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Abstract 

Observed high-frequency prices are contaminated with liquidity costs or market 
microstructure noise. Using such data, we derive a new asset return variance estimator 
inspired by the market microstructure literature to explicitly model the noise and remove 
it from observed returns before estimating their variance. The returns adjusted for the 
estimated liquidity costs are either totally or partially free from noise. If the liquidity 
costs are fully removed, the sum of squared high-frequency returns – which would be 
inconsistent for return variance when based on observed returns – becomes a consistent 
variance estimator when based on adjusted returns. This novel estimator achieves the 
maximum possible rate of convergence. However, if the liquidity costs are only partially 
removed, the residual noise is smaller and closer to an exogenous white noise than the 
original noise. Therefore, any volatility estimator that is robust to noise relies on weaker 
noise assumptions if it is based on adjusted returns than if it is based on observed returns. 

JEL classification: G20, C14, C51, C58 
Bank classification: Econometric and statistical methods; Financial markets; Market 
structure and pricing 

Résumé 

Les prix des actifs observés à haute fréquence sont « contaminés » par des coûts de 
liquidité ou du bruit en raison de la présence d’effets de microstructure. S’inspirant de la 
littérature qui étudie la microstructure des marchés, l’auteure met au point un nouvel 
estimateur qui permet de modéliser explicitement le bruit à partir de ces données et de 
l’éliminer des rendements observés de l’actif avant d’estimer leur variance. Les 
rendements corrigés des coûts de liquidité estimés sont totalement ou partiellement 
exempts de bruit. Dans le cas où les coûts de liquidité sont entièrement retranchés, la 
somme des carrés des rendements à haute fréquence devient un estimateur convergent de 
la variance si celle-ci est calculée sur la base des rendements corrigés et non sur celle des 
rendements observés. Ce nouvel estimateur converge à une vitesse maximale. Toutefois, 
lorsqu’une partie seulement des coûts de liquidité est éliminée, le bruit résiduel est plus 
petit et plus proche d’un bruit blanc exogène que le bruit initial. En conséquence, un 
estimateur robuste de la volatilité n’exige pas d’hypothèses aussi fortes sur le bruit s’il est 
fondé sur les rendements corrigés plutôt que sur les rendements observés. 

Classification JEL : G20, C14, C51, C58 
Classification de la Banque : Méthodes économétriques et statistiques; Marchés 
financiers; Structure de marché et fixation des prix 

 



1. INTRODUCTION

The advent of large intraday financial data – with a second or millisecond time stamp – has

created new opportunities to measure asset return volatility-type objects that are important inputs

in asset pricing, portfolio allocation and financial risk management. However, at high frequencies,

observed prices are contaminated with market microstructure frictions. Demsetz (1968) and Stoll

(2000) measure these frictions by the price concession paid for immediacy, referred to as liquidity

costs. More recently, Aı̈t-Sahalia and Yu (2009) relate statistical measures of the frictions to

financial measures of the stock liquidity. The liquidity costs create a discrepancy between the

frictionless-price process and the observed prices, resulting in the inconsistency of the realized

variance – defined as the sum of the squared returns sampled at high frequency – for the return

variance.

To measure volatility, the financial econometrics literature models the liquidity costs as a

measurement error or noise. The problem of noise was first addressed by discarding data (Andersen

et al. 2003; Bandi and Russell 2008). More recently, robust-to-noise volatility estimators using

all the available high-frequency price data were derived (see Zhang, Mykland and Aı̈t-Sahalia

2005 for the two time-scales estimator1; Barndorff-Nielsen et al. 2008 for the realized kernel

estimator; Jacod et al. 2009 for the pre-averaging estimator). These robust-to-noise volatility

estimators, which Diebold and Strasser (2013) describe as statistical estimators, treat noise in

a fully nonparametric manner. As a consequence, the econometrician can never get rid of the

measurement error. More importantly, such an approach generates rate optimal estimators that

cannot beat the convergence rate achieved by the realized variance.

In this paper, we demonstrate that modelling the liquidity costs as in the market microstructure

literature is a better solution, even if one misspecifies the liquidity-costs model. Specifically, we

show that the realized variance based on returns adjusted for liquidity costs becomes a consistent

estimator of variance if the liquidity costs are fully removed. In that case, the optimal efficiency

bound for volatility estimation is reached. When the model is misspecified and the liquidity costs

are partially removed, the uncaptured liquidity costs are smaller and closer to an exogenous white

noise than the original liquidity costs. This results in more realistic robust-to-noise volatility

estimators because they rely on less-strong assumptions.

Using simulated data, we find that the new volatility estimator outperforms the benchmark by

comparing the finite-sample simulation results with those predicted by the asymptotic theory. We

use the pre-averaging estimator from the statistical approach as a benchmark because it achieves

the optimal rate among the robust-to-noise estimators, and also allows for non i.i.d. noise. Using

real data covering 2009–2010 for Alcoa stock and performing a daily analysis, the noise is completely

removed for about half of the business days of the sample. For these days, the realized variance

based on adjusting high-frequency returns for liquidity costs is an error-free estimator of the daily

integrated variance with the maximum possible accuracy. The noise-to-signal ratio is considerably

reduced when observed returns are adjusted for liquidity costs even when the noise is partially

removed.

1The two time-scales estimator is the first consistent estimator of volatility in the presence of noise. It is related
to the work of Zhou (1996).
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Our approach uses insights from the literature on market microstructure, and has two main

advantages. First, by explicitly specifying the noise, this approach makes full use of the data

available, including bid-ask spread and volume series, as opposed to the statistical approach where

only price series are exploited. We use Roll (1984) and Glosten and Harris (1988) models precisely,

to measure the liquidity costs. In the former model, a trade-direction indicator component of the

trading costs captures the fixed costs of trading. In the latter model, a trading volume component

of the trading costs captures the size-varying costs of providing liquidity service.

The second advantage of using this approach is that even when the liquidity costs cannot be fully

removed, the residual noise – measuring the misspecification of the noise model – is less problematic

than the original noise. The idea is that the explanatory variables included in the liquidity costs

capture the undesirable features of the noise, namely the endogeneity with the frictionless price,

the autocorrelation and the heteroskedasticity. As a result, the uncaptured liquidity costs are more

likely to be free from these undesirable features, and closer to an exogenous white noise than the

original noise.

The main undesirable feature of the liquidity costs is the return-noise endogeneity, which this

model captures by explicitly specifying the liquidity costs driving variables. For instance, we

use the trading volume as an explanatory variable of the noise, which results in nonzero return-

noise correlation. Indeed, in Glosten and Harris (1988) the trading volume explains not only the

liquidity costs but also drives the asymmetric information component of the efficient price. Easley

and O’Hara (1987), Kyle (1985), and Glosten (1989) have theoretical models that suggest this

component should increase with the quantity traded because well-informed traders maximize the

returns to their perishing information. Finally, we formally test whether the explanatory variables

of the liquidity costs capture the return-noise endogeneity using a Hausman specification test.

The endogeneity treatment in this paper departs from the literature. Although the noise

endogeneity could be accommodated in many robust-to-noise volatility estimators such as the

realized kernel and the pre-averaging estimators, it would rely on the specific parametric form of

endogeneity. Alternative specifications of the endogenous noise are proposed in Barndorff-Nielsen et

al. (2008), Kalnina and Linton (2008), and Nolte and Voev (2012), among others. However, within

the statistical approach, the independence between the noise and the frictionless price is frequently

assumed. In our setting, the driving variables of the liquidity costs capture the return-noise

endogeneity. The only attempt in the literature that we are aware of to address the endogeneity

problem using insights from market microstructute theory is by Diebold and Strasser (2013),

who derive the return-noise correlation in several structural models. Our approach to capture

return-noise endogeneity differs from theirs, since we model the noise term and the return-noise

correlation is a by-product of the analysis. Also, compared to Diebold and Strasser (2013), we do

not restrict the price volatility to be constant as they do, and we exploit quantity data and not

only price data as they do.

The driving variables of the liquidity costs also capture other undesirable features: the

autocorrelation and heteroskedasticity of the noise. For example, the trading volume is highly

persistent because of the clustering of small-size trades. Moreover, the trading volume is

heteroskedastic as a result of its U-shaped intraday pattern. Admati and Pfleiderer (1988) develop

a model in which the empirical concentrated-trading patterns in the beginning and the end of
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the trading day are theoretically generated. Within the statistical approach to asset return

volatility, most robust-to-noise volatility estimators have richer versions that allow autocorrelation

of the noise. However, not all estimators – such as the two time-scales estimator – allow for the

heteroskedasticity of the noise, as is the case for the pre-averaging estimator.

The semiparametric approach used in this paper offers two main theoretical results. To

measure return variance, we estimate the parameters of the liquidity costs using a price-impact

regression and instrumental variables to insure against return-noise endogeneity. First, we derive

the asymptotic distribution of the realized variance based on adjusted returns for the case where

the liquidity costs are fully removed. Second, we derive the asymptotic distribution for the

pre-averaging estimator based on adjusted returns for the case where the liquidity costs are partially

removed.

The rest of this paper is organized as follows. Section 2 describes the model for market

microstructure noise based on liquidity costs. In section 3, we discuss the estimation of this model

and describe a test for the performance of the liquidity costs measure. In section 4, we study

volatility estimation based on adjusting prices for the liquidity measure introduced in section 2.

Section 5 describes a simulation exercise. Section 6 is an empirical application where we compare

the estimation accuracy of the volatility estimator in this paper to the pre-averaging estimator. In

section 7, we offer several conclusions.

2. THE MODEL

We introduce the liquidity costs in the context of a model that is consistent with both the

standard additive price model of the high-frequency financial econometrics and several transaction-

cost models from the market microstructure literature.

The standard additive model of the high-frequency financial econometrics literature is given by

pt = p∗t + εt, t ∈ [0, 1], (1)

where pt is the observed log price, p∗t is the log of the frictionless price and εt is a measurement

error term summarizing the market microstructure noise generated by the trading process. The

fixed interval [0, 1] is a day, for example. In this context, the observed price is the sum of two

unobservable components, which are the frictionless price and the noise. The frictionless price p∗t

– also referred to as the true price, the efficient price or the equilibrium price – is the log of the

expectation of the final value of the asset conditional on all publicly available information at time

t. In a perfect market, with no trading frictions, the log-price would be p∗t .

