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AVANT-PBOFOS 

Un des problèmes auxquels nous faisons face lors de 

l'estimation d'un modèle économétrique est la présence de résidus 

corrélés instantanément et temporellement. Dans l'étude de 

Monte-Carlo qui suit, nous tentons de visualiser l'effet de ce 

problème sur les estimateurs obtenus par six différentes méthodes 

d'estimation. 

Le modèle utilisé est un modèle fictif à deux équations sans 

variables endogènes retardées. Dans ce système nous faisons 

varier différents paramètres: la taille de l'échantillon, le 

niveau de corrélation instantanée, le niveau d'autocorrélation et 

la variance des résidus. 

Cette étude est tirée de ma thèse de maîtrise (texte 

français) présentée à l'Université de Montréal. 



ABSTRACT 

When building an econometric model, the equation residuals 

may be both simultaneously and temporally correlated. In the 

rollowing Monte Carlo Study I try tc visualize the eftect of that 

problem on the estimators generated by six different methods of 

estimation. 

I postulate a two-equation model without a lagged endogenous 

variable. In this system I change various parameters: the 

sample period size, the level of simultaneous correlation, the 

level of autocorrelation, and the residual variances. 

This study is the second part of my MA thesis, which is 

written in French, presented at the University of Montreal. 
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A Monte Carlo Study of the Estimation of 

an Overidentified Model with Temporally Dependent Residuals 

1. Objectives 

In this paper I compare the results of six different methods 

of estimation applied to a system of two overidentified equations 

that pose simultaneous correlation and autocorrelation problems. 

(To isolate the effects of these two problems I have not allowed 

lagged endogenous variables to act as explanatory variables.) 

When quarterly data are used, the probability of encountering 

both problems is high. The different properties of each 

estimation method are well known. (This study is intended to 

illustrate these properties and their robustness.) 

2. Theory 

The six methods of estimation to be used are: 

1 OLS - Ordinary Least Squares (Biased estimates.) 

2 GLS - Generalized Least Squares (Biased estimates. 

Cochrane-Orcutt technique.) 

3 2SLS - Two-Stage Least Squares (Consistent estimates.) 

4 3SLS - Three-Stage Least Squares (Consistent 

estimates, mere efficient than the 2SLS estimates.) 

5 A2SLS - Adapted Two-Stage Least Squares (Consistent 

estimates, more efficient than the 2SLS estimates. 

I obtain the 2SLS estimates and from the residuals 
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6 

NOTE 

1 

2 

3 

calculate an autocorrelation coefficient. Then I 

transform the variables of the last regression 

(Z^ - and apply the OLS method. 

A3SLS - Adapted Three-Stage Least Squares (Consistent 

estimates, more efficient than the 3SLS and the 2SLS 

estimates. Instead of using the OLS method in the 

last step of the A2SLS method I apply to all the 

equations of the system the ZGLS (Zellner Generalized 

Least Squares) estimate.) 

For more information on these methods see the 

bibliography or my thesis. These six methods may 

be divided into three groups. 

The methcds used to estimate each equation of the 

system independently, OLS and GLS. 

The methods known as Limited Information Methods, 

2SLS and A2SLS. 

The Full Information Methods, 3SLS and A3SLS. 

Note that GLS, A2SLS and A3SLS take account of 

autocorrelation problems. 

3. Generation of the System 

An artificial model of two overidentified equations is 

yi(:t) = + ai2X3(t:) + ai3y2(-t-) + Ul(t'1 

/jCt) - w0 

* 0,22X4tt) “23yi(t) 
u2(t) 

used: 
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where there are four exogenous variables 

Xj(t): a constant variable 

X2(t): a trend variable 

x3(t): a cyclical variable (sine function) 

X4 (t): a dummy variable (Q4) 

and ut(t) and u2(t) are the residuals 

The true values of the coefficients are: 

a 

a 

11 
= 10 

“12 = 1 a!3 = '5 

21 
= .7 a22 2 = -2 23 

In order to obtain values for the endogenous variables, 

residuals are generated and added to each equation; the system 

is then solved for the two unknown values. The residuals are 

created as follows: 

U1M(I) = -8 U1M(I-1) + -6 ^ 

U2M(I) = -6 U2M(I"1) + -52 V(I) + -178 £(I) 

U1F(I'1 = U1M(-I') 

u2F(I) = .6 u2F(I-l) + .78 v(I) + .178 e(I) 

where e(I) and v(I) are independent identically and normally 

distributed variables N(0,^), and the subscripts M and F 

distinguish between a moderate and a higher level of simultaneous 
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correlation. Three sets of observations are created, one each 

for three levels of A, the residual standard error (RSE). 

The three levels used are 1.0, .2, and 2.0 since, by definition, 

RSE (e ) =RSE (v) = A. We thus obtain: 

RSE(e) 1.000 

RSE(u1M) = 1.000 

RSE(Uj,M) .687 

RSE(u1F) 1.000 

RSE (U2F) 1.000 

.200 

.200 

. 137 

.200 

.200 

2.000 

2.000 

1.374 

2.000 

2.000 

The ratio of the RSE cf each residual to the mean of the 

corresponding endogenous variable is approximately 5* in the 

first case (RSE(£) = 1.00), IX in the second case, and 10X in 

the third case. One can see that in each equation a Markov 

chain is generated with a coefficient of autocorrelation of 

.8 in the first equation and of .6 in the second. As well, 

there is no lagged value for the endogenous variable in either 

equation. This simplification is adopted in order to isolate 

the effect of autocorrelation. If there had been lagged 

endogenous values, the 2SLS and 3SLS methods would have given 

biased estimates and it would be impossible to compare their 

efficiency with that of the A2SLS and A3SLS methods. 

