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Abstract 

The authors use the Financial Stress Index created by the International Monetary Fund to 
predict the likelihood of financial stress events for five developed countries: Canada, 
France, Germany, the United Kingdom and the United States. They use a semiparametric 
panel data model with nonparametric specification of the link functions and linear index 
function. The empirical results show that the semiparametric early warning model 
captures some well-known financial stress events. For Canada, Germany, the United 
Kingdom and the United States, the semiparametric model can provide much better out-
of-sample predicted probabilities than the logit model for the time period from 2007Q2 to 
2010Q2, while for France, the logit model provides better performance for non-financial 
stress events than the semiparametric model. 

JEL classification: G01, G17, C12, C14 
Bank classification: Financial stability; Econometric and statistical methods 

Résumé 

Les auteurs s’appuient sur l’indice de tension financière créé par le Fonds monétaire 
international afin de prévoir le risque de matérialisation de tensions financières dans cinq 
pays développés : l’Allemagne, le Canada, les États-Unis, la France et le Royaume-Uni. 
Ils utilisent un modèle semi-paramétrique avec données sur panel et spécification non 
paramétrique de fonctions de lien et d’une fonction linéaire indicielle. Les résultats 
empiriques montrent que le prédicteur avancé constitué par leur modèle restitue des 
épisodes bien connus de tensions financières. Dans le cas de l’Allemagne, du Canada, des 
États-Unis et du Royaume-Uni, le modèle semi-paramétrique peut fournir des prévisions 
des probabilités hors échantillon qui sont de qualité nettement supérieure à celles du 
modèle logit pour la période comprise entre le 2e trimestre de 2007 et le 2e trimestre de 
2010. Pour la France, le modèle logit produit de meilleures prévisions des tensions non 
financières que le modèle semi-paramétrique. 

Classification JEL : G01, G17, C12, C14 
Classification de la Banque : Stabilité financière; Méthodes économétriques et 
statistiques 

 

 



1 Introduction

Due to the large costs that economies suffer in a financial crisis,1 effective early warning tools have

substantial value to policy-makers by allowing them to detect underlying economic weaknesses

and vulnerabilities, and possibly take pre-emptive policy actions to head off the potential crisis or

limit its effects. Recognizing this, international organizations and academics have been developing

early warning models. For instance, the International Monetary Fund (IMF) has been systemically

tracking, on an ongoing basis, various models by Kaminsky, Lizondo and Reinhart (1998) and Berg

and Pattilo (1999). Many central banks, such as the U.S. Federal Reserve and the Bundesbank,

academics, and private sector institutions (e.g., JP Morgan, Credit Suisse First Boston, Deutsche

Bank), have also developed early warning models for financial crises (e.g., Davis and Karim 2008;

Reinhart and Rogoff 2008).

Typically, early warning models are designed to predict financial crises. Recently, studies

have started using financial stress indexes to examine which economic variables can help predict

financial stress for a single country (Hakkio and Keep 2009; Misina and Tkacz 2009) or several

countries (Hollo, Kremer and Lo Duca 2012; Cardarelli, Elekdag and Lall 2009; Holmfeldt et

al. 2009). Financial stress is defined as an interruption of the normal functioning of a financial

system (Hakkio and Keep 2009), and can have large real effects by boosting the cost of credit and

making business, financial institutions and households highly uncertain about the outlook for the

economy. In this paper, we use the Financial Stress Index (FSI) proposed by the IMF for developed

economies as the measure of financial stress, and to predict the likelihood of occurrence of high

financial stress events for five developed countries: Canada, France, Germany, the United Kingdom

1Financial crises have a large impact on the real economy, especially a loss in output, and frequently the effects
spill over to other economies (Edison 2003).
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and the United States.2 In the literature on early warning models, logit and probit models are

commonly used (Bussiere and Fratzscher 2006; Davis and Karim 2008). Although a logit model

or a probit model is analytically convenient, in practice the functional form is seldom known. If the

functional form is misspecified, the estimation of the coefficients and the inference based on them

can be highly misleading. To relax the restrictive assumption that the functional form is known,

semiparametric or nonparametric models are often employed.