Within the market microstructure literature, Stoll (2000) studies various sources of noise or trading

frictions. The presence of a bid-ask spread and the corresponding bounces is one source of

noise. Roll (1984) provides a measure of the effective bid-ask spread based on the negative serial

dependence in successive observed returns induced by trading costs. Glosten and Harris (1988)

extend Roll’s model by adding a trading volume component to capture the costs of providing
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liquidity service. This model is nested in (1) and is given by

pt = p∗t + β1︸︷︷︸
fixed transaction costs

qt + β2︸︷︷︸
transaction costs per share

qtvt

︸ ︷︷ ︸
noise

,

(2)

where qt is the trade-direction indicator, which takes the value +1 if the trade is buyer-initiated

and -1 if the trade is seller-initiated. For β2 = 0, the Glosten and Harris (1988) model is reduced

to the Roll (1984) model where the bid-ask spread is considered as constant.

In this paper, we extend the Glosten and Harris (1988) linear model by adding other explanatory

variables in the noise. For example, we add the ask (bid) depth that specifies the maximum

quantity for which the ask (bid) price applies. In Kavajecz (1999), the depths are used to capture

inventory-control costs as well as asymmetric-information costs. In the market, a larger quoted

depth is interpreted as an increase in liquidity. A generalized model of (2) is given by

pt = p∗t + F
′

tβ, (3)

where F is an M -vector of liquidity-cost variables. If β is known, the frictionless price p∗t would

be equal to pt − F
′

tβ, and would be treated as observable. However, β has to be estimated from

the data.

The linear form F
′

tβ could be misspecified in the sense that it does not capture the entire noise

εt. The model of this paper accounts for the misspecification of the noise term F
′

tβ in (3) in the

following way:

pt = p∗t + F
′

tβ + ξt︸ ︷︷ ︸
=εt

.
(4)

The residual noise ξt captures all the trading frictions that are misspecified by the F
′

tβ form. The

magnitude of ξt could also be seen as a measure of the performance of the liquidity costs F
′

tβ. If

ξt is small, then F
′

tβ is a good measure of liquidity costs.

To present the model in discrete time, we introduce the following notation. We dispose of N

equidistant observations at i = 0, 1, .., N over [0,1]. For simplicity of notation, an intraday variable

Yi stands for Yi/N . We denote ri and r∗i the intraday observed and latent returns pi − pi−1

and p∗i − p∗i−1, respectively. The noise variation ∆εi is given by εi − εi−1. The first differences or

variations of the regressors and the residual noise are denoted byXi = Fi−Fi−1 and ∆ξi = ξi−ξi−1,

respectively. Using the model (4), the high-frequency returns are written as

ri = r∗i +X
′

iβ +∆ξi︸ ︷︷ ︸
=∆εi

.
(5)

Next, we turn to the assumptions underlying the frictionless price and the liquidity costs. We

make the standard arbitrage-free semimartingale assumption for the frictionless price. The

one-dimensional price process, which is evolving in continuous time over the fixed interval [0,1],

is defined on a complete probability space (f, F , P). We consider an information filtration, the

increasing family of σ-fields (Ft)t∈[0,1] ⊆ F , which satisfies the usual conditions of P-completeness

and right continuity. The prices and noise explanatory variables are included in the information
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set Ft.

Assumption 1

The frictionless price p∗ follows the dynamics

dp∗t = µtdt+ σtdWt, (6)

where Wt is standard Brownian motion and σt is a càdlàg volatility function, which is independent

from the frictionless price (no leverage).

Assumption 1 imposes that the frictionless-return process is the sum of an adapted process

of finite variation and a stochastic volatility martingale.2 The spot volatility σt can exhibit non-

stationarity, diurnal effects and jumps. In the high-frequency context, the drift component of (6) is

of order dt, whereas the diffusion component is smaller and of order
√
dt. Therefore, the frictionless

return is of order
√
dt or, equivalently, O(1/

√
N) using the discrete-time notation.

The object of interest in this paper is the integrated variance defined as

IV =

∫ 1

0

σ2
udu. (7)

We make the following set of assumptions for the different components of the noise εt in (4).

Basically, the first component of the noise F
′

tβ is endogenous with the frictionless return,

autocorrelated and heteroskedastic whether the second component of the noise ξt is exogenous

and identically and independently distributed (i.i.d.).

Assumption 2

(i) Ft and p∗t are dependent.

(ii) The increments of Ft are O(1) and E[Ft] = 0.

Assumption 3

(i) ξt is independent from p∗t and Ft.

(ii) ξt is i.i.d. and E[ξt] = 0.

Assumption 2(i) refers to the endogeneity between the liquidity-cost variables and the

frictionless price. Indeed, the return-noise endogeneity is empirically evidenced and theoretically

modelled. In Hansen and Lunde (2006), an empirical analysis of the Dow Jones Industrial Average

stocks reveals that the noise is correlated with increments in the frictionless price. For the structural

models, Diebold and Strasser (2013) derive closed-form expressions of the return-noise correlation

in a variety of stylized structural models. In order to validate Assumption 2(i), we provide a

Hausman specification test in section 3.3 to check whether the noise variables in Ft do capture the

endogeneity between the noise εt and the frictionless price p∗t .

2Adding a jump component to the dynamics of the frictionless price is beyond the scope of this paper. See
Andersen et al. (2007) for an analysis of the importance of the jump component for volatility estimation and
forecasting.
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Assumption 2(ii) concerns the stochastic magnitude of the noise variation. The order of the

increment of Ft is assumed to be O(1); that is, its variance does not vanish when the sample size

N grows. O(1) is a fundamental identifying assumption; any noise explanatory variable candidate

must be O(1). At high frequencies, the frictionless-return magnitude vanishes as a result of the

semimartingale condition in Assumption 1. However, the noise component does not vanish at high

frequencies. The dominance of the noise translates into the explosion of the realized variance (or

the sum of squared returns) at high frequencies. The signature plot is an empirical evidence of

such explosion. This plot was proposed by Andersen et al. (2000) and it draws the average of daily

realized variances across the sampling frequency of the underlying returns. On the other hand,

Awartani, Corradi and Distaso (2009) formally test that the variance of the noise is independent

of the sampling frequency. This test could be seen as a test of Assumption 2(ii).

In Assumption 3, we suppose that if any noise remains after adjusting the returns, then that

noise is an exogenous white noise. We argue that the liquidity-cost variables Ft should capture

the undesirable features of the noise: endogeneity with the frictionless price, autocorrelation and

heteroskedasticity. In the literature, the exogenous white noise assumption is made for the entire

noise εt. This simplifying assumption is considered by Bandi and Russell (2006a, 2008), Aı̈t-Sahalia

et al. (2005), and Zhang et al. (2005).

If the frictionless return was observed, then the realized variance
∑N

i=1 r
∗2
i would be a consistent

estimator of IV. However, since only noise-contaminated returns are observed, the realized variance∑N
i=1 r

2
i is inconsistent for IV. The idea of this paper is to first adjust the observed high-frequency

returns for the estimated liquidity-costs X
′

i β̂, where β̂ is a consistent estimator of β. Second,

estimate IV using the adjusted returns ri −X
′

i β̂. Improved volatility estimation is due to the fact

that the adjusted returns are closer to r∗ and are more likely to conform to the assumptions that

justify the use of model-free volatility estimators than observed returns.

3. LIQUIDITY-COST ESTIMATION

In this section, we estimate the liquidity costs. We show the consistency and the asymptotic

normality of the liquidity-cost parameter estimates. To check whether the proposed liquidity-cost

model is misspecified, we derive a formal econometric test. If the model is misspecified, a residual

noise term should be accounted for. We also provide a test for the endogeneity between the

liquidity-cost explanatory variables and the frictionless return. Indeed, if there is evidence that

the estimated noise is endogenous with the frictionless return, then the residual noise is more likely

to be exogenous.

The idea of the estimation is to write the price-impact regression in (5) such that all the latent

variables, including the frictionless return, are in the regression’s residual:

ri︸︷︷︸
regressand

= X
′

i︸︷︷︸
regressors

β + r∗i +∆ξi︸ ︷︷ ︸
residual

; i = 1, ..., N.
(8)

In matrix notation, the regression is written as

r = Xβ + r∗ +∆ξ, (9)
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where

r =

 r1
...
rN

 , X =


X

(1)
1 . . . X

(M)
1

...
...

...

X
(1)
N . . . X

(M)
N

 , ∆ξ =

 ∆ξ1
...

∆ξN

 . (10)

The regression (8) cannot be estimated using ordinary least squares (OLS) if Assumption 2(i) holds.

Under this assumption, the regressors are endogenous with the regression’s residual. Therefore,

instrumental variables are needed to consistently estimate the parameter β of (8).

3.1. Asymptotic theory

In this subsection, we show the consistency and the asymptotic normality of the instrumental

variable estimator of β. Such results are necessary to derive the asymptotic properties of the new

volatility estimator in the next section.

Let β̂ be the instrumental variable estimator of β defined by

β̂ = (Z
′
X)−1Z

′
r. (11)

The instrument Z is the lag of the regressor X, Zi = Xi−1. We dispose of as many instruments

as regressors, usually referred to as the exactly identified case. Z is a valid instrument because it

satisfies two conditions. The first condition is E[Zi∆εi] = 0. Formally,

E[Zi∆εi] = E[Zi(r
∗
i +∆ξi)] = E[Zir

∗
i ] = E[Xi−1r

∗
i ]

= E[Xi−1

∫ i

i−1

µsds] + E[Xi−1

∫ i

i−1

σsdWs]

= E[Xi−1]E[

∫ i

i−1

µsds] + E[Xi−1E[

∫ i

i−1

σsdWs|Fi−1]]

= E[Xi−1]E[

∫ i

i−1

µsds] + E[Xi−1]E[

∫ i

i−1

σsdWs]

= 0.