Convergence is one of the properties influencing a choice 

of method. To demonstrate how fast the estimates from the above 

methods converge towards the true value, I took samples of 20, 

50, and 100 observations. I also experimented with different 

levels of the residual variance. Finally, because the estimate 
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of the coefficient of autocorrelation has an influence on the 

result, I wish to see what happens when the true values («8 

and .6) are used and when the GLS, A2SLS, and A3SLS methods 

are applied. 

NOTE: GLS(p) is the real value of the autocorrelation 

coefficient, as is A2SLS(P) and A3SLS(P). 

4. Results and Interpretation 

For each of the three levels of residual variance and for 

each of the two levels of simultaneous correlation, 100 samples 

were generated for each of the three sample sizes, after which 

the six methods of estimation were applied to each sample. 

All these results are compiled and summarized in Tables 1 to 

5 and in Charts 1.1 - 1.6. 

A) The Average of the Proportional Bias 

The bias was estimated by taking the average of tne 100 

estimates of a coefficient and by subtracting this value from 

the true value. The statistic in Table 1, which is the average 

over the six coefficients of the bias divided by the true 

coefficient value, is constructed as shown below. 

100 

( £ 
k=l 

(a. /100 - a. J/a. . 
ij k iJ ij 

2 3 
[ I Z 

i=l j=l 
]/6 
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The OLS Method of Estimation 

Note in Table 1 that use of the OLS method produces 

inconsistent estimates and that the bias does not always decrease 

when the size of the sample is increased. When the residual 

standard error (RSE) is 1 or 2 the bias goes up. When the RSE 

is .2 the bias seems tc be decreasing to zero as the size of 

the sample increases without limit. In all three cases the 

bias should be proportional to the residual variance. On the 

other hand, when the simultaneous correlation of the residuals 

is higher, the probability of having a greater bias is higher. 

However, the impact of the level of simultaneous correlation 

decreases with a lower residual standard error. A close 

examination of the coefficients reveals that the coefficient 

on the explanatory endogenous variable has the largest bias 

of all coefficients in each equation. For example, in a sample 

size of 50 observations with a residual variance of 1 the 

percentage bias of each coefficient is: 

an «12 «13 «21 «22 « 23 

-.16» -.02* -.30* -3.5* -4.1* 11* 

The GLS Method of Estimation 

The GLS results are surprising. Initially I thought that 

they would have a lower bias than the OLS estimates because 

the GLS method takes account of the autocorrelation problem. 

This was not the case and indeed opposite results often emerged 

as can be seen in Table 1. One can not attribute this outcome 



Table 1 

Residual 
Standard 
Error 

1.0 

2.0 

0.2 

THE AVERAGE PROPORTIONAL BIAS 

Method of 
Estimation 

OLS 
2SLS 
3SLS 
GLS 
GLS(p) 
A2SLS 
A2SLS(p) 
A3SLS 
A3SLS(p) 

Samnle Size 20 Sample Size 50 Sample Size 100 
Moderate 

3.73 
2.63 
2.80 
6.16 

13.32 
0.84 
1.36 
1.00 
1.05 

High 

4.63 
2.54 
2.71 

10.09 
19.90 
0.98 
1.41 
1.28 
1.17 

Moderate 

3.23 
1.41 
1.69 

10.59 
14.51 

.83 
1.30 

.91 
1.17 

High 

5.23 
1.35 
1.61 

16.19 
21.24 

.97 
1.45 
1.15 
1.31 

Moderate 

4.60 
.42 
.41 

12.77 
14.21 
1.43 
1.62 
1.31 
1.38 

High 

7.02 
.78 
.83 

19.01 
20.83 
1.76 
2.00 
1.67 
1.67 

OLS 
2SLS 
3SLS 
GLS 
GLS(p) 
A2SLS 
A2SLS(p) 
A3SLS 
A3SLS(p) 

8.57 
2.72 
3.18 

23.04 
40.70 

1.33 
1.85 
1.76 
1.73 

14.23 
3. 79 
4.64 

34.81 
54.32 

1.52 
2. 20 
2. 25 
2.92 

12.88 
2.27 
2.64 

34.98 
42.45 

1.61 
2.07 
2.00 
1.85 

20.49 
3.12 
3.57 

49.14 
55.72 

1.94 
2.43 
2.83 
2.38 

16.91 
1.74 
1.77 

39.90 
41.85 
2.76 
3.00 
2.47 
2.41 

25.24. 
2.55 
2.73 

54.39 
55.00 
3.50 
3.79 
3.30 
3.09 

OLS 
2SLS 
3SLS 
GLS 
GLS(p) 
A2SLS 
A2SLS(p) 
A3SLS 
A3SLS(p) 

2.98 
2.93 
3.17 
1.36 
5.18 
0.69 
1.09 
0.79 

.87 

3.01 
2.92 
3.23 
1.43 
8.47 
0.68 
1.10 
0.83 

.85 

1.61 
1.53 
1.67 

.34 

.63 

.31 

.73 

.36 

.64 

1.65 
1.50 
1.68 

.55 

.97 

.35 

.76 

.39 

.65 

.69 

.59 

.64 

.51 

.69 

.42 

.57 

.38 

.49 

.70 

.52 

.58 

.77 

.95 

.46 

.65 

.43 

.55 
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to faulty estimation of the coefficient of autocorrelation 

because the results of the GLS(p) estimates are even worse. 