In this paper, we propose a semiparametric early warning model with a nonparametric spec-

ification of the link functions and linear index function to predict the probability that a financial

stress event will occur over a one-year horizon. Such a semiparametric model has the advantages

that it does not require the arbitrary distributional assumptions usually invoked in parametric anal-

ysis, and overcomes the so-called curse of dimensionality that hampers nonparametric techniques

in applications with high-dimensional data and standard sample sizes.

The choice of explanatory variables in our semiparametric model is based on the variables

reported in Demirgüç-Kunt and Detragiache (1998) and Davis and Karim (2008). These variables

are chosen based on theoretical considerations and their availability on a quarterly basis. We

include ten independent variables in our model: real GDP growth rate, exchange rate, real short-

term interest rate, inflation, M2/foreign exchange reserve, growth rate of private credit/GDP, bank

reserve/bank asset, current account/GDP, house price index return, and stock price return.

Van den Berg, Candelon and Urbain (2008) adopt a panel data logit model to predict financial

crises, and they test for poolability using a panel of 13 countries. The pooling data are rejected by

the Hausman test. Therefore, although the pooling of countries increases the number of useful ob-

servations and is supposed to lead to a gain in estimation accuracy, it is first necessary to determine

2It is important to emphasize that the objective of our paper is not to forecast the future value of the Financial Stress
Index, but rather to forecast the probability that a high financial stress event will occur within a given period of time;
that is, that we try to build an early warning system of high financial stress events.
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whether the data are poolable by the semiparametric model. In addition to standard parametric

tests, nonparametric tests for poolability using panel data have been well developed; see Baltagi,

Hidalgo and Li (1996), Criado (2008), Hall and Hart (1990), Koul and Schick (1997), Lavergne

(2001), Neumeyer and Dette (2003), Vilar-Fernandez and Gonzalez-Manteiga (2004, 2007) and

Jin and Su (2010), among others. A recent review of this topic is provided in Su and Ullah (2010).

However, to our knowledge, the equality of the unknown link functions in the framework of semi-

parametric single-index panel data models has not yet been tested. We propose a new consistent

test for poolability in a framework of semiparametric binary choice models (details of the test are

provided in the appendix). Our results suggest that we cannot reject the hypothesis that the link

functions are the same across the five countries.

Predictive ability analysis reveals that for Canada and the United Kingdom the semiparamet-

ric early warning model has better in-sample performance than the logit model, while for France

and Germany the logit model outperforms the semiparametric model. Out-of-sample performance

indicates that the semiparametric early warning model can capture some well-known financial

stress events. Particularly for Canada, Germany, the United Kingdom and the United States, the

semiparametric model can provide much better out-of-sample predicted probabilities than the logit

model for the time period from 2007Q2 to 2010Q2. For France, the logit model provides better

performance for non-financial stress events than the semiparametric model. It is important to men-

tion that, since a formal specification test for whether the data are poolable by a logit model is not

available, the model’s predictive performance is conditional on the untested assumption that it can

pool the data. However, as the most commonly used early warning model in this literature, the logit

model is still chosen as a benchmark model to evaluate the predictive ability of the semiparametric

model.
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The paper is organized as follows. Section 2 identifies financial stress events. Section 3 presents

a semiparametric early warning model of financial stress events. In section 4, we describe the

forecasting results from our semiparametric single-index model, and compare them with those

from the logit model. Section 5 concludes. The test statistic, the proofs of the asymptotic results

of the test statistic and Monte Carlo simulation of the test statistic are reported in the appendix.
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2 Identifying Financial Stress Events

There is evidence that financial stress may cause severe financial crises and recessions (Bloom

2009). Financial stresses on a financial system are frequently associated with an increased degree

of perceived risk (a widening of the distribution of probable losses) and uncertainty (decreased

confidence in the shape of that distribution). To capture these features of financial stress, the

IMF constructed a Financial Stress Index (FSI) for developed economies. The FSI is a variance-

weighted average of three subindexes associated with the banking, securities and foreign exchange

markets. All components in the three subindexes are originally in a monthly frequency. The FSI

is constructed by taking the average of the components after adjusting for the sample mean and

standardizing by the sample standard deviation. Finally, it is converted into a quarterly frequency

by taking the average of the monthly data.3

We use the FSI as the measure of financial stress, to predict the probabilities that a financial

stress event will occur in a given period of time. As a first step, for country j we define the financial

stress event as occurring when the FSI rises above a threshold,

h f s j,t =

{
1 if FSIt > µFSI +1.5σFSI
0 otherwise, (1)

where σFSI and µFSI are the sample standard deviation and the sample mean of FSI, respectively.