This result holds because Assumption 2(ii) implies E[Xi−1] = 0 and Assumption 1 implies

E[
∫ i

i−1
σsdWs|Fi−1] = E[

∫ i

i−1
σsdWs].

The second condition to have a valid instrument is that Z ′X is nonsingular. This is a consequence

of the persistence of the liquidity-cost variables and could be tested empirically. For example, the

trading volume is a persistent variable because the small-size trades tend to be clustered.

To derive the asymptotic distribution of β̂ defined in (11), we make the following set of assumptions.

Assumption A

(i) E[(Zt − Zt−h)(F
′

t − F
′

t−h)] = Ω(t,h), a positive definite matrix; t ∈ [0, 1], h > 0.

(ii) 1
N

∑N
i=1 Ωi

P−→ Ω, a positive definite matrix where Ωi = Ω(i/N,1/N).

(iii) 1
N

∑N
i=1 ZiX

′

i
P−→ Ω.

Assumption B
∑N

i=1 r
∗2
i ZiZ

′

i
P−→ Ω∗.
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Assumption C 1
N

∑N
i=1

∑1
ν=−1 E

[
∆ξi∆ξi−νZiZ

′

i−ν

]
P−→ S.

Assumption A concerns the regressors in (9), whereas Assumptions B and C are related to the

residual of the price-impact regression. For the residual r∗ + ∆ξ, two cases are possible. First,

the liquidity-cost explanatory variables capture all the noise ε and the remaining noise ξ is zero.

Second, the liquidity-costs model Xβ is misspecified and the residual noise ξ is nonzero. In the

former, the residual of regression (9) is exactly the frictionless return. The heteroskedasticity of

the frictionless return r∗ under stochastic volatility will impact the asymptotic distribution of the

price-impact regression parameters. Assumption B is useful in that case. In the latter case, the

dominating regression residual term is ∆ξ because r∗ is negligible. Therefore, Assumption C is

necessary for an MA(1) type process; i.e., ∆ξ as residual.

We next derive the asymptotic theory for the estimator of the liquidity-cost parameters. All

proofs are given in Appendix B. Convergence in probability is denoted by
P−→ or plim(.), whereas

convergence in law is denoted by
L−→. For mixed normal-limit distributions, we denote the stable3

convergence as
st−→. The following proposition concerns the case where V ar[ξ] = 0.

Proposition 1 Under Assumptions 1-2, A, B, and V ar[ξ] = 0,

(i) β̂
P−→ β.

(ii)N(β̂ − β)
L−→ N

(
(0)M×1, V0(β̂)

)
,

where V0(β̂) = Ω−1Ω∗Ω−1.

Consistency is then obtained with a faster rate of convergence than the usual
√
N . Recall the

regression in that case,

r = Xβ + r∗. (12)

Notice that the residual is the frictionless return, which is very small at high frequencies. On

the other hand, the noise Xβ is relatively big. Therefore, the regression performs well and β̂ is

supra-convergent. In Stock (1987), the supra-convergence rate is obtained in a similar setting.

Next, we turn to the case where V ar[ξ] ̸= 0.

Proposition 2 Under Assumptions 1-3, A, C, and V ar[ξ] ̸= 0,

(i) β̂
P−→ β,

(ii)
√
N(β̂ − β)

L−→ N
(
(0)M×1, V1(β̂)

)
,

where V1(β̂) = Ω−1SΩ−1.

We obtain the usual
√
N rate of convergence because the regression residual ∆ξ is O(1). The

frictionless-return moments do not appear in the asymptotic variance of β̂. Indeed, the stochastic

3The stable convergence concept is discussed in Aldous and Eagleson (1978).
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magnitude of the frictionless return is negligible compared to ∆ξ.

Once β is consistently estimated, F
′
β̂ is the liquidity-costs measure proposed in this paper. Since

the variable of interest is the volatility of the frictionless return, then subtracting the liquidity-costs

measure from the observed returns would decontaminate the latter from noise. Let the adjusted

price and the adjusted return r̂ be defined, respectively, as

p̂i = pi − F
′

i β̂, (13)

r̂i = ri −X
′

i β̂. (14)

If V ar[ξ] = 0, we have, using Proposition 1,

r̂i = r∗i +X
′

i (β − β̂)︸ ︷︷ ︸
O(1/N)

.
(15)

The frictionless returns are, then, the dominant term in the adjusted-return expression. However,

if V ar[ξ] ̸= 0, Proposition 2 applies and

r̂i = r∗i +X
′

i (β − β̂)︸ ︷︷ ︸
O(1/

√
N)

+∆ξi.
(16)

Since β̂ is
√
N -consistent, the order of its estimation error is O(β̂ − β) = O(1/

√
N) = O(r∗).

Therefore, based on their order, the frictionless return and the estimation error of β̂ are not

distinguishable.

3.2. Testing misspecification

It is perhaps too strong an assumption that a few explanatory variables such as the trade-

direction indicator and the signed volume can fully absorb all the noise. Therefore, we allow for

the possibility that the explanatory variables related to liquidity costs only partially absorb the

noise. In this more realistic scenario, the regression residuals no longer represent the frictionless

returns and the model in (3) is misspecified. We formally test in this subsection whether the

adjusted returns still have a noise component. From a market microstructure perspective, this test

may be interpreted as a test for the quality of the trading-costs measure F
′
β̂. If this is a good

measure of the noise4 ε, then the residual noise ξ should go to zero. Otherwise, the trading-costs

measure does not capture all the real frictions and the term ξ is nonzero.

The null hypothesis H0 and the alternative hypothesis H1 are, respectively,

H0 : V ar[ξ] = 0,

H1 : V ar[ξ] ̸= 0.
(17)

The idea of the test is that the presence of the noise usually causes negative serial correlation

in observed high-frequency returns. However, the argument has to apply to the adjusted returns

4In Bandi and Russell (2006b), the noise measure is considered as a measure of the market quality.
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because the test concerns the residual noise ξ and not the original noise ε. If V ar[ξ] = 0, the

covariance between successive adjusted returns is asymptotically zero,

Cov[r̂i, r̂i−1] = Cov[ r∗i︸︷︷︸
O(1/

√
N)

+X
′

i(β − β̂)︸ ︷︷ ︸
O(1/N)

, r∗i−1︸︷︷︸
O(1/

√
N)

+X
′

i−1(β − β̂)︸ ︷︷ ︸
O(1/N)

]

≈ Cov[r∗i , r
∗
i−1]

= 0.

(18)

If V ar[ξ] ̸= 0, the covariance between successive adjusted returns is asymptotically negative,

Cov[r̂i, r̂i−1] = Cov[r∗i +X
′

i(β − β̂)︸ ︷︷ ︸
O(1/

√
N)

+ ∆ξi︸︷︷︸
O(1)

, r∗i−1 +X
′

i−1(β − β̂)︸ ︷︷ ︸
O(1/

√
N)

+∆ξi−1︸ ︷︷ ︸
O(1)

]

≈ Cov[∆ξi,∆ξi−1]

= −V ar[ξ] < 0.

(19)

As shown above, the first-order serial covariance expression depends on whether the noise is

completely absorbed (i.e., V ar[ξ] = 0) or partially absorbed (i.e., V ar[ξ] ̸= 0). The null hypothesis

of zero first-order serial covariance in the adjusted returns corresponds to the case where the noise

is completely absorbed. The alternative hypothesis of nonzero serial covariance in the adjusted

returns corresponds to the case where the noise is partially absorbed.

We denote by RC(1) the realized autocovariance of order one for the adjusted returns

RC(1) =

(
N∑
i=1

r̂ir̂i−1 +
N∑
i=1

r̂ir̂i+1

)
/2. (20)

In the next proposition, we formally define the test statistic and give its asymptotic distribution.

Proposition 3 Suppose Assumption 1, 2, A, and B hold. Under H0,

SN
d−→ N (0, 1), (21)

where

SN =

√
NRC(1)√

ÎQ

, (22)

and ÎQ is a consistent estimator of the integrated quarticity IQ =
∫ 1

0
σ4
udu.

According to the proposition above, we reject H0 at the confidence level α when |SN | > c1−α
2
,

where c1−α
2
denotes the 1− α

2 -quantile of the N (0, 1) distribution. Notice that this test is consistent

against the alternative H1.

3.3. Testing endogeneity

In this section, we apply a Hausman specification test as in Hausman (1978) to formally test for

the presence of endogenous liquidity costs. We define the null hypothesis as well as the alternative

as

H0 : X exogenous,

H1 : X endogenous.
(23)
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The idea of the Hausman specification test is that under H0, the OLS and the instrumental variable

estimators of β are statistically not different. However, under the alternative H0 the two estimators

are statistically different.

Before providing the formal test statistics, we explain the source of the return-noise endogeneity.

The liquidity-cost variables should capture the endogeneity between the noise and the frictionless

price. For instance, in the asymmetric-information models of Glosten and Harris (1988) and

Hasbrouck (1991), the trading volume captures the adverse selection in the efficient price (which is

also the frictionless price). Therefore, having the volume as part of the frictionless price as well as

the liquidity costs results in the endogeneity between these two components. Moreover, in Glosten

and Harris (1988), the trade-direction indicator is also present in the efficient price as well as the

liquidity costs (see Huang and Stoll 1997). The trade indicator is also a source of endogeneity

of the noise. Diebold and Strasser (2013) examine several structural microstructure models and

derive the correlation between the efficient return and the noise in each case. They show that,

in some cases, the correlation depends on the bid-ask spread. Consequently, having the bid-ask

spread in the noise could also capture the endogeneity between the noise and the frictionless price.

In this paper, if V ar[ξ] = 0, the covariance between the return-noise covariance is asymptotically

equal to the covariance between the observable series: the adjusted return and the liquidity-costs

measure. Formally, if V ar[ξ] = 0,

Cov[r̂i, X
′

i β̂] = Cov[ri −X
′

i β̂, X
′

i β̂]

= Cov[ r∗i︸︷︷︸
O(1/

√
N)

+X
′

i(β − β̂)︸ ︷︷ ︸
O(1/N)

, X
′

i β̂]

≈ Cov[r∗i ,∆εi].