Apparently the GLS estimates are not robust when there is 

simultaneous correlation in the residuals and an endogenous 

variable among the independent variables. Later, in the general 

interpretation, I shall explain this situation. When one 

compares the increase of the bias from a moderate level of 

simultaneous correlation to a higher level, one sees that the 

increase of the GLS bias is twice or three times that of the 

OLS bias. 

The Four Other Methods of Estimation 

The results of using the four other methods seem to follow 

the theory. When the 2SLS and the 3SLS methods are applied 

the bias decreases rapidly with the increased sample size. 

Use of these two methods produces convergent estimates of the 

coefficient in the absence of a lagged dependent variable. 

When the more efficient A2SLS and A3SLS methods are employed 

it is difficult to see whether or not the bias is asymptotically 

zero, because even with my small sample sizes the bias is already 

small. A higher level of residual standard error and a higher 

level of simultaneous correlation result in a higher bias. 

This is also the outcome when I use the OLS and GLS methods. 

I also find that a priori knowledge of the autocorrelation 

coefficient (as in the case of the GLS method) has an adverse 

effect on the A2SLS and A3SLS estimates. 
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B) Mean Square Error (MSE) 

The mean square error is a statistic that measures the 

scattering of the estimate around the true value. 

100 , 
MSE(a ) = E ((a..) -a. .) /100 

1J k=i 1J k ^ 

One can prove that the MSE equals the sample variance plus the 

square of bias where the sample variance is defined as: 

100 

E 
k=l 

((a. -a. .) /100 ij k xj 

The MSE is generally lower when the simultaneous correlation 

is lcwer# according to Charts 1.1 - 1.6. Most of this result 

can be explained by the increasing bias accompanying a higher 

level of simultaneous correlation as depicted in Table 1. 

However, the sample size is much more important. In other 

words, it is very useful to have a large sample in order to 

minimize the MSE because the sample variance is greatly affected 

by the sample size. This is so in the case of a residual 

standard error of 1 for a moderate level of simultaneous 

correlation and for the coefficient a
14. For different sample 

sizes these variances are: 

Sample Size 20 50 100 

Variance “n (OLS) 1.158 .632 .387 

The result is the same for the other coefficients and methods. 

This is important because in most econometric work with economic 
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relationships only a single sample is used, not, as here, 100 

samples, so that a random factor can divert the result from 

the true value. The higher the variance the greater the 

probability that the result will be two or three standard errors 

away from the mean. For example, when I build a just-identified 

model (X3=x4=0), using the GLS and 2SLS methods, I obtain in 

two or three of the 100 samples of 20 observations certain 

coefficients that are completely different from the true values. 

Also, if one omits the GLS method, the efficiency of the 

other methods is in increasing order: 2SLS, A2SLS, OLS, 3SLS, 

and A3SLS. The first three methods have approximately tne same 

order of mean square error (MSE). A big gain is realized by 

using the full-information methods. It is surprising that the 

OLS estimates with their bias have a MSE of the same order as 

that of the 2SLS and A2SLS estimates. This occurs because the 

OLS estimates are concentrated around their mean and have little 

sample variance, whereas the opposite happens in the case of 

the 2SLS and the A2SLS estimates - demonstrating the robustness 

of the OLS estimates. For the sample size 50, for a moderate 

level of simultaneous correlation, and for the residual variance 

of 1.0, the order of the variance of the coefficients is: 2SLS, 

A2SLS, GLS, OLS, 3SLS, A3SLS. 

It is evident that the small variance of the GLS estimators 

does not counterbalance the large bias (because of the 

simultaneous correlation) to produce a lower MSE. Hence one 

notes with interest the robustness of the OLS estimates. Their 
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bias is not too high when the residual variance is moderate. 

The level of the sampling variance is low enough to 

counterbalance the bias effect in order to have a good MSE. 

On the other hand, if the 2SLS and the A2SLS estimates are 

interesting for their smaller bias, their large variance is 

important enough to push up the MSE. The 3SLS method and 

(especially) the A3SLS method have advantages: a small bias 

and a small variance, implying a small MSE. However, the 

application of these two methods is practically impossible when 

a large model is being used. 

C) Confidence Interval Tests 

I calculated the number of times out of the 100 repetitions 

that the estimated value of each coefficient is within a 95* 

confidence interval of the true value. Note in Table 2 the 

sum of the tests for the three coefficients of each equation. 