This definition will be used in our econometric analysis. Although the choice of 1.5 as a threshold

is somewhat arbitrary, the cataloguing of financial stress events obtained by this choice tends to

follow closely the chronology of financial market distress described in the literature. In particular,

1.5 standard deviations yields a reasonable number of observations for estimating the probability

of a high financial stress occurring (51 financial stress events are identified by Equation (1) in-

sample).
3The details of the components of the index are explained in Cardarelli, Elekdag and Lall (2009).
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Figures 1 to 3 plot the FSI for the sample period starting from 1981Q2, to 2010Q2. Higher

values of the index indicate higher financial stress. It is interesting to note that even though the

component parts of the FSIs are based on individual country data, the peaks of the index largely

coincide with episodes of financial stress events that are international in nature; for example, the

stock market crash of October 1987, the long-Term Capital Management (LTCM) crisis in 1998

and the subprime crisis starting in the third quarter of 2007. This is not surprising, given that

these economies are well-integrated internationally. As such, these financial stress events are not

insulated from international financial developments. This represents a challenge if we are to use

only domestic information as explanatory variables.

3 Model Specification

The objective of our early warning model is to predict whether a financial stress event will occur

within a given time horizon. We transform the contemporaneous variable h f s j,t into a forward-

looking variable Yt, j, which is defined as,

Yt, j =

{
1 if ∃ k = 1, ...,4 s.t. h f s j,t+k = 1
0 otherwise. (2)

In other words, we attempt to predict whether a financial stress event will occur in the coming four

quarters. The length of the forecasting period is chosen by balancing two opposite requirements.

On the one hand, economic variables will tend to provide more information as a financial system

approaches a financial stress event. On the other hand, from a policy-maker’s perspective, it is de-

sirable to have a warning of a financial stress event as early as possible in order to take pre-emptive

policy action. In the literature on early warning models, some researchers (Kaminsky, Lizondo

and Reinhart 1998; Davis and Karim 2008) use the eight-quarter horizon, and others (Bussiere

and Fratzscher 2006) use the four-quarter horizon. Given that our model is semiparametric, com-
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pared to the eight-quarter horizon, we prefer using the four-quarter horizon, so that we have more

observations to estimate our model.

In each period, country j is either experiencing a financial stress event or it is not. The prob-

ability that a financial stress event will occur at a particular time in country j is hypothesized to

be a function of a vector of m explanatory variables denoted by Xt, j. The choice of explanatory

variables is discussed below. Let θ be a vector of m unknown coefficients and F(Xt, jθ) be the

cumulative probability distribution function evaluated at Xt, jθ.

As is standard in the early warning literature, the goal is to explain the occurrence of a financial

stress event with a vector of explanatory variables, Xt, j. For example, the discrete-dependent vari-

able model using a logistic distribution defines the logit model, Prob(Yt j = 1|Xt jθ) = F(Xt jθ) =

eXt jθ

1+eXt jθ
. The parameters θ are obtained by maximum likelihood estimation, where each possible

value of Yt, j contributes to the joint likelihood function. The logit model yields a predicted proba-

bility with which a financial stress event will occur within the next four quarters.

We consider the following semiparametric panel data specification:

E[Yt j|Xt jθ j] = Pr[Yt j = 1|Xt jθ j] = g j(Xt jθ j), t = 1,2, ...,n,and j = 1,2, ...,J, (3)

where θ j ∈ Θ ⊂ Rm,m ≥ 1, is an unknown m× 1 constant vector and g j(·) is an unknown dis-

tribution function. The semiparametric estimation problem is to estimate both θ j and g j(·) from

observations on Xt j and Yt j. Note that the semiparametric specification is more flexible than is

the logit model, which is a special case obtained by assuming the logistic cumulative distribution

function for g j(·).