(24)

This result helps to provide evidence in the empirical section of this paper for the results of

Diebold and Strasser (2013), who derive the sign and even bounds for the correlation between the

frictionless price and the noise within several structural models.

Let β̂OLS be the OLS estimator of β defined by β̂OLS = (X
′
X)−1X

′
r. Similar to the Assumptions

A, B and C, few technical assumptions are needed to derive the asymptotic distribution of the

OLS estimator β̂OLS , which is useful for the Hausman test.

Assumption A
′

(i) E[(Ft − Ft−h)(F
′

t − F
′

t−h)] = Ω
(t,h)
X , a positive definite matrix; t ∈ [0, 1], h > 0.

(ii) 1
N

∑N
i=1 Ω

(X)
i

P−→ ΩX , a positive definite matrix where Ω
(X)
i = Ω

(i/N,1/N)
X .

(iii) 1
N

∑N
i=1 XiX

′

i
P−→ ΩX .

Assumption B
′ ∑N

i=1 r
∗2
i XiX

′

i
P−→ Ω∗

X .

Assumption C
′ 1

N

∑N
i=1

∑1
ν=−1 E

[
∆ξi∆ξi−νXiX

′

i−ν

]
P−→ SX .

Let the generalized inverse of a given matrix V be denoted by V − . To derive the asymptotic

distribution of the Hausman test statistics, it is important to distinguish between two cases. The
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first case holds when all the noise is absorbed by the liquidity-cost measure, whereas the second

case corresponds to the partially absorbed noise.

Proposition 4 Under H0:

If V ar[ξ] = 0, and Assumption 1, 2, A, A’, B, and B’ hold,

ŜH0
P−→ χ2(d0),

where

ŜH0 = N2
(
β̂ − β̂OLS

)′ (
V0(β̂)− V0(β̂OLS)

)− (
β̂ − β̂OLS

)
,

d0 = rank
(
V0(β̂)− V0(β̂OLS)

)
and V0(β̂OLS) = Ω−1

X Ω∗
XΩ−1

X .

If V ar[ξ] ̸= 0, and Assumption 1-3, A, A’, C, and C’ hold,

ŜH1
P−→ χ2(d1),

where

ŜH1 = N
(
β̂ − β̂OLS

)′ (
V1(β̂)− V1(β̂OLS)

)− (
β̂ − β̂OLS

)
,

d1 = rank
(
V1(β̂)− V1(β̂OLS)

)
and V1(β̂OLS) = Ω−1

X SXΩ−1
X .

From the proposition above, the Hausman test statistic differs in the two cases where V ar[ξ] = 0

and V ar[ξ] ̸= 0. This difference is the result of the rate of convergence of the instrumental variable

and the OLS estimators of β. If V ar[ξ] = 0 this rate is 1/N , whereas it is 1/
√
N in the case where

V ar[ξ] ̸= 0. The asymptotic variances also differ in each case.

4. VOLATILITY ESTIMATION

Using the liquidity-costs measure derived in the previous section, we derive a novel volatility

estimator in this section. The new volatility estimator is based on adjusting returns for liquidity

costs. For the case where the liquidity costs are fully removed, the new estimator is the realized

variance based on adjusted returns. In that case, the new estimator is a consistent volatility

estimator with an optimal convergence rate. For the case where the liquidity costs are only partially

absorbed, the new estimator is the pre-averaging estimator based on adjusted returns. Estimation

improvement is due to relaxation of the noise underlying assumptions (endogeneity, autocorrelation

and heteroskedasticity). To quantify the theoretical gain of the new estimator, we compare it to the

pre-averaging estimator based on observed returns. First, we describe the pre-averaging estimator,

which will serve as the benchmark. Second, we derive the asymptotic distribution of the new

estimator.

To briefly summarize the idea of adjusting the high-frequency returns for liquidity costs, we

compare the observed price p with the adjusted-price p̂, respectively, given by

p = p∗ + ε︸︷︷︸
noise

= p∗ + F
′
β︸︷︷︸

endogenous noise

+ ξ︸︷︷︸
exogenous noise

,
(25)
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and

p̂ = p− F
′
β̂︸︷︷︸

fitted noise

= p∗ + F
′
(β − β̂)︸ ︷︷ ︸

very small

+ ξ︸︷︷︸
exogenous noise

.
(26)

If the liquidity costs are partially absorbed, the term ξ does not vanish and adjusting the returns

transforms the original noise ε from endogenous, autocorrelated and heteroskedastic to a residual

noise ξ that is exogenous, i.i.d. and of smaller magnitude. However, if the liquidity costs are

fully removed and the term ξ vanishes, then the adjusted-price p̂ is asymptotically equal to the

frictionless price p∗. In both cases, using the adjusted returns instead of observed returns improves

volatility estimation, as shown in this section.

4.1. The benchmark

Among the existing nonparametric5 noise-robust IV estimators, we choose the pre-averaging

method of Jacod et al. (2009) as the benchmark, for reasons related to the precision performance as

well as the noise properties. First, the authors show that the pre-averaging estimator converges to

the integrated variance at the optimal rate in the presence of noise of N1/4. Second, this approach

consistently estimates the integrated quarticity that is needed in the asymptotic distribution of

noise-robust volatility estimators. Third, the pre-averaging allows the market microstructure noise

to be heteroskedastic. In fact, as shown in Kalnina and Linton (2008), the two time-scales estimator

could be inconsistent for the integrated variance in the presence of heteroskedasticity in the noise.

Finally, Hautsch and Podolskij (2013) extend the original pre-averaging method of Jacod et al.

(2009) to allow for autocorrelated market microstructure noise.6

Let Lt be a given semimartingale contaminated with noise. The sum of the pre-averaged increments

[L,L]avg is defined as

[L,L]avg =

N−k∑
i=0


k∑

j=1

ϕ

(
j

k

)
∆Li+j


2

, (27)

where ∆Lj = Lj − Lj−1,
k√
N

= θ + O(N−1/4) for some θ > 0, and ϕ(x) = min(x, 1 − x). To

reduce the influence of the noise, the pre-averaging approach averages the increments of L.

We compare the estimator of Hautsch and Podolskij (2013), who use original returns, to the Jacod

et al. (2009) estimator using adjusted returns. We find that using adjusted returns in the pre-

averaging estimator of Jacod et al. (2009) achieves consistency of the integrated volatility estimator

even if there is endogeneity. The pre-averaging estimator of Jacod et al. (2009) or Hautsch and

Podolskij (2013) using the original returns is inconsistent in the presence of endogeneity.

To describe our next result, some additional notation is required. In particular, let (Ft)t≥0 be

a stationary q-dependent sequence, B(q) = E[ξ2] + E[(F
′
β)2] + 2

∑q
m=1 ρ(m), where ρ(m) =

5In Carrasco and Kotchoni (2011), the market microstructure noise is modelled semiparametrically and depends
on the frequency at which the prices are recorded.

6The kernel estimator of Barndorff-Nielsen et al. (2011) is also robust to heteroskedastic and autocorrelated
noise, but converges at the slower rate of N1/5.
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cov(F
′

tβ, F
′

t+mβ). Let B̂(q) be a consistent estimator of B(q). The pre-averaging estimator of

Hautsch and Podolskij (2013) using original prices is defined as

IV pre(p) =
12

θ
√
N

[p, p]avg − 12

θ2
B̂(q), (28)

where [p, p]avg is given by equation (27). The IV pre(p) volatility estimator has three tuning

parameters: θ, k and the function ϕ(.), which are chosen according to some optimality criteria. In

the next proposition, we give the asymptotic properties of the pre-averaging estimator defined in

(28), which is based on observed prices.

Proposition 5 Suppose that Assumptions 1-3 hold. In the case V ar[ξ] ̸= 0,

(i) in the presence of endogeneity, IV pre(p) is inconsistent;

(ii) in the absence of endogeneity,

N1/4 (IV pre(p)− IV )
st−→ N (0,Γε(q)),

where Γε(q) =
151
140θ IQ+ 12

θ B(q)IV + 96
θ3B(q)2.

According to Proposition 5(ii), the pre-averaging estimator is consistent when there is no

endogeneity at the usual N1/4 rate of convergence, which is the optimal rate in the presence of O(1)

noise. However, as shown in Proposition 5(i), in the presence of endogeneity, the pre-averaging

estimator based on original prices is inconsistent.

4.2. The novel IV estimator

In this subsection, we derive the asymptotic distribution of the new variance estimator. We

define the new return variance estimator as follows. If the liquidity costs are completely removed,

the new variance estimator is the realized variance based on high-frequency adjusted returns.

Otherwise, if the liquidity costs are partially removed, the new variance estimator is the pre-

averaging estimator computed using the adjusted returns instead of the observed returns. In the

first case, we show that the new estimator is consistent for the return variance with the best possible

rate of convergence. In the second case, the new estimator is robust to return-noise endogeneity,

contrary to the pre-averaging estimator.

We denote by RV (L) =
∑N

i=1(∆Li)
2 the realized variation of a series Li.

Theorem 1 Under Assumptions 1, 2, A, B and V ar[ξ] = 0,

(i) RV (p̂)
P−→ IV.

(ii)
√
N(RV (p̂)− IV )

st−→ N (0, 2 IQ),

where IQ =
∫ 1

0
σ4
udu.

According to Theorem 1, if the liquidity-costs measure totally removes the noise, the realized

volatility of the adjusted-price process p̂ is a consistent estimator of IV, and its asymptotic

distribution is the usual distribution of the realized volatility when no market microstructure noise

exists. In particular, an estimation error in β̂ impacts neither the consistency nor the asymptotic
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distribution of the estimator based on the adjusted returns, because this error is of a smaller

order of magnitude (O(1/N)). To compute confidence intervals7 for the integrated volatility, a

feasible estimator of the integrated quarticity is needed. We show in the proof of Theorem 1 in

Appendix B that the sum of adjusted returns to the fourth power is a consistent estimator of the

integrated quarticity under the assumptions of the theorem. Compared to the benchmark efficiency

and underlying assumptions described in Proposition 5, the novel estimator RV (p̂) is robust to

endogeneity and achieves the optimal rate of convergence as if there is no noise, and is written as

RV (p̂) =
N∑
i=1

r̂2i =
N∑
i=1

(
ri −X

′

i β̂
)2

.