Note also the sum over both equations, and the aggregation of 

the two systems (the moderate and high level of simultaneous 

correlation). When these three types of sums are examined, 

the following is seen: 

maximum possible per equation - 300 times, 

optimum observed from samples - 285 times, 

maximum possible per system - 600 times, 

optimum observed from samples - 570 times, 

maximum possible ever aggregated systems - 1200 times, 

optimum observed from samples - 1140 times. 



Table 2 

Residual 
Standard 
Error 

1.0 

2.0 

0.2 

CONFIDENCE INTlRVAL TESTS 

Method of 
Estimation 

OLS 
2SLS 
3SLS 
G LS 
GLS(p) 
A2SLS 
A2SLS(p) 
A3SLS 
A3SLS(p) 

Sample Size 20 Sample Size 50 
Moderate 

189+226=415 
177+246=423 
186+240=426 
207+231=438 
245+231=483 
232+262=494 
299+289=588 
240+270=510 
300+289=589 

High 

187+225=412 
179+244=423 
192+240=432 
202+221=423 
209+223=432 
234+266=500 
299+291=590 
239+274=513 
300+291=591 

1200 

827 
846 
858 
861 
915 
994 

1178 
1023 
1180 

Moderate 

189+214=403 
188+228=416 
185+216=401 
188+183=371 
148+163=311 
279+285=564 
298+287=585 
272+285=557 
298+292=590 

High 

196+207=403 
188+226=414 
185+216=401 
150+163=313 
114+129=243 
276+285=561 
298+286=584 
272+284=556 
298+291=559 

1200 

806 
830 
802 
684 
554 

1125 
1169 
1113 
1179 

Moderate 

179+170=369 
194+244=438 
196+230=426 
126+122=248 
114+ 99=213 
282+281=563 
299+286=585 
283+285=568 
299+290=589 

Sample Size 100 
High 

173+179=352 
196+241=437 
193+225=418 
102+105=207 
98+ 88=213 

279+281=560 
300+286=586 
277+285=562 
300+290=590 

1200 

721 
875 
844 

399 
1123 
1171 
1130 

OLS 
2SLS 
3SLS 
GLS 
GLS(p) 
A2SLS 
A2SLS (p) 
A3SLS 
A3SLS (p) 

193+212=405 
183+246=429 
188+241=429 
191+172=363 
152+148=300 
236+263=499 
299+284=583 
238+265=503 
300+286=586 

192+207=399 
184+246=430 
191+241=432 
170+152=322 
114+117=231 
234+263=497 
300+282=582 
238+268=506 
300+283=583 

804 
859 
861 
685 
531 
996 

1165 
1009 
1169 

192+164=356 
189+231=420 
177+219=396 
115+ 94=209 
93+ 80=173 

279+285=564 
298+288=586 
272+285=557 
297+289=586 

182+149=331 
187+232=419 
184+222=406 
97+ 84=181 
91+ 78=169 

278+284=562 
296+287=583 
273+284=557 
296+287=583 

687 
839 
802 
390 
342 

1126 
1169 
1114 
1169 

159+105=264 
196+245=441 
193+231=424 
93+ 68=161 
91+ 70=161 

280+282=562 
300+286=586 
279+280=559 
300+285=585 

137+ 93=232 
198+212=440 
188+229=417 

89+ 58=147 
89+ 61=150 

276+279=555 
300+ 28=328 
275+282=557 
300+286=586 

494 
881 
841 
308 
311 

1117 
914 

1116 
1171 

OLS 
2SLS 
3SLS 
GLS 
GLS (p) 
A2SLS 
A2SLS(p) 
A3SLS 
A3SLS(p) 

132+192=324 
123+196=319 
111+173=284 
190+244=434 
277+276=553 
226+269=495 
295+297=595 
224+269=493 
298+296=594 

134+210=344 
123+214=337 
113+194=307 
192+251=443 
274+276=550 
225+271=496 
269+295=594 
221+271=492 
299+295=594 

668 

656 
591 
877 

1103 
991 

1189 
985 

1188 

154+213=367 
151+223=374 
142+206=348 
257+267=524 
275+275=550 
282+293=575 
297+294=591 
283+291=574 
297+296=593 

157+224=381 
151+229=380 
144+214=358 
257+267=524 
263+274=537 
282+291=513 
297+293=590 
280+291=571 
297+296=593 

748 
754 
706 

1048 
1087 
1148 
1181 
1145 
1186 

197+232=429 
192+240=432 
186+231=417 
251+271=522 
267+258=525 
290+287=577 
300+291=591 
288+289=577 
299+293=592 

197+236=433 
191+243=434 
184+234=418 
243+267=510 
261+262=523 
289+286=575 
300+290=590 
288+288=576 
299+294=593 

862 

866 
835 

1032 
1048 
1152 
1181 
1153 
1185 
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Further results appear in Table 2. 

1 The level of simultaneous correlation seems to have little 

effect on the test. 

2 The best results were secured with a lower level of 

autocorrelation (second equation of the system). 

3 The effect of the level of residual variance is hard to 

isolate. The best results were obtained with a moderate 

level of residual variance and with a sample of moderate 

size. 

The choice of method has the greatest effect on the results. 

For the interpretation that follows I use the results of tests 

for sample size 50 with a moderate level of simultaneous 

correlation and a residual variance of 1. The set of results 

is typical. 

