtained between 

personal savings and chequing deposits in chartered banks (DPB) 

and both savings deposits in trust and mortgage loan companies 

(DSTL) and Canada Savings Bonds (CSB). The marketable securities 
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Table 1 

COEFFICIENTS AND T-RATIOS 

CONSTANT 

QC1 

QC2 

QC4 

Y/A 

1000/A 

Aj/A 

(1) 

CUR/A 

.09415 
(5.11) 

.00145 
(1.42) 

.00384 
(5.02) 

.00544 
(3.20) 

.04749 
(3.49) 

.26336 
(5.19) 

-.09022 
(4.78) 

RPD 

(2) 

DPB/A 

.19647 
(7.24) 

.00782 
(3.85) 

.00232 
(1.43) 

.00087 
(.25) 

.10339 
(3.83) 

-.41656 
(4.09) 

-.19600 
(7.28) 

.00630 
(5.88) 

(3) 

DSTL/A 

.00662 
(1.63) 

-.00077 
(1.01) 

-.00036 
(.61) 

-.00142 
(1.08) 

-.01242 
(1.25) 

-.08464 
(3.14) 

-.00079 
(2.19) 

(4) 

CSB/A 

.04755 
(3.84) 

-.00088 
(.43) 

-.00231 
(1.68) 

.01344 
(4.39) 

-.06060 
(2.59) 

-.10365 
(1.18) 

-.00297 
(3.50) 

(S) 

ANFN/A 

.11007 
(5.35) 

-.01553 
(3.77) 

-.01134 
(3.76) 

-.03327 
(4.81) 

-.38032 
(7.02) 

.58141 
(2.99) 

-.00254 
(2.68) 

(6) 

DNPTB/A 

.16728 
(4.64) 

.00639 
(2.87) 

.00296 
(1.75) 

.00631 
(1.65) 

.11211 
(3.69) 

-.18489 
(2.03) 

-.18447 
(5.01) 

(7) 

DTTL/A 

.01363 
(2.62) 

.00266 
(2.28) 

.00071 
(.82) 

.00261 
(1.31) 

.02301 
(1.44) 

-.40711 
(6.11) 

(8) 

DDB/A 

.36422 
(10.31) 

-.00113 
(.46) 

.00418 
(2.50) 

.00602 
(1.50) 

.16734 
(5.36) 

.35209 
(3.73) 

-.39191 
(10.72) 

RSTL 

RCSB 

RNPT 

RTTL 

RST 

QDBA 

-.00227 
(3.64) 

-.00198 
(3.27) 

-.00207 
(5.21) 

.00227 
(3.64) 

.00198 
(3.27) 

-.00511 
(3.92) 

-.00220 
(3.45) 

.01329 
(8.44) 

.00511 
(3.92) 

-.00797 
(5.80) 

.00564 
(5.24) 

.00220 
(3.45) 

-.00169 
(3.29) 

-.00156 
(3.07) 

-.00564 
(5.24) 

CUR /A -.32421 
(4.04) 

DOB j/A 

Lagged 
D.V./A 

R2 

D-W 

.86260 
(39.44) 

.946 
1.95 

.32421 
(4.04) 

.86260 
(39.44) 

.977 
1.65 

.86260 
(39.44) 

.983 
1.44 

.86260 
(39.44) 

.980 
1.70 

.21424 
(3.26) 

.86260 
(39.44) 

.991 
1.68 

.86260 
(39.44) 

.984 
1.90 

.86260 
(39.44) 

.998 
1.68 

-.21424 
(3.26) 

.86260 
(39.44) 

.952 
2.03 

Sum Across 
Equations 

1 

0 

0 

0 

0 

0 

-.86260 

0 

0 

0 

0 

0 

0 

0 

0 

0 

.86260 
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asset was found to be a substitute for each of the tnree 

categories of Canadian dollar deposits in chartered banks, ie, 

personal deposits (DPB) , demand deposits (DDE), nonpersonal term 

and notice deposits (NDPTB), and term deposits in trust and 

mortgage loans companies (DTTL). 

In the equations for currency and bank deposits the 

coefficients on income are positive whereas income has a negative 

effect on ANFN. This indicates that the proportions of these 

assets shift in response to transactions requirements as 

hypothesized above. The results for the temporary wealth effect 

represented by lagged total assets were, however, somewhat 

puzzling. The only sizeable coefficient appeared in the ANFN 

equation rather than in the currency and bank deposit equations 

where one would have expected this effect to be concentrated. In 

the equations shown, coefficients more consistent with this a 

priori view were obtained by excluding lagged total assets from 

the ANFN equation. 

In summary, this example illustrates the major features of 

the model and the estimation procedure proposed. Given the 

considerable number of zero constraints, joint estimation is 

necessary to insure consistency across the portfolio. Use of the 

partitioned inverse was found to reduce substantially the 

computer time required to obtain the estimated coefficients. The 

problem of incorporating lagged adjustments in a consistent 

manner is handled by initially assuming a constant speed of 

adjustment for all assets so that only one lagged stock appears 

in each equation. This assumption is then relaxed to allow 
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different speeds of adjustment in two of the eight assets with 

consistency maintained in each case by including the mirror image 

of the differential lag in the equation for the closest 

substitute. 
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FOOTNOTES 

1. This constraint is also used by Parkin [11] who points out 

that it will hold if the demand functions are derived 

from a special case of the mean-variance approach to 

portfolio choice as proposed by Tobin [16] and by 

Markowitz [9], Parkin assumes the objective function to 

be a weighted sum of the mean and the variance. 

2. The condition that A has rank m implies that no explanatory 

variable is omitted from the equation for every asset. 

3. For a discussion of this concept, see Searle and Hausman 

[13], pp 170-173. 

4. This result does not follow simply from the fact that G is a 

generalized inverse of V but can easily be verified by 

carrying out the multiplication in terms of the 

partitioned matrices. 

5. This proposition of course does not apply in the trivial 

case where the same set of explanatory variables is used 

for each asset. For a further discussion of this point 

see McGuire et al [10] p 1207. The inappropriate 



procedure of dropping an asset was followed in the RDX2 

model [6] Part 1# pp 171-172, and this error is corrected 

in the empirical results reported in Section IV below. 

Of course further iterations can be carried out until 

convergence of the estimates is obtained. For a 

discussion of this, see Aigner [1]. 

This procedure for eliminating the redundancy is convenient 

for calculating the partitioned inverse as it leads to a 

nonsingular submatrix in the upper left hand corner. 

Simply dropping the constraints would yield a singular 

submatrix in the generalized least squares case where G 

is singular. 

Brainard and Tobin [3] use a special case of the constraints 

on the adjustment coefficients, namely, £y = 0 and £6 =1. r rt r r 

For a further discussion, see Clinton [4] and Ladenson [8]. 

See Helliwell, et al [6] 
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ID. This constraint follows directly from Equation 36 and 37 

given that lagged total wealth is used rather than the 

change in wealth. The constant terms are thus estimates 

of 6 +6 rm r 
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