Compared to the pre-averaging estimator, there are no tuning parameters involved in the expression

of RV (p̂). This feature makes the new estimator easier to implement in practice than the pre-

averaging estimator.

The rate of convergence of
√
N obtained in Theorem 1(ii) for the estimator RV (p̂) is not achievable

using any robust-to-noise volatility estimator. Indeed, Gloter and Jacod (2001) show that the rate

of convergence of any robust-to-noise integrated volatility estimator is bounded by N−1/4, where

N is the sample size. The first consistent robust-to-noise volatility estimator of Zhang, Mykland

and Aı̈t-Sahalia (2005) achieves a convergence rate of N−1/6. In fact, the N−1/4 technical bound

is already reached by the realized kernel estimator of Barndorff-Nielsen et al. (2008), as well as

the pre-averaging estimator of Jacod et al. (2009).

Now, we treat the case where the noise is partially removed. The next theorem characterizes

the limiting distribution of the pre-averaging estimator based on adjusted-prices p̂. Let the pre-

averaging estimator of Jacod et al. (2009) using the adjusted prices be defined as

IV pre(p̂) =
12

θ
√
N

[p̂, p̂]avg − 6

θ2N
RV (p̂). (29)

Theorem 2 Suppose that Assumptions 1-3, A, C hold. In the case V ar[ξ] ̸= 0,

(i) IV pre(p̂)
P−→ IV + trace(ΩXΩ−1SΩ−1).

(ii) N1/4
(
IV pre(p̂)− trace(Ω̂XΩ̂−1ŜΩ̂−1)− IV

)
st−→ N (0,Γξ),

where Γξ = 151
140θ ĨQ+ 12

θ E[ξ2]ĨV + 96
θ3E[ξ2]2,

ĨV = plim
(∑N

i=1 r̃
2
i

)
, ĨQ = plim

(
N
3

∑N
i=1 r̃

4
i

)
, r̃ = r∗ +X

′
(β − β̂) and Ω̂X , Ω̂, Ŝ are consistent

estimators of ΩX , Ω and S, respectively.

Theorem 2(i) shows that the pre-averaging estimator based on adjusted prices is consistent even

in the presence of endogeneity. This results from removing the estimated liquidity costs that are

endogenous with the frictionless return. Observe that the asymptotic bias trace(ΩXΩ−1SΩ−1) is

due to the fact that, based on their order, the frictionless returns and the estimation error of β̂ are

asymptotically not distinguishable (see (16)). Theorem 2(ii) gives the asymptotic distribution of

IV pre(p̂). The rate of convergence is the same as the pre-averaging estimator based on observed

returns.

7More accurate confidence intervals could be obtained using the bootstrap method, as in Gonçalves and Meddahi
(2009).
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Using Theorems 1 and 2, we define the new IV estimator by

IV new = RV (p̂) if V ar[ξ] = 0,

= IV pre(p̂)− trace(Ω̂XΩ̂−1ŜΩ̂−1) if V ar[ξ] ̸= 0.
(30)

Next, we provide a simulation exercise to examine the finite-sample properties of the noise

parameters and the volatility estimators.

5. MONTE CARLO EVIDENCE

In this section, we show that the finite-sample simulation results are consistent with those

predicted by the aforementioned asymptotic theory. We find that the misspecification and the

endogeneity tests have a good performance. The new variance estimator is more accurate than the

pre-averaging estimator benchmark.

We first describe the data-generating process for the frictionless price, the spot volatility and

liquidity-cost variables. Second, we report the simulation results for the liquidity-cost estimation

as well as the return variance estimation.

5.1. The artificial data

For the frictionless price, we use a two-factor affine stochastic volatility model, as in Andersen,

Bollerslev and Meddahi (2011). Recall the frictionless-price dynamics,

dp∗t = µtdt+ σtdWt.

We take a constant drift µt = µ = 0.001. The volatility model is a GARCH diffusion model. The

instantaneous volatility is defined by the process

dσ2
t = κ(θ − σ2

t )dt+ σσ2
t dW

(1)
t ,

where κ = 0.03, θ = 0.001 and σ = 0.15.

The vector of the noise explanatory variables is Ft = ( qt qtvt qtst dat dbt )
′
, which defines

the trade-direction indicator, the signed volume, the signed spread, the ask depth and the bid

depth, respectively. Monte Carlo experiments also require a data-generating process that provides

an artificial trade indicator, trading volume, bid-ask spread and quoted depths whose time-series

properties are consistent with those of the actual data. We follow Hasbrouck (1999) and generate

artificial liquidity-cost variables by simulating a persistent process with an intraday U-effect.

The direction of the trade qt is triggered by a Bernoulli process with clustering. Trades cluster

since buys are likely followed by buys, and sells are likely followed by sells. Moreover, some

big-volume trades are divided into small-volume trades and executed consecutively as a series of

sells or buys. The Bernoulli process is originally a sequence of random binary variables, which are

independent. A generalization of a Bernoulli process that incorporates a dependence structure is

given by Klotz (1972), in which he considers q1, q2, ..., qN , as a stationary two-state Markov chain

with state space {−1, 1}. The parameters of the process are α = Prob(qi = 1) and λ, which

measures the degree of persistence in the chain. The transition matrix is given by

T (α, λ) =

(
1−2α+λα

1−α
(1−λ)α
1−α

1− λ λ

)
. (31)
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We use the parameters α = 0.55 and λ = 0.7 to simulate the trade-direction sequence.

For the trading volume, the process – inspired by Hasbrouck (1999) – is given by

vi = µv
i + ϕv(vi−1 − µv

i−1) + ϵvi ,

where ϵv follows a Normal distribution N (0, 0.01) and ϕv = 0.0005. To allow for an intraday

U effect, the deterministic component µv of the volume process is specified as a combination of

exponential decay functions,

µv
i = k1 + kopen2 exp(−kopen3 τopeni ) + kclose2 exp(−kclose3 τ closei ),

where τopeni is the elapsed time since the opening trade of the day (in hours) and τ closei is the time

remaining before the scheduled market close (in hours). We calibrate the parameters as k1 = 6,

kopen2 = 0.5, kopen3 = 2.5, kclose2 = 0.2 and kclose3 = 3.5.

To simulate the spread series, we follow Hasbrouck’s (1999) model, defined as

si = log(Ai −Bi),

Ai = Ceiling[(exp(p∗i ) + cai )/T ick]Tick,

Bi = Floor[(exp(p∗i )− cbi )/T ick]Tick,

where the quote exposure costs are assumed to evolve as

cai = µc
i + ϕc(cai−1 − µc

i−1) + ϵc
a

i ,

cbi = µc
i + ϕc(cbi−1 − µc

i−1) + ϵc
b

i ,

µc
i = z1 + zopen2 exp(−zopen3 τopeni ) + zclose2 exp(−zclose3 τ closei ),

and where τopeni is the elapsed time since the opening trade of the day (in hours) and τ closei is

the time remaining before the scheduled market close (in hours). We calibrate the parameters as

z1 = 0.5, zopen2 = 0.4, zopen3 = 1.5, zclose2 = 0.1 and zclose3 = 2.5. The innovations ϵc
a

and ϵc
b

are

independently distributed as N (0, 0.0005), ϕc = 0.001. The tick size or minimum price variation

is 0.01$. The NYSE tick size changed from 1/16$ to 0.01$ on 29 January 2001. Technological

innovation is indeed propelling the move in financial markets away from fractional trading and

toward decimal trading.

We generate the quoted depths series using the following AR dynamics:

dai = µdASK + ϕd(dai−1 − µd) + ϵd
a

i ,

dbi = µdBID + ϕd(dbi−1 − µd) + ϵd
b

i ,

where ϵd
a

and ϵd
b

are independently distributed as N (0, 0.05), and µdBID = 5. µdASK = 5.6,

ϕd = 0.4.

The true parameter β is fixed as

β = ( 8 10−4 −5 10−5 −0.03 5 10−5 −4 10−5 )
′
.

We add a white noise ξ for a randomly chosen half of the intraday prices. More precisely, we

take ξ ∼ N (0, 8 10−8). We model endogeneity as in Barndorff-Nielsen et al. (2008) by adding the

component [0,−0.5,−0.5,−0.5,−0.5] r∗i to the previous noise explanatory variables Ft.
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5.2. Results

The results of the simulation show that the price-impact regression parameters – β – are

estimated very accurately. Compared to the true data-generating process, both the misspecification

test and the return-noise endogeneity test have good performance. Using artificial data, we find

that the performance of the new volatility estimator is better than the benchmark as measured by

the bias, the variance and the root mean squared error (RMSE).

We run 100, 000 replications or days. For each day, a trade occurs every 5 seconds. A business day

has 6.5 working hours. For the simulation results, we report in Table 1 the bias, the relative bias

(i.e., the bias in percentage terms), variance and RMSE of the interest variables for the model.

The coefficients of the liquidity-cost variables are estimated with a small RMSE ranging from

1.03 10−4 to 4.3 10−3. The misspecification test described in section 3.2 achieves an efficiency rate

of 0.97% compared to the true model. For the endogeneity analysis, the Hausman test described

in section 3.3 is rejected for all the days.

We compare seven volatility measures: the realized variance using high-frequency returns (RV (p));

the realized variance using high-frequency adjusted returns (RV (p̂), where the adjusted-price p̂ is

defined in (13)); the realized variance using 40-ticks low-frequency returns (RV low(p)); the realized

variance using 40-ticks low-frequency adjusted returns (RV low(p̂)); the pre-averaging estimator

based on original prices defined in (28) (IV pre(p)); the pre-averaging estimator based on adjusted

prices defined in (29) (IV pre(p̂)); and the new variance estimator defined in (30) (IV new). The bias

of the pre-averaging estimator in absolute values is about ten times the absolute value of the bias

of the new variance estimator. This bias is due to the inconsistency of the pre-averaging estimator

for the integrated variance in the presence of return-noise endogeneity. The IV new has the best

performance in terms of bias, variance and RMSE, as asserted by this paper’s asymptotic theory.