Use of the GLS method (except in the case of a residual 

variance of .2) gives the poorest estimation of the confidence 

interval. In a typical case, I had only 62* and 52* ( known) 

success instead of 95*. The size of the bias explains a great 

part of this failure. As well, the distribution of the number 

of times that the real value of a coefficient is within the 

confidence interval differs greatly with each coefficient. 

Of the total of 148 times for the three coefficients of the 

first equation, the coefficient of the cycle variable X3 was 

within the interval ninety-four times, and in the second equation 

the dummy had eighty-eight successes of the 163 successes for 

all three coefficients. The true value of the endogenous 
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variables is very often above the upper confidence 

real coefficients of the trend and dummy variables 

below the lower confidence limit. This dispersion 

explicit with the samples 

ail a12 

within 20 94 

below 0 0 

above 80 6 

% of the bias -13.4 -2.5 

of size 100: 

a 13 a 21 a 22 a23 

12 22 84 16 

88 0 0 84 

0 78 16 0 

18.8 -8.6 -3.8 29.5 

limit; the 

are often 

is much more 

The OLS Method 

As stated above the OLS method produces some biased 

estimates, but this bias is not important enough to explain 

the poor results shown in Table 2. The standard error of each 

coefficient is a biased estimate; compared to the GLS, 2SLS, 

and 3SLS estimates, the OLS estimates follow a normal 

distribution pattern. Although in each case the residuals are 

net normally distributed, the pattern followed by each OLS 

estimate is similar to the GLS pattern but less assymetric. 

Sample Size 50 

gil g 12 g 13 g 21 a22 a23 

within 51 91 47 59 96 59 

below 23 b 21 2 0 39 

above 26 4 26 39 4 2 
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It will be apparent later that this underestimation of the 

confidence interval is generated by an underestimation of the 

residual variances. 

The 2SLS and 3SLS Methods 

The results of using the 2SLS and 3SLS methods are no 

better than those of using the OLS method. Of course the bias 

cannot have a serious effect. This is the classical case of 

underestimation of the standard error of the residuals because 

these two methods do not take account of the autocorrelation 

problem. 

The A2SLS and A3SLS Methods 

By using these two methods I made a significant gain. 

In a typical set of results, the real values are ninety-four 

times out of 100 within a 955S confidence interval employing 

the A2SLS method and ninety-three times employing the A3SLS 

method. As will be evident later (see Table 4), it appears 

that the estimation of the residual variances explains part 

of this success. On the other hand knowledge of autocorrelation 

coefficients provides an overestimation of the standard errors. 

I calculate the follcwing statistic: 
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100 
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Z [ (a..) -a..] /100 

k=l ij k ij 

It is an average over the coefficients of the ratio of 

the mean standard errors of the coefficients to their sample 

standard errors. The values for this statistic are given in 

Table 3. 

All these results confirm what I have stated above. The 

mean of the standard errors are much nearer to the sample 

standard errors of the coefficients when the A2SLS and A3SLS 

methods are used rather than the other methods. 

D) Residual Variances 

The average of the estimates of the residual variances 

is tabulated in Table 4. 

Clearly the sample size is important - the larger the 

sample size the better the estimate of the residual variance. 

Important also is the level of the true residual variances. 

The bias is proportional to the residual variance. For example, 

when the residual standard error is .2, the bias is around 15* 

for a sample size of 20 and is just 2.5* for a sample size of 

100. On the other hand, when the residual standard error is 

1, the bias is 13* for a sample size of 100. 



Table 3 

AVERAGE OVER COEFFICIENTS OF (-Average o£ single-sample estimates of SE of a coefficient 
SE of a coefficient estimated from all samples 

Residual 

Standard 

Error 

1.0 

2.0 

0.2 

Method of 

Estimation 

OLS 

2SLS 

3SLS 

GLS 

GLS(p) 

A2SLS 

A2SLS (p) 

A3SLS 

A3SLS(p) 

OLS 

2SLS 

3SLS 

GLS 

GLS(p) 

A2SLS 

A2SLS(p) 

A3SLS 

A3SLS (p) 

OLS 

2SLS 

3SLS 

GLS 

GLS(p) 

A2SLS 

A2SLS(p) 

A3SLS 

A3SLS(p) 