Under the assumption that the data are poolable, there exists a constant vector θ and a distribu-

tion function g(·) such that g j(xθ) = g(xθ) almost everywhere for all 1≤ j≤ J, where x∈Ω⊂ Rm.
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The estimator of θ is obtained by maximizing the quasi-log-likelihood function,

1
n

J

∑
j=1

n

∑
t=1

[Yt jln[ĝ(Xt jθ)]
2 +(1−Yt j)ln[(1− ĝ(Xt jθ))

2]], (4)

where ĝ(Xt, jθ) is the pooled estimator of g(Xt jθ) by

ĝ(Xt, jθ)≡
1

Jnh ∑
i

∑
s

Ys,iK[
(Xs,i−Xt, j)θ

h
]/∑

i
∑
s

Ys,iK[
(Xs,i−Xt, j)θ

h
], (5)

and h is the smoothing parameter used in the kernel nonparametric estimation of g(Xt jθ), and K(·)

is a kernel function.

Our choice of explanatory variables is based on the variables reported in Kaminsky, Lizondo

and Reinhart (1998) and Davis and Karim (2008). These variables are chosen based on theoretical

considerations and their availability on a quarterly basis for all five countries and time periods.

We include ten independent variables: real GDP growth, nominal exchange rate depreciation, real

short-term interest rate, inflation, M2/foreign exchange reserve, the growth of private credit/GDP,

the growth of bank reserve/bank asset, current account/GDP ratio, the growth of the house price

index, and the stock price index return.

Table 1 provides more information on the variables used. The first column identifies the cate-

gory headings and the second column provides the variable name. The third column briefly sum-

marizes the economic rationale for the variable.

4 Predictive Ability

4.1 In-Sample Predictive Ability

Even though the semiparametric single-index model is frequently used in economics and finance,

it has not been used in the literature on early warning models. In this section, we evaluate its

performance as an early warning model, and we compare its predictive performance with that of

the commonly used logit model.
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Figures 4 to 6 show the predicted probabilities of financial stress events for the five coun-

tries from 1981Q2 to 2010Q2. In particular, the probabilities from 1981Q2 to 2007Q2 are the

in-sample forecasts, and the probabilities from 2007Q3 to 2010Q2 are the out-of-sample forecasts.

For a given predicted probability, the decision maker must decide whether the predicted probability

is large enough to issue a warning. Taking no action is costly when a financial stress is nearing,

but so is taking action when a financial event is not impending. Since the predicted probability is

a continuous variable, one needs to specify a cut-off or threshold probability above which the pre-

dicted probability can be interpreted as a signal of pending high financial stress. It should be noted

that the lower the threshold probability chosen, the more signals the model will send, with the

drawback that the number of wrong signals will increase. By contrast, raising the threshold proba-

bility reduces the number of wrong signals, but at the expense of increasing the number of missed

financial stress events; i.e., the absence of a signal when a high financial stress actually occurs

within the next four quarters.4 In practice, decision makers must choose a probability threshold

that minimizes a loss function. For this purpose, we first define the following matrix.

Financial stress event No financial stress event
Signal issued A B

No signal issued C D

In this matrix, for a given cut-off threshold probability, A is the number of quarters in which the

model issued a correct signal, B the number of quarters in which the model issued a wrong signal,

C the number of quarters in which the model failed to issue a signal, and D the number of quarters

in which the model correctly did not issue a signal. If an early warning model issues a signal in the

quarter that is to be followed by a financial stress event (within the next four quarters), then A > 0

4The higher the probability threshold set for calling a financial stress event, the higher the probability of type I
errors (failure to call a crisis) and the lower the probability of type II errors (false alarm).

9



and C = 0, and if it does not issue a signal in the quarter that is not followed by a financial stress

event (within the next four quarters), then B = 0 and D > 0. A perfect model would only produce

values of A and D, and B = 0 and C = 0.