Table 1 also indicates that using the adjusted prices instead of the original prices improves the

performance of the realized variance using all the data, the realized variance based on low-frequency

returns and the pre-averaging estimator. This result shows that adjusting the observed returns for

liquidity costs improves the traditional measures of integrated variance.

6. EMPIRICAL ANALYSIS

In this section, we test with data the performance of the model presented in section 2 as well

as the performance of the new volatility estimator derived in section 4. We use Alcoa stock, listed

on the NYSE. The data cover the 2009–10 period. We use five explanatory variables to capture

the liquidity costs: the inferred trade-direction indicator, the trading volume, the bid-ask spread,

the bid depth and the ask depth.

We find that the liquidity costs are fully removed for about half of the sample business days. For

such days, the realized variance estimator based on high-frequency adjusted returns is then an

error-free integrated variance estimator with optimal efficiency.

The first subsection describes the liquidity-cost estimation, and the second deals with the daily

integrated variance estimation.
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6.1. Liquidity-cost estimation

We find that the noise parameters are significant for most of the sample days except the bid-ask

spread coefficient. The results of the misspecification test are that almost half the sample does

not reject the linear noise model. Finally, for the return-noise endogeneity test, we find that the

estimated liquidity costs are endogenous for the whole sample.

We follow the same steps as in section 3. First, we check that the liquidity-cost variables are valid

candidates as noise explanatory variables. Second, we estimate the parameters of the liquidity-costs

model. Third, we test for misspecification and return-noise endogeneity.

All the liquidity-cost variables that we use are observable except for the trade-direction indicator

qt. We infer the binary series qt from observed trade and quote prices using the Lee and Ready

(1991) trade classification algorithm. A trade is classified as a buy if the trade price is closer to the

ask than the bid, qt = +1. It is classified as a sale if the trade price is closer to the bid, qt = −1.

However, if the trade price occurs exactly at the midpoint of the bid-ask spread, then previous

trades are used to determine the sign of a trade: if the trade price is higher than the previous trade

price, then the trade is buyer-initiated, and vice versa. If the trade price did not change after the

previous trade, the last price change should be considered instead. The trade classification requires

that the trade series be matched with the quote series because in the TAQ database the two series

are offered separately. We match trades and quotes by assuming a zero time lag because we use

recent data. Appendix A details the data-manipulation procedure.

In Tables 2 and 3, we provide descriptive statistics to summarize the liquidity characteristics of

the stock. In the year 2009, Alcoa stock was much more liquid than in 2010. The average number

of transactions per day went from 4, 347.2 in 2009 to 2, 806.6 in 2010. Because of the financial

crisis that started in 2008, the year 2009 is an example of abnormal times and excessive volatility

regardless of whether the year 2010 is an example of a much less stressed period for financial

markets. On average, there are almost as many buys as sells for each trading day. The quoted

bid-ask spread is stable around one cent. The daily average size of the transactions in 2009 and

2010 is very close. However, the ask and bid depths are higher for 2010 compared to 2009.

The autocorrelation functions (ACF) of the five noise explanatory variables are plotted in Figure 1.

Each plot displays the average autocorrelation across days. The first-order autocorrelation is the

highest for all the variables, and the autocorrelation decays when the lag increases. However, even

after 20 lags the autocorrelation does not vanish. The same pattern is observed for the estimated

liquidity costs F
′
β̂. Indeed, as shown in Figure 15, the autocorrelation of the fitted noise is about

45% at the first lag. At the 20th lag, the autocorrelation of the fitted noise decreases to about 10%.

Figure 2 draws the autocorrelation function of the variation of the five noise explanatory variables.

It shows that, after the first lag, the autocorrelations of the noise variables increments vanish,

which justifies the use of only the first lag of X as the instrumental variable to estimate β. Indeed,

the higher-order lags of X are not highly correlated with X and cannot be valid instruments.

As stated earlier, the volatility signature plot of Andersen et al. (2000) draws the average of daily

realized variances across the sampling frequency of the underlying returns. An explanatory variable

is valid (i.e., O(1)) if its quadratic variation explodes at high frequencies, as in Assumption 2(ii).

The signature plot of Figure 3 illustrates the main problem of ultra-high-frequency data: the bias
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due to noise contamination. After adjusting the price for the market microstructure effects, this

problem is less severe, as shown in Figure 7. To formally show the bias explosion in the signature

plot, suppose that ε is an exogenous white noise; then, the bias is given by

E

[
N∑
i=1

r2i

]
− E[IV ] = 2NE[ε2]. (32)

When N goes to infinity, the bias in (32) due to the noise also goes to infinity, which translates

into the explosion of the realized variance in the signature plot.

Since qt has a Bernoulli distribution, we know that the quadratic variation of qt explodes at a high

frequency. Figures 4, 5 and 6 use the signature plot as a visual tool to verify that the quadratic

variation of the quoted bid-ask spread, the trading volume and the quoted depths explode at high

frequencies. Therefore, these observables are valid noise explanatory variables.

We find that all the noise explanatory-variable coefficients except the bid-ask spread coefficient are

significant at the 95% confidence level for almost all of the business days (Figures 8 to 12). The

confidence intervals are computed using propositions 1 and 2. The trade indicator q coefficient

is positive for all days except one. The signed-volume qv coefficient is negative for all days. A

transaction with a higher number of shares generates a lower cost per share. For the signed spread

qs, the coefficient is mostly negative in 2009. A wider spread is associated with a smaller buy

price and a bigger sell price. The quoted depths coefficients are positive for the ask volume and

negative for the bid volume. This is consistent with the presence of inventory-control costs. If the

ask volume increases, the price rises in an attempt to elicit sales. The same is true for the bid

volume.

The noise-to-signal ratio defined by RV/2NIV new is highly decreased if adjusted returns are used

instead of original returns to compute the ratio. Figure 13 shows the time series of this ratio for

2009 and 2010.

For the misspecification test of section 3.2, we find that for 159 business days out of 252 for 2009,

and 121 business days out of 252 for 2010, the test is not rejected, implying that the liquidity-cost

measure absorbs all the noise in about half of the sample. Figure 14 shows the first-order realized

autocovariance of the observed returns and adjusted returns (RC(1) defined in (20)). The stylized

fact of the negativity of the first-order autocovariance of the high-frequency returns disappears, or

at least becomes much less pronounced, by adjusting the returns for liquidity costs. The graph for

2010 shows that adjusting the returns using OLS, as in section 3.3, instead of using the instrumental

variable, as in section 3.1, results in positive first-order realized autocovariance. This may be due to

the fact that, by using OLS, the residual noise is not an exogenous white noise. If that were the case,

the first-order realized autocovariance would be negative. However, using the instrumental variable

to estimate the liquidity costs results in either zero or negative first-order realized autocovariance,

which is consistent with an exogenous white residual noise, as shown in (18) and (19).

Finally, Figure 16 plots the correlation between the returns and the fitted noise X ‘β̂ using observed

returns and adjusted returns. We also plot the return-noise bound derived by Diebold and Strasser

(2013) (see their proposition 4). The authors find that the return-noise correlation is between

−1/
√
2 and 0 for a one-period model of market making. In Figure 16, the return-noise correlation

computed using observed returns is positive, whereas the return-noise correlation based on adjusted
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returns is mostly in the interval [−1/
√
2, 0], which is consistent with the theoretical result of Diebold

and Strasser (2013).

6.2. Volatility estimation

To estimate the daily integrated variance, we use the new estimator IV new defined in (30),

whose properties are derived in Theorems 1 and 2. We compare IV new with the benchmark

estimator introduced in subsection 4.1, and find that the new volatility estimator is more precise

than the benchmark estimator in 59% of the sample days.

We estimate daily integrated volatility using the original prices and the adjusted prices. For the

pre-averaging estimator of Hautsch and Podolskij (2013) introduced in Proposition 5, the estimator

is not necessarily positive and the authors bound it from below by zero. We have done the same in

this section. Details on the asymptotic variance estimators used to compute confidence intervals

are given in Appendix C.

For the days where the misspecification test of section 3.2 is not rejected we find that, for 114

business days out of 159 for 2009, and 82 business days out of 121 for 2010, the confidence interval of

IV pre is larger than the confidence interval for IV new. This important improvement in the accuracy

of the new estimator compared to the benchmark is the result of the high rate of convergence of

RV (p̂), which is equal to IV new when the misspecification test is not rejected or V ar[ξ] = 0,

as shown in Theorem 1(ii). However, for the days where the misspecification test is rejected,

we find that the accuracy improvement of IV new over IV pre is less important. Indeed for these

days, only 42 business days out of 93 for 2009, and 59 business days out of 131 for 2010, the

confidence interval of IV pre is larger than the confidence interval for IV new. The new estimator

when the misspecification test is rejected is IV pre(p̂). Theorem 2(ii) gives the asymptotic variance

of IV pre(p̂) and it is not clear whether its variance is smaller than the asymptotic variance of

IV pre(p) derived in Proposition 5.

Figure 17 plots IV new−IV pre(p)
IV pre(p) and shows that the estimators IV new and IV pre(p) are relatively

different. On average, |IV new−IV pre(p)|
IV pre(p) is 16.65% for 2009 and 17.10% for 2010. The relative

difference IV new−IV pre(p)
IV pre(p) jumps for few days of the sample but remains stable for most of the

days.

7. CONCLUSION

In light of the market microstructure literature that provides economic drivers for market

microstructure frictions or liquidity costs, we propose a semiparametric price model that exploits

a much bigger set of available trade and quote data to estimate volatility. The resulting new

volatility estimator is asymptotically more accurate than the optimal efficiency bound for the

purely nonparametric approach. In addition, such an estimator relies on less-strong assumptions

than common nonparametric volatility estimators. These assumptions concern the endogeneity of

the noise with the frictionless price, the autocorrelation and heteroskedasticity of the noise.

