TY - GEN AB - We develop a finite-sample procedure to test for mean-variance efficiency and spanning without imposing any parametric assumptions on the distribution of model disturbances. In so doing, we provide an exact distribution-free method to test uniform linear restrictions in multivariate linear regression models. The framework allows for unknown forms of non-normalities, and time-varying conditional variances and covariances among the model disturbances. We derive exact bounds on the null distribution of joint F statistics in order to deal with the presence of nuisance parameters, and we show how to implement the resulting generalized non-parametric bounds tests with Monte Carlo resampling techniques. In sharp contrast to the usual tests that are not computable when the number of test assets is too large, the power of the new test procedure potentially increases along both the time and cross-sectional dimensions. AB - Les auteurs élaborent une procédure permettant de tester, en échantillon fini, si un portefeuille est efficient dans le plan moyenne-variance et si son efficience peut être améliorée par l’addition d’actifs sans qu’il soit nécessaire de fixer par hypothèse la distribution des erreurs du modèle. Leur méthode non paramétrique peut servir à tester de façon exacte des restrictions uniformes linéaires dans le cadre de modèles de régression linéaires multivariés. La procédure autorise des formes inconnues de distribution autres que la loi normale ainsi que la variabilité dans le temps des variances et covariances conditionnelles des erreurs. Les auteurs calculent des bornes exactes pour la distribution conjointe des statistiques de Fisher sous l’hypothèse nulle en présence de paramètres de nuisance. Ils montrent aussi comment mettre en oeuvre, au moyen de techniques de rééchantillonnage à la Monte-Carlo, les tests de bornes non paramétriques généralisés qui en résultent. La puissance de la nouvelle procédure peut s’accroître avec l’allongement de la série temporelle et la hausse du nombre des actifs. Cette propriété tranche avec les tests habituels, qui deviennent inexécutables si le nombre d’actifs est trop élevé. AU - Gungor, Sermin AU - Luger, Richard DA - 2013 DO - 10.34989/swp-2013-16 DO - DOI ID - 1641 KW - Asset Pricing KW - Econometric and statistical methods KW - Financial markets KW - Évaluation des actifs KW - Méthodes économétriques et statistiques KW - Marchés financiers L1 - https://www.oar-rao.bank-banque-canada.ca/record/1641/files/wp2013-16.pdf L2 - https://www.oar-rao.bank-banque-canada.ca/record/1641/files/wp2013-16.pdf L4 - https://www.oar-rao.bank-banque-canada.ca/record/1641/files/wp2013-16.pdf LA - eng LK - https://www.oar-rao.bank-banque-canada.ca/record/1641/files/wp2013-16.pdf N2 - We develop a finite-sample procedure to test for mean-variance efficiency and spanning without imposing any parametric assumptions on the distribution of model disturbances. In so doing, we provide an exact distribution-free method to test uniform linear restrictions in multivariate linear regression models. The framework allows for unknown forms of non-normalities, and time-varying conditional variances and covariances among the model disturbances. We derive exact bounds on the null distribution of joint F statistics in order to deal with the presence of nuisance parameters, and we show how to implement the resulting generalized non-parametric bounds tests with Monte Carlo resampling techniques. In sharp contrast to the usual tests that are not computable when the number of test assets is too large, the power of the new test procedure potentially increases along both the time and cross-sectional dimensions. N2 - Les auteurs élaborent une procédure permettant de tester, en échantillon fini, si un portefeuille est efficient dans le plan moyenne-variance et si son efficience peut être améliorée par l’addition d’actifs sans qu’il soit nécessaire de fixer par hypothèse la distribution des erreurs du modèle. Leur méthode non paramétrique peut servir à tester de façon exacte des restrictions uniformes linéaires dans le cadre de modèles de régression linéaires multivariés. La procédure autorise des formes inconnues de distribution autres que la loi normale ainsi que la variabilité dans le temps des variances et covariances conditionnelles des erreurs. Les auteurs calculent des bornes exactes pour la distribution conjointe des statistiques de Fisher sous l’hypothèse nulle en présence de paramètres de nuisance. Ils montrent aussi comment mettre en oeuvre, au moyen de techniques de rééchantillonnage à la Monte-Carlo, les tests de bornes non paramétriques généralisés qui en résultent. La puissance de la nouvelle procédure peut s’accroître avec l’allongement de la série temporelle et la hausse du nombre des actifs. Cette propriété tranche avec les tests habituels, qui deviennent inexécutables si le nombre d’actifs est trop élevé. PY - 2013 T1 - Multivariate Tests of Mean-Variance Efficiency and Spanning with a Large Number of Assets and Time-Varying Covariances TI - Multivariate Tests of Mean-Variance Efficiency and Spanning with a Large Number of Assets and Time-Varying Covariances UR - https://www.oar-rao.bank-banque-canada.ca/record/1641/files/wp2013-16.pdf Y1 - 2013 ER -