In this paper, the cut-off threshold probability is calculated by minimizing the noise-to-signal

ratio, which is defined as [B/(B+D)]/[A/(A+C)].5 To obtain the “optimal” threshold probability,

a grid search is performed over the range of potential threshold probabilities from 0.15 to 0.50.

The probability value where the noise-to-signal ratio is at a minimum is chosen as the cut-off

probability.

Following Davis and Karim (2008) and Bussiere and Fratzscher (2006), the probability forecast

evaluation is based on five different criteria: the signal-to-noise ratio, the probability of financial

stress events correctly called, the probability of false alarms in total alarms, the conditional prob-

ability of financial stress events given an alarm, and the conditional probability of financial stress

events given no alarm. The probability of financial stress events correctly called is defined as the

percentage of the number of quarters in which a signal is followed by at least a financial stress

event within the next four quarters(A/(A+C)). The probability of false alarms in total alarms is

defined as the percentage of the number of quarters in which a signal is not followed by at least

a financial stress event within the next four quarters (B/(A+B)). The conditional probability of

a financial stress event given an alarm is defined as the percentage of the number of quarters in

which a signal is followed by at least one financial stress event within the next four quarters given

an alarm (A/(A+B)). The conditional probability of financial stress given no alarm is defined as

5Let the null hypothesis be the occurrence of a financial stress event within the next four quarters and the alternative
hypothesis be the lack of occurrence of a financial stress event within the next four quarters. Then the noise-to-signal
ratio is defined to be the minimum of the ratio of type II errors to one minus the size of type I errors, which is denoted
as [B/(B+D)]/[1−C/(A+C)]. The size of a type I error is defined as the probability of rejecting the null hypothesis
given that the null hypothesis is true. The type I error is then defined as C/(A+C). Similarly, the size of a type II
error is the probability of not rejecting the null hypothesis when it is false. This is called a false signal and is equal to
B/(B+D).
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the percentage of the number of quarters in which a signal does not issue but at least one financial

stress event occurs within the next four quarters (C/(C+D)).

We divide our data into two subsamples. The first, from 1981Q2 to 2007Q2 (with a total of 530

observations), is a sample used to estimate model parameters; the second, from 2007Q3 to 2010Q2

(with a total of 55 observations), is a prediction sample used to evaluate out-of-sample forecasts.

We first consider the in-sample performance of our semiparametric model. For comparison, we

also consider the multivariate logit model, which relates the likelihood of the occurrence or non-

occurrence of a financial stress event to the ten explanatory variables by the logistic functional

form.6

Table 2 provides the semiparametric estimation of index coefficients, indicating that the ten

variables in our semiparametric model have the expected sign,7 most of them being significant at

the 5 per cent significance level. Table 3 reports the values of test statistics obtained by testing the

null hypothesis whether the link functions are the same across any two different countries. The

testing results cannot reject the null hypothesis. Consequently, we use the panel data across the

five countries to estimate our semiparametric early warning model.

Table 4 reports these goodness-of-fit criteria for the semiparametric models and multivariate

logit models for the five countries: Canada, the United States, the United Kingdom, France and

Germany. Several conclusions can be drawn from Table 4. The signal-to-noise ratios for all five

countries are higher than 1, suggesting that these models are informative. For Canada and the

6The probability that the forward-looking variable Yt,i takes a value of one (a financial stress event occurs) at a
point in time is given by the value of the logistic cumulative distribution evaluated for the data and parameters at that
point in time. Thus, Prob(Yt,i = 1) = F(θXt,i) =

eXt,iθ

1+eXt,iθ
, where F(Xt,iθ) is the cumulative logistic distribution. The

parameters are obtained by maximum likelihood estimation, where each possible value of Yt,i contributes to the joint
likelihood function so that the log likelihood becomes logL = ∑

n
i=1 ∑

T
t=1[Yt,ilogF(Xt,iθ)+(1−Yt,i)log(1−Xt,iθ)]. The

same explanatory variables are used in the logit model and the semiparametric model.
7The sign on the house price index return is negative, indicating that declining house prices are associated with