We derive the asymptotic theory of the new volatility estimator. Compared to the pre-averaging

estimator, the new volatility estimator does not rely on the absence of an endogeneity assumption

for the noise, and allows by construction for heteroskedastic and autocorrelated noise. Moreover, if
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the noise is completely removed by the liquidity-cost variables considered, then the new volatility

estimator is as accurate as if the frictionless return were observed. The finite-sample study, as well

as the empirical analysis using Alcoa stock, confirm the theoretical results.

In this paper, we focus on integrated volatility estimation, but the approach could improve

the measurement of intraday quantities such as spot volatility (see Kristensen 2010), powers of

volatility, the leverage effect and integrated betas in a multivariate setting (see Christensen et al.

2010). These extensions would broaden the applicability of our approach to portfolio allocation,

risk management and asset evaluation.

There are many possible extensions to this work. For instance, it would be interesting to allow for

endogenous and non i.i.d. residual noise. Potentially, a nonlinear or an index model of liquidity

costs would capture more noise than a linear one. Indeed, nonlinearities are well documented in

market microstructure theory. Another extension would be to add jumps in the frictionless-price

dynamics. There is evidence of jumps in the data, so accounting for discontinuities should be

explored.

In addition to the estimation of volatility-type objects, this paper’s approach to decontaminate

high-frequency prices from liquidity costs could be used to study whether the current stylized fact

of the reversal of weekly returns (see Gutierrez Jr. and Kelley 2008) is still present for returns that

are adjusted for liquidity costs.
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Variable Min Max Mean Std
Number of transactions per day 1828 9660 4347.2 1261.8
Daily average time between transaction in seconds 2.40 10.80 5.80 1.63
Daily average trade-direction indicator -0.44 0.54 0.08 0.12
Daily average bid-ask spread in cents 1.01 1.28 1.06 0.04
Daily average log-traded volume 5.44 6.91 6.22 0.19
Daily average log bid depth 3.76 7.08 5.64 0.64
Daily average log ask depth 3.84 7.11 5.62 0.61

Table 2: Descriptive statistics, 2009

Variable Min Max Mean Std
Number of transactions per day 729 7598 2806.6 1188.0
Daily average time between transaction in seconds 3.08 24.13 9.75 3.85
Daily average trade-direction indicator -0.62 0.61 0.03 0.19
Daily average bid-ask spread in cents 1.01 1.09 1.03 0.01
Daily average log-traded volume 5.25 6.87 6.28 0.27
Daily average log bid depth 5.86 7.79 6.87 0.39
Daily average log ask depth 5.61 7.88 6.86 0.39

Table 3: Descriptive statistics, 2010
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Figure 1: ACF
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Figure 2: ACF variation
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Figure 3: The trade price signature plot
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Figure 4: The quoted spread signature plot
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Figure 5: The trading volume signature plot
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Figure 6: The quoted depths signature plot
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Figure 7: The original and adjusted-price signature plot
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Figure 8: The trade indicator coefficient with 95% confidence interval
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Figure 9: The quoted spread coefficient with 95% confidence interval
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Figure 10: The trading volume coefficient with 95% confidence interval
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Figure 11: The bid depth coefficient with 95% confidence interval

32



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−7

−6

−5

−4

−3

−2

−1

0

1

x 10
−4

2009 business days

 

 

95% confidence interval lower bound
The ask depth coefficient
95% confidence interval upper bound

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−5

−4

−3

−2

−1

0

1

2
x 10

−4

2010 business days

 

 

95% confidence interval lower bound
The ask depth coefficient
95% confidence interval upper bound

Figure 12: The ask depth coefficient with 95% confidence interval

33



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

1

2

3

4

5

6

7

8
x 10

−4

2009 business days

 

 

noise−to−signal ratio for original price
noise−to−signal ratio for adjusted price

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

2010 business days

 

 

noise−to−signal ratio for original price
noise−to−signal ratio for adjusted price

Figure 13: The noise-to-signal ratio
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Figure 14: The first-order realized autocovariance
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Figure 15: The Liquidity Costs ACF and the Liquidity Costs Variation ACF
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Figure 16: Return-noise correlation
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APPENDIX A: DATA MANIPULATIONS
As in Barndorff-Nielsen et al. 2008, we do the following:
1-All data:
P1. Delete entries with a time stamp outside the 9:30 am to 4 pm window when the exchange is open.
P2. Delete entries with a bid, ask or transaction price equal to zero.
P3. Retain entries originating from a single exchange (NYSE in our application). Delete other entries.
2-Quote data only:
Q1. When multiple quotes have the same time stamp, we replace all these with a single entry with the median bid
and median ask price.
Q2. Delete entries for which the spread is negative.
Q3. Delete entries for which the spread is more than 50 times the median spread on that day.
Q4. Delete entries for which the mid-quote deviated by more than 10 mean absolute deviations from a rolling
centered median (excluding the observation under consideration) of 50 observations (25 observations before and 25
after).
3-Trade data only:
T1. Delete entries with corrected trades. (Trades with a Correction Indicator, CORR 6 = 0).
T2. Delete entries with abnormal Sale Condition. (Trades where COND has a letter code, except for ”E” and
”F”). See the TAQ 3 User’s Guide for additional details about sale conditions.
T3. If multiple transactions have the same time stamp: use the median price.
T4. Delete entries with prices that are above the ask plus the bid-ask spread. Similar for entries with prices below
the bid minus the bid-ask spread.

APPENDIX B: TECHNICAL PROOFS
Proof of Proposition 1
The difference between the instrumental variable estimate β̂ and the true population parameter β is found by
substituting (9) into the definition of β̂:

β̂ − β = (Z
′
X)−1Z

′
r − β

= (Z
′
X)−1Z

′
(r∗ +Xβ +∆ξ)− β

= (Z
′
X)−1Z

′
r∗︸︷︷︸

O(1/
√

N)︸ ︷︷ ︸
small

+(Z
′
X)−1Z

′
∆ξ︸︷︷︸
O(1)︸ ︷︷ ︸

big

. (B.1)

Assume that V ar[ξ] = 0. Then the second term in equation (B.1) vanishes. Consequently, the difference β̂ − β
inherits the properties of the frictionless return r∗. Next, we derive the consistency and asymptotic distribution of
β̂.
(i) Consistency:

(Z
′
X)−1Z

′
r∗ =

(
1

N

N∑
i=1

ZiX
′
i

)−1(
1

N

N∑
i=1

Zir
∗
i

)

=

(
1

N

N∑
i=1

ZiX
′
i

)−1(
1

N

N∑
i=1

{
Zi

∫ i
N

i−1
N

(µsds+ σsdWs)

})

=

(
1

N

N∑
i=1

ZiX
′
i

)−1

︸ ︷︷ ︸
P−→Ω−1

 1

N

N∑
i=1

Zi

∫ i
N

i−1
N

µsds︸ ︷︷ ︸
=A

+
1

N

N∑
i=1

Zi

∫ i
N

i−1
N

σsdWs︸ ︷︷ ︸
=B

 .

(B.2)

For the first term,
(

1
N

∑N
i=1 ZiX

′
i

)−1 P−→ Ω−1 is obtained using Assumption A.

For the second term, A
P−→ 0 when N → ∞ because

E

[
Zi

∫ i
N

i−1
N

µsds

]
= E[Zi]︸ ︷︷ ︸

=0

(∫ i
N

i−1
N

µsds

)
︸ ︷︷ ︸

P−→0

= 0.
(B.3)
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For the third term, B
P−→ 0 when N → ∞ because

E

[
Zi

∫ i
N

i−1
N

σsdWs

]
= E

[
E

[
Zi

∫ i
N

i−1
N

σsdWs|Fi−1

]]

= E

[
ZiE

[∫ i
N

i−1
N

σsdWs|Fi−1

]]

= E

Zi E

[∫ i
N

i−1
N

σsdWs

]
︸ ︷︷ ︸

=0

 = 0.

(B.4)

So, equations (B.2), (B.3) and (B.4) imply that β̂ − β
P−→ 0 when N → ∞.

(ii) Asymptotic distribution:
Equation (B.1) implies that

N(β̂ − β) =
[
N−1Z

′
X
]−1 [

Z
′
r∗
]
+
[
N−1Z

′
X
]−1

Z
′
∆ξ. (B.5)

We have, using Assumptions A and B,

Z
′
r∗

st−→ N ((0)M×1,Ω
∗),

N−1Z
′
X → Ω,

V ar[ξ] = 0.

(B.6)

Then

N(β̂ − β)
st−→ N ((0)M×1,Ω

−1Ω∗Ω−1). (B.7)

�

Proof of Proposition 2
From equation (B.1), we have

β̂ − β = (Z
′
X)−1Z

′
r∗ + (Z

′
X)−1Z

′
∆ξ. (B.8)

(i) Consistency:
We have, using Assumptions 1-3,

r∗ → 0,

E[Z
′
∆ξ] = 0.

(B.9)

Then β̂ − β → 0.
(ii) The central limit theorem:

√
N(β̂ − β) =

[
N−1Z

′
X
]−1 [√

N
−1

Z
′
(r∗ +∆ξ)

]
=
[
N−1Z

′
X
]−1 [√

N
−1

Z
′
r∗
]
+
[
N−1Z

′
X
]−1 [√

N
−1

Z
′
∆ξ
]
.

(B.10)

For the last term of the previous equation, we have, using Assumption C,

√
N

−1
Z

′
∆ξ −→ N ((0)M×1, S). (B.11)

Since Z
′
r∗ is bounded because it converges to 0 and N−1Z

′
X → Ω, then

√
N(β̂ − β)

L−→ N
(
(0)M×1,Ω

−1SΩ−1)
)
.

�

Proof of Proposition 3
Recall,

r̂i = ri −X
′
i β̂

= r∗i +X
′
i (β − β̂) + ∆ξi.

(B.12)
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Under H0,

r̂i = r∗i︸︷︷︸
O(1/

√
N)

+X
′
i (β − β̂)︸ ︷︷ ︸
O(1/N)

.
(B.13)

So the frictionless return dominates the adjusted return. Therefore, Theorem 1 of Barndorff-Nielsen et al. (2008)
could be used to obtain that

√
N

(
N∑
i=1

r̂ir̂i−1 +
N∑
i=1

r̂ir̂i+1

)
st−→ N (0, 4IQ), (B.14)

so
√
NRC(1)

st−→ N (0, IQ).