Sample Size 20 

Moderate 

62.25 

60.81 

56.18 

69.81 

99.80 

90.13 

132.07 

90.19 

129.09 

69.93 

61.55 

56.64 

66.83 

110.69 

91.58 

132.40 

941.96 

134.83 

66.58 

66.45 

60.80 

69.69 

94.76 

105.18 

188.52 

120.20 

169.69 

Sample Size 50 

High 

63.20 

61.08 

56.33 

69.03 

103.71 

91.69 

133.73 

92.35 

132.86 

70.45 

62.47 

57.30 

67.39 

117.28 

94.15 

135.52 

95.12 

130.39 

64.69 

64.57 

60. 56 

70.60 

95.46 

101.85 

178.24 

101.16 

163.87 

Moderate 

65.99 

64.15 

55.56 

78.90 

102.61 

108.98 

122.40 

110.79 

124.26 

72.60 

64.14 

55.22 

77.70 

117.49 

107.45 

120.09 

108.13 

120.33 

69.02 

69.00 

59.84 

82.96 

93. 23 

124.99 

148.33 

126.26 

148.88 

High 

66.70 

63.86 

54.11 

77.67 

108.29 

107.33 

121.44 

109.07 

122.59 

76.82 

63.90 

53.77 

79.45 

122.45 

105.57 

118.75 

104.98 

115.37 

67.46 

67.40 

58.76 

82.58 

93.50 

120.45 

143.97 

123.94 

147.91 

Sample Size 

Moderate 

72.00 

70.10 

56.89 

82.88 

106.24 

116.82 

128.29 

116.96 

129.83 

78.57 

70.07 

56.36 

82.75 

117.72 

116.91 

127.86 

116.31 

128.47 

73.47 

73.47 

59.99 

86.80 

84.64 

125.53 

139.55 

125.28 

139.76 

100 

High 

73.02 

70.11 

55.47 

81.51 

111.40 

115.03 

127.49 

114.46 

129.17 

82.90 

70.07 

54.85 

84.79 

119.16 

115.36 

127.22 

113.01 

126.77 

72.75 

72.74 

59.01 

86.32 

86.92 

122.22 

137.29 

122.28 

140.21 



Table 4 

Residual 
Standard 
Error 

1.0 

2.0 

Method of 
Estimation 

OLS 
2SLS 
3SLS 
GLS 
GLS(p) 
A2SLS 
A2SLS(p) 
A3SLS 
A3SLS(p) 

OLS 
2SLS 
3SLS 
GLS 
GLS(p) 
A2SLS 
A2SLS(p) 
A3SLS 
A3SLS(p) 

OLS 
2SLS 
3SLS 

GLS 
GLS(p) 
A2SLS 

A2SLS(p) 
A3SLS 
A3SLS(p) 

ESTIMATION OF THE RESIDUAL VARIANCE 

 Sample Size 20 
Moderate 

 Sample Size 50 
Moderate 

 Sample Size 100 
Moderate 

Cl.000) (.472) 
.494 .347 

.503 .358 

.529 .370 

.291 .242 

.297 .252 

.615 .413 
1.163 .450 

.599 .417 
1.174 .430 

(4.000) (1.888) 

1.990 1.311 
2.153 1.503 
2.273 1.555 
1.023 .791 

.896 .757 
2.480 1.703 
4.464 1.834 
2.468 1.701 
4.270 1.701 
(■040) (.0189) 

.024 .017 

.024 .017 

.025 .018 

.013 .010 

.013 .011 

.040 .024 

.112 .029 

.038 .024 

.112 .027 

High 

(1.000) (1.000) 
.504 .734 
.522 .766 
.552 .793 
.283 .498 
.267i .511 

.649' .864 
1.287 1.926 

.634 .875 
1.258 .890 

(4.000) (4.000) 

2.010 2.711 
2.372 3.257 
2.525 3.385 

.891 1.514 

.680 1.407 
2.659 3.605 
5.051 3.832 
2.682 3.625 
5.470 3.606 
(.040) (.040) 
.024 .032 
.024 .033 
.026 .034 
.013 .022 
.013 .024 
.041 .041 
.117 .048 
.038 .042 
.118 .045 

(1.000) (.472) 
.694 .380 

.708 .397 

.723 .400 

.302 .254 

.295 .257 

.750 .417 

.848 .422 

.764 .427 

.871 .424 
(4.000) (1.889) 
2.708 1.384 
2.944 1.629 
3.011 1.648 

.950 .801 

.870 .778 
3.018 1.698 
3.357 1.720 
3.090 1.739 
3.442 1.721 

(.040) (.019) 
.034 .017 
.034 .018 
.035 .018 
.013 .011 
.013 .011 
.043 .020 
.055 .020 
.043 .020 
.057 .020 

High 

(1.000) (1.000) 
.697 .795 

.725 .841 

.742 .850 

.281 .519 

.263 .519 

.757 .874 

.869 .884 

.768 .896 
.893 .893 

(4.000) (4.000) 

2.646 2.807 
3.114 3.488 
3.195 3.536 

.743 1.501 

.653 .447 
3.093 3.587 
3.469 3.637 
3.170 3.684 
3.595 3.655 

(.040) (.040) 
.034 .035 
.034 .035 
.035 .035 
.013 .023 
.013 .024 
.042 .038 
.056 .039 
.042 .039 
.058 .038 

(1.000) (.472) 
.828 .417 
.846 .439 
.857 .441 
.306 .264 
.319 .264 
.864 .450 
.891 .450 
.876 .451 
.907 .448 

(4.000) (1.889) 
3.085 1.483 
3.337 1.813 
3.405 1.824 

.914 .799 

.901 .797 
3.411 1.847 
3.512 1.852 
3.470 1.842 
3.583 1.829 

(.040) (.019) 
.039 .018 
.039 .018 
.039 .019 
.014 .012 
.026 .013 
.042 .019 
.045 .019 
.042 .019 
.045 .019 

  
(1.000) (1.000) 

.814 .873 

.848 .936 

.860 .941 

.275 .538 

.284 .537 

.860 .954 

.891 .955 

.872 .957 

.907 .952 
(4.000) (4.000) 
2.895 2.999 
3.382 3.907 
3.437 3.935 

.674 1.477 

.672 1.491 
3.394 3.916 

3.511 1.829 
3.456 3.939 
3.587 3.908 

(.040) (.040) 
.039 .038 
.039 .038 
.040 .038 
.014 .025 
.026 .026 
.042 .039 
.045 .039 
.042 .039 
.045 .039 