subsequent financial stress. This is consistent with historical experience, where real estate prices tend to drop in
advance of financial crises.
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United Kingdom, the semiparametric model not only has higher signal-to-noise ratios than the

logit model, but has higher probabilities of financial stress events correctly called, higher condi-

tional probabilities of financial stress events given an alarm, lower probabilities of false alarms in

total alarms, and lower conditional probabilities of financial stress events given no alarm, indicat-

ing that the predicted probabilities from the semiparametric model can provide a more accurate

early warning for an upcoming financial stress event than the multivariate logit models for these

countries. For the United States, even if the semiparametric model has a higher signal-to-noise ratio

than the logit model, it has worse performance than the logit model in terms of its higher proba-

bility of false alarms and higher probability of financial stress events given no alarm. A noticeable

feature is that the probabilities obtained from the logit model are quite low for France immediately

after the exchange rate mechanism (ERM) crisis. Since France did not experience a financial stress

event after the less-developed-countries (LDC) crisis, the low predicted probabilities indicate that

in-sample prediction of non-financial stress events performs well.

In summary, the in-sample analysis reveals that the semiparametric single-index model for

Canada and the United Kingdom has better in-sample performance for early warning financial

stress events than the logit model, while the logit models for France and Germany outperform

the semiparametric model. A formal specification test for whether the data are poolable by logit

distribution is not available; we cannot exclude the possibility that the logit model can be used to

pool the data.

4.2 Out-of-Sample Predictive Ability

In-sample predictive ability is important and can reveal useful information about possible sources

of model misspecification. However, in general, there is no guarantee that a model that fits his-

torical data well will also perform well out-of-sample. Obviously, the value of the early warning
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model of financial stress events lies in its ability to forewarn policy-makers of impending trouble:

its out-of-sample predictive ability.

Table 5 reports the out-of-sample performance of predicted probabilities for both the semipara-

metric model and the logit model from 2007Q3 to 2010Q2. For Canada, the United States, the

United Kingdom and Germany, the semiparametric model has much better out-of-sample perfor-

mance than the logit model across all five criteria, although the semiparametric model for France

has worse out-of-sample performance than the semiparametric model. For Canada, moving from

the logit model to the semiparametric model increases the probability of correctly predicted fi-

nancial stress events from 0.13 to 1 and increases the conditional probability of experiencing a

financial stress event given an alarm from 0.5 to 0.73.

Notably, the signal-to-noise ratios from the logit model for Canada, the United States and the

United Kingdom are less than one, indicating that the logit models for these three countries are

not informative. For France and Germany, the signal-to-noise ratios are not available, because

the number of quarters in which the logit models issued a good signal (A) and a bad signal (B)

is zero. As Figure 5 shows, for France the predicted probabilities from the logit model were

considerably lower such that they do not issue any signals. Given that France did not experience

financial stress events throughout the out-of-sample period (Figure 2), this suggests that the out-

of-sample prediction of non-financial stress episodes is good. On the other hand, as Figure 3

indicates, Germany experienced financial stress events, but the logit model did not predict them.

The results suggest that the semiparametric models have better out-of-sample performance than

the logit model for Canada, Germany, the United Kingdom and the United States.
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5 Conclusion

This paper proposes a semiparametric early warning model of financial stress events for five de-

veloped countries: Canada, France, Germany, the United Kingdom and the United States. To

determine whether the data for the five countries are poolable by the semiparametric model, we

propose a new consistent test for poolability in a framework of semiparametric binary choice mod-

els. Monte Carlo simulations show that the test has good finite-sample performance. The test

suggests that we cannot reject the null hypothesis that the data for the five countries are poolable

by the semiparametric model.

The semiparametric early warning model performs well in capturing well-known financial

stress events. In particular, for Canada, Germany, the United Kingdom and the United States,

the semiparametric model provides much better out-of-sample results than the logit model. But

for France, the logit model provides better performance for non-financial stress events than the

semiparametric model.