�

Proof of Proposition 4
This proposition is a direct application of Hausman (1978). Assume that X is exogenous (H0 holds). Then β̂OLS

attains the asymptotic Cramer-Rao bound.
We distinguish the two cases V ar[ξ] = 0 and V ar[ξ] ̸= 0 because the asymptotic variance as well as the rate of

convergence of β and β̂ differ in each case.
We have, under Assumptions 1-3, A’, B’ and V ar[ξ] = 0,

(i) β̂OLS
P−→ β.

(ii)N(β̂OLS − β)
L−→ N

(
(0)M×1, V0(β̂OLS)

)
,

where V0(β̂OLS) = Ω−1
X Ω∗

XΩ−1
X .

The proof of this result is similar to the proof of Proposition 1.
For the partially absorbed noise case, we have under Assumptions 1-3, A’, C’, and V ar[ξ] ̸= 0,

(i) β̂OLS
P−→ β,

(ii)
√
N(β̂OLS − β)

L−→ N
(
(0)M×1, V1(β̂OLS)

)
,

where V1(β̂OLS) = Ω−1
X SXΩ−1

X .
The proof of this result is similar to the proof of Proposition 2.
The matrices ΩX , Ω∗

X and SX are defined in Assumptions A’, B’ and C’, respectively.

Providing the asymptotic distributions of β̂OLS and β̂ for the cases V ar[ξ] = 0 and V ar[ξ] ̸= 0, Hausman (1978) is
directly applicable to obtain the result stated in the Proposition 4.

�

Proof of Proposition 5
The pre-averaging estimator of Jacod et al. (2009), as well as the extended version of Hautsch and Podolskij (2013),
relies on the assumption of absence of endogeneity between the frictionless price and the noise. Therefore, the result
(i) is obtained.
In the case where the noise is exogenous, the pre-averaging estimator is consistent. We have

p = p∗ + ε

= p∗ + F ′β︸︷︷︸
autocorrelated noise

+ ξ︸︷︷︸
white noise

(B.15)

Under the assumption that ε is independent from p∗, we apply the pre-averaging of Hautsch and Podolskij (2013),
which is robust to autocorrelated noise:

N1/4 (IV pre(p)− IV )
st−→ N (0,Γε(q)),

where Γε(q) =
151
140

θ IQ+ 12
θ
B(q)IV + 96

θ3
B(q)2 and B(q) is given by

B(q) = E[ε2t ] + 2

q∑
m=1

Cov[εt, εt+m]

= E[
(
F ′

tβ + ξt
)2

] + 2

q∑
m=1

Cov[F ′
tβ + ξt, F

′
t+mβ + ξt+m]

= E[
(
F ′

tβ
)2

] + E[ξ2t ] + 2

q∑
m=1

Cov[F ′
tβ, F

′
t+mβ].

This achieves the proof of part (ii) of Proposition 5.
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�

Proof of Theorem 1
We have in the zero residual noise case,

r̂ = r −Xβ̂

= r∗ +X(β − β̂),
(B.16)

since O(β − β̂) = O(1/N). Therefore,

r̂ = r∗︸︷︷︸
O(1/

√
N)

+X(β − β̂)︸ ︷︷ ︸
O(1/N)

.
(B.17)

So the frictionless return dominates the frictions increment and the adjusted return is almost equal to the frictionless
return. Therefore, consistency and limit distribution results are the same if the frictionless return was observed; i.e.,

(i) RV (p̂)
P−→ IV.

(ii)
√
N(RV (p̂)− IV )

st−→ N (0, 2 IQ).

Moreover, since p̂ is asymptotically equal to the frictionless price p∗, then the realized quarticity
∑N

i=1 r̂
4
i is a

consistent estimator of the integrated quarticity IQ.

�

Proof of Theorem 2
The pre-averaging estimator using adjusted prices is a direct application of Jacod et al. (2009). We have,

p̂ = p∗ + F
′
(β − β̂)︸ ︷︷ ︸

endogenous noise

+ ξ︸︷︷︸
exogenous noise

.
(B.18)

Let p̃ denote the O(1/
√
N) of the adjusted price p̂

p̃ = p∗ + F
′
(β − β̂). (B.19)

The intuition is

r̂ = r∗ + X(β − β̂)︸ ︷︷ ︸
small endogenous noise

+ ∆ξ︸︷︷︸
big exogenous noise

= r∗︸︷︷︸
O(1/

√
N)

+ X︸︷︷︸
O(1)

(β − β̂)︸ ︷︷ ︸
O(1/

√
N)

+ ∆ξ︸︷︷︸
O(1)

= r̃︸︷︷︸
O(1/

√
N)

+ ∆ξ︸︷︷︸
O(1)

.

(B.20)

Then r̂ is an O(1/
√
N) contaminated with an i.i.d. noise. Therefore, by applying the pre-averaging estimator of

Jacod et al. (2009), we obtain the following asymptotic distribution:

N1/4
(
IV pre(p̂)− ĨV

)
st−→ N (0,Γξ), (B.21)

where

Γξ =
151

140
θ ĨQ+

12

θ
E[ξ2]ĨV +

96

θ3
E[ξ2]2. (B.22)

ĨV = plim

(
N∑
i=1

r̃2i

)
,

ĨQ = plim

(
N

3

N∑
i=1

r̃4i

)
.

(B.23)

Next, we turn to the asymptotic bias IV pre(p̂) − IV . The volatility ĨV that appears in (B.21) is the limit of∑N
i=1 r̃

2
i , which is written as

N∑
i=1

r̃2i =
N∑
i=1

(r∗i +X
′
i (β − β̂))2

=

N∑
i=1

(r∗i )
2 +

N∑
i=1

(X
′
i (β − β̂))2 + 2

N∑
i=1

r∗i X
′
i (β − β̂).

(B.24)
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The first term of (B.24) converges to IV. For the second term,

N∑
i=1

(X
′
i (β − β̂))2 =

N∑
i=1

(β − β̂)
′
XiX

′
i (β − β̂)

= (β − β̂)
′
(

N∑
i=1

XiX
′
i )(β − β̂)

= trace

(
(β − β̂)

′
(

N∑
i=1

XiX
′
i )(β − β̂)

)

= trace

(

∑N
i=1 XiX

′
i

N
)︸ ︷︷ ︸

→ΩX

N(β − β̂)(β − β̂)
′︸ ︷︷ ︸

→Ω−1SΩ−1

 .

(B.25)

Then

plim(
N∑
i=1

(X
′
i (β − β̂))2) = trace(ΩXΩ−1SΩ−1). (B.26)

The last term of (B.24) converges to 0 because

N∑
i=1

r∗i X
′
i (β − β̂) =

N∑
i=1

r∗i X
′
i︸ ︷︷ ︸

bounded

(β − β̂)︸ ︷︷ ︸
→0

.
(B.27)

Using (B.24), (B.26) and (B.27), the bias IV pre(p̂) − IV is given by trace(ΩXΩ−1SΩ−1), which proves Theorem
2(i).
For (ii), the central limit theorem of the pre-averaging estimator using adjusted prices is derived in (B.21).

�

APPENDIX C: EMPIRICAL DETAILS
Estimating the matrices S and Ω∗

For the instrumental variable estimation of the price-impact regression:
A consistent positive semidefinite estimator of the matrix S is the Newey and West (1987) estimator, which is robust
to heteroskedasticity and first-order autocorrelation in the regression residuals,

Ŝ = Υ̂0 +
1

2

(
Υ̂1 + Υ̂

′
1

)
, (C.1)

where Υ̂0 = 1
N

∑N
i=1 r̂

2
iZiZ

′
i and Υ̂1 = 1

N

∑N
i=2 r̂ir̂i−1ZiZ

′
i−1.

Ω̂∗ =
1

N

N∑
i=1

r̂2iZiZ
′
i . (C.2)

For the OLS estimation of the price-impact regression:

ŜX = Υ̂0 +
1

2

(
Υ̂

(X)
1 + Υ̂

(X)′

1

)
, (C.3)

where Υ̂
(X)
0 = 1

N

∑N
i=1

(
r̂
(OLS)
i

)2
XiX

′
i and Υ̂

(X)
1 = 1

N

∑N
i=2 r̂

(OLS)
i r̂

(OLS)
i−1 XiX

′
i−1.

Ω̂∗
X =

1

N

N∑
i=1

(
r̂
(OLS)
i

)2
XiX

′
i . (C.4)

The pre-averaging estimator of the integrated quarticity IQ
The pre-averaging estimator of IQ based on the observed prices is given by

IQpre(p) =
48

θ2

N−k∑
i=0


k∑

j=1

ϕ

(
j

k

)
ri+j


4

−
288

θ4
√
N

N−2k∑
i=0


k∑

j=1

ϕ

(
j

k

)
ri+j


2

B̂(q) +
144

θ4
B̂(q)2,

(C.5)
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where B̂(q) is computed using the method of Hautsch and Podolskij (2013) after estimating q with data.
The pre-averaging estimator of IQ based on adjusted prices is given by

IQpre(p̂) =
48

θ2

N−k∑
i=0


k∑

j=1

ϕ

(
j

k

)
r̂i+j


4

−
144

θ4N

N−2k∑
i=0


k∑

j=1

ϕ

(
j

k

)
r̂i+j


2

i+2k∑
j=i+k+1

r̂2j

+
36

θ4N

N−2∑
i=1

r̂2i r̂
2
i+2.

(C.6)

Estimating the asymptotic variances Γξ and Γε(q)
The estimators are given by

Γ̂ε(q) =
151

140
θIQpre(p) +

12

θ
B̂(q)IV pre(p) +

96

θ3
B̂(q)2 (C.7)

Γ̂ξ =
151

140
θIQpre(p̂) +

12

θ
Ê[ξ2]IV pre(p̂) +

96

θ3
Ê[ξ2]2, (C.8)

where Ê[ξ2] = 1
2N

∑N
i=1 r̂

2
i , IV

pre(p) and IV pre(p̂) are given in section 4.
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