Real values are shown in parentheses. 
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When the two best methods are used there is a small error 

of estimation in the case of the smallest residual variance 

for any sample size. It is obviously difficult to say whether 

the estimators are convergent or not. Theoretically the OLS, 

2SLS, 3SLS, and GLS methods do not generally produce convergent 

estimates. However, the bias goes down as the sample size 

increases and as the true residual variance decreases. On the 

other hand, the A2SLS and A3SLS quickly converge to the true 

value. In Table 4 the efficiency and order of these methods 

are evident. 

A3SLS, A2SLS, 3SLS, 2SLS, OLS, and GLS Methods 

The GLS estimates used alone produce the lowest residual 

standard error but at what a pricel The GLS residual standard 

error is 100% or 150% less than the residual standard error 

of the OLS or 2SLS estimates, each of which is an 

underestimation. 

If one refers to Johnston for a very simple model 

yt 
= + u where u = p u + v L ^ t t-1 t 

and applies the OLS, one can prove that 

E( 
e1 e 
n-1 (1 ')/ (n-1) 

where e is the vector of OLS residuals. If P = .8 and n = 20, 

e ' e 2 
E (~—T') = -81 a 

n-1 u 
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Using a simple model without a dependant variable one obtains 

an underestimation of 20%. Using my more complex model one 

should not be surprised by the OLS, 2SLS, and 3SLS results. 

Unlike the simultaneous correlation the level of 

autocorrelation is important. A larger autocorrelation 

coefficient should produce a larger bias. In the sample 

proceeded by Johnston we have: 

Sample Size 20 50 1QQ 

% of the bias (p=.6) 62 1 

% of the bias (p = .8) 19 7 4 

The same thing happened in my studies. The first equation, 

where the autocorrelation coefficient is higher than in the 

second equation, has a bias that is more pronounced. With a 

moderate level of simultaneous correlation and with a residual 

standard error of 1 the result is: 

Sample Size 20 50 100 

% of the bias (P=.6) 26 19 11 

% of the bias (P=.8) 50 30 13 

This problem is only important when there is a small sample 

error. 

E) Autocorrelation Coefficients 

I tabulate, in Table 5, the average of the estimates of 

the autocorrelation coefficients and the sample variance of 

these estimates. The estimates are generated from the OLS 



Table 5 

Residual 

Standard 

Error 

1.0 

2.0 

0.2 

ESTIMATES OF THE AUTOCORRELATION COEFFICIENT AND SAMPLE VARIANCES OF THESE ESTIMATES 

Sample Size 20 

Moderate 

Eqn.l Eqn.2 

High 

Eqn. 1 Eqn. 2 

Sample Size 50 

Moderate 

Eqn. 1 

High 

Eqn.2 Eqn.1 Eqn.2 

Sample Size 100 

Moderate 

Eqn.l Eqn. 2 

High 

Eqn. 1 Eqn. 2 

Method of 

Estimation 

*(1) 

**(2) 

*d) 

** (2) 

*(1) 

** (2) 

.410 .380 

(.058) (.043) 

.377 .360 

(.056) (.047) 

.435 .413 

(.058) (.042) 

.379 .363 

(.057) (.048) 

.415 .363 

(.051) (.040) 

.395 .362 

(.049) (.044) 

.416 .385 

(.057) (.046) 

.369'1 .361 

(.057) (.049) 

.462 .430 

(.058) (.044) 

.371 .364 

(.058) (.050) 

.414 .363 

(.051) (.044) 

.381 .358 

(.052) (.047) 

.667 .508 

(.014) (.017) 

.614 .525 

(.015) (.017) 

.689 .533 

(.013) (.013) 

.614 .526 

(.016) (.016) 

.674 .499 

(.010) (.016) 

.629 .531 

(.012) (.016) 

.673 .513 

(.013) (.016) 

.600 .519 

(.016) (.017) 

.713 .547 

(.015) (.014) 

.599 .520 

(.018) (.017) 

.673 .501 

(.010) (.016) 

.614 .523 

(.013) (.016) 

.744 .557 

(.007) (.008) 

.687 .584 

(.0081) (.0089) 

.765 .582 

(.006) (.007) 

.687 .584 

(.0082) (.0089) 

.743 .548 

(.0055) (.0081) 

.694 .586 

(.0067) (.0081) 

.751 .562 

(.007) (.609) 

.671 .584 

(.0084) (.0091) 

.788 .595 

(.006) (.007) 

.671 .574 

(.0086) (.0092) 

.742 .548 

(.0055) (.0086) 

.678 .576 

(.0072) (.0086) 

*(1) Calculated from the 0LS residuals 

**(2) Calculated from the 2SLS residuals 
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residuals (for GLS) and the 2SLS residuals (for A2SLS and A3SLS), 

using the following definition: 

P = 
t=2 

e e 
t t-1 

n 

t=2 
't-1 

In studying Table 5, the underestimation of the 

autocorrelation coefficient strikes one immediately. The most 

important parameter is the sample size; as it increases, both 

the underestimation of the coefficient and the magnitude of 

the variance decrease. Theoretically the estimate of P , using 

the OLS residuals, is inconsistent, whereas using the 2SLS 

residuals (when there is no lagged endogenous variable) the 

estimate is consistent. With the increasing sample size shown 

in Table 5, both estimates seem to converge to the true values, 

and the first value is less underestimated. But it is difficult 

tc know what will happen when the sample size is increased even 

further. Theoretically the first estimate has a certain 

asymptotic bias and the second estimate approaches the true 

value. 