It should be emphasized that the semiparametric early warning model proposed in this paper

certainly does not constitute the final step toward a comprehensive early warning model of financial

stress events. We would like to add explanatory variables to the model, such as the volatility of

the stock market index, the volatility of interest rates and the variables that capture contagion. We

continue to explore these and other improvements to the early warning system.
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Appendix
The appendix consists of sections A and B. In section A, we provide the test statistic, the

assumptions under which the asymptotic results of the test statistic can be derived and the proofs

of the asymptotic results. The Monte Carlo simulations of the test statistic are reported in section

B.

Section A: Testing for Poolability in a Framework of Semipara-
metric Binary Response Models

A panel data framework is mainly motivated by an efficiency argument, since pooling coun-

tries increases the number of useful observations, which is supposed to improve accuracy when

estimating the underlying discrete choice models. However, in a framework of semiparametric

binary response models, a major concern for panel data is whether the data are poolable; i.e.,

gi(xθ0) = g j(xθ0) almost surely for 1 ≤ i, j ≤ J on the joint support of gi(·) and g j(·). More pre-

cisely, we have the following null and alternative hypotheses:

H0 : gi(xθ0) = g j(xθ0) for all i and j almost surely on the joint support of gi(·) and g j(·). (A.1)

The alternative hypothesis is

H1 : gi(xθ) 6= g j(xθ) for some i 6= j for any θ ∈Θ with positive measure. (A.2)

Let f j(·) be the density function of Xt jθ j. For any x ∈ Rm and θ ∈ Θ, we define f (xθ) ≡

1
J ∑

J
j=1 f j(xθ), and g(xθ) ≡ 1

J ∑
J
j=1 g j(xθ)

f j(xθ)
f (xθ) . Then, the equivalent null hypothesis is that there

exists some θ0 ∈Θ such that

H0 : g j(xθ0) = g(xθ0) for all j almost surely, (A.3)

and the equivalent alternative hypothesis is

H1 : g j(xθ) 6= g(xθ) for some j and for any θ ∈Θ almost surely. (A.4)
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We define

θ
∗
n ≡ argminθ∈Θ

1
n

J

∑
j=1

n

∑
t=1

[Yt jln[ĝ(Xt jθ)]
2 +(1−Yt j)ln[(1− ĝ(Xt jθ))

2]], (A.5)

and θ∗ = limitn→∞θ∗n.

Let Ut j ≡ Yt j−g(Xt jθ
∗), f (xθ∗)≡ 1

J ∑
J
j=1 f j(xθ∗), and εt j ≡Ut j f (Xt jθ

∗).

We construct our test statistic based on the following distance measure between the probability

functions g j(Xt jθ j) and g(Xt jθ
∗) :

I j ≡ E[εt jE[εt j|Xt jθ
∗] f j(Xt jθ

∗)]. (A.6)

Define I ≡ 1
J ∑

J
j=1 I j. First note that, under H0, we have E[Yt j|Xt jθ

∗] = g j(Xt jθ0) = g(Xt jθ0) for

all j, that is I = 0. If I = 0, then we have that E[[(E[Yt j|Xt jθ
∗]−g(Xt jθ

∗)) f (Xt jθ
∗)]2 f j(Xt jθ

∗)] = 0

for any j, which indicates that E[Yt j|Xt jθ
∗] =E[Yt j|Xt jθ0] = g j(Xt jθ0) and g j(xθ0) = g(xθ0) almost

surely. Therefore, we have I = 1
J ∑

J
j=1 E[[(E[Yt j|Xt jθ

∗]−g(Xt jθ
∗)) f (Xt jθ

∗)]2 f j(Xt jθ
∗)]≥ 0 and the

equality holds if and only if H0 is true.

Define the pooled kernel estimator of g(Xt jθ
∗) by

ĝ(Xt jθ
∗) = (Jnh)−1

J

∑
i=1

n

∑
s=1

Ksi,s jYsi/ f̂ (Xt jθ
∗
n), (A.7)

where f̂ (Xt jθ
∗
n) ≡ (Jnh)−1

∑
J
i=1 ∑

n
s=1 Ksi,t j is the pooled kernel estimator of the density function

of f (xθ∗), Kti,s j = K[(
Xti−Xs j

h