The results of using the truncated form of the GLS, A2SLS, 

and A3SLS methods (with the true values of the autocorrelation 

coefficient) indicate that the underestimation of P gives better 

estimates and that a better method of evaluating the 

autocorrelation coefficient generates poorer estimates of the 
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coefficients of the structural form. Residual variance does 

not have an important effect, nor does the level of simultaneous 

correlation. On the other hand, the autocorrelation coefficient 

of the first equation is mere underestimated than that of the 

second equation. I shall attempt to explain this in the 

following section. 

5. General Interpretation 

One of the most surprising results of the exercise is the 

very poor performance of the GLS method. The good results of 

lower residual variances can be explained by the fact that the 

relation is practically exact and the disturbances are not 

important. The variances of my estimates are so small that 

these estimates are near to the true values. But when the 

residual variance is much more important, the random disturbances 

can have a great effect. 

The major difference from the case in which the GLS 

estimates are at their best is the dependence between the 

residuals and the explanatory variables. A look at Table 1 

will show how influential is the simultaneous correlation on 

the bias {sometimes an increase of 50% of the average of the 

percentage bias). 

Another important factor is the autoregressive pattern 

followed by the independent variables. If the structure of 

an independent variable is virtually similar to that of the 

dependent variable, such an independent variable will be used 
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tc explain too large a part of the variance of the dependent 

variable. This will be to the disadvantage of the other 

independent variables or of the residuals. Only when a larger 

sample size is employed does use of the GLS method distinguish 

the difference between the two patterns. This is exactly what 

happens in my model. The dependent variable and the endogenous 

variable, which appears as an explanatory variable in the same 

equation, follow practically the same autoregressive pattern. 

The coefficient of the endogenous variable has the largest 

positive bias. When a larger sample size is used, the GLS 

method begins to distinguish the autoregressive structure of 

the residuals and of the explanatory variables. In my model 

the endogenous dependent variables corner all the 

autocorrelation. Thus correction of the autocorrelation by 

the GLS method results in Movercorrecticn" of this problem. 

It is therefore better to underestimate the real value of the 

autocorrelation coefficient. 

The autoregressive structure of the exogenous variable 

can have an effect. When I constructed the model I chose the 

sample size to be the period of the sinusoidal variable instead 

of a period of eight observations. This sinusoidal variable 

along with the endogenous explanatory variable increase the 

autoregressive structure of the explanatory variables and purge 

practically all the autoregression from the residuals. The 

OLS estimate of the autocorrelation coefficient for a sample 

size of 20 is not significantly different from zero. 
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If the results of the just-identified model (x3=x4=0) are 

also compared, the estimates of the coefficients of the 

endogenous variables are overestimated even more because two 

of the variables have a strong autoregressive structure 

(specifically x2); all the autoregressive structure of the 

residuals is explained by the endogenous explanatory variables* 

According to Rao and Griliches the autoregressive structure 

of an exogenous variable can affect the results. Given the 

fcllowing model 

where 

E(v J = E(w ) = E (v w ) = E (w w J = E(v^v^ J = 0 
L L L L L L“1 L L~1 

E(v^ = oj, E(wt
2) = a2. 1YK1, IpKl 

E(uu') = R 

Rao and Griliches prove that: 

1 The variance of the GIS estimates equals 

2 
a 
u 

T 
E x 

v(bGLs) = 
for T reasonably large 
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2 The variance of the CLS estimates equals 

for T large 

vCboLg) is proportional to Y 

3 The mean of the Cochrane-Orcutt estimator of the 

autocorrelation coefficient 

implies that the bias of p is a function of p# T, and A . 

Another way of visualizing this problem and its 

interpretation is to compare it with the study of a similar 

case: the regression on the endogenous variable lagged one 

period where the residuals are autocorrelated. 

Here the lagged endogenous variable takes the place of another 

endogenous variable that fellows practically the pattern of 

y . In this case one can prove that: 

v pv + e where 1$1<1, IpKl t t-1 t 
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(1) 

{.43 for p=.8 and B=.5 
pUm (BOLS - B) 

{.44 for p=.6 and B=.3 

C2) plim (p-p) = 1 = . lim (3 _ 6) 
1-Bp r OLS J 

This is the same situation as that in my more complex model 

- the coefficient of the endogenous variable is overestimated 

and the autocorrelation coefficient is underestimated. 

From these Monte Carlo studies the conclusions that appear 

to be important are: first, the robustness of the OLS estimates; 

second, the bad performance of the GLS estimates; third, the 

advantage of using the 2ASLS method instead of the 2SLS or 3SLS 

method; fourth, the little difference between the A2SLS and 

the A3SLS method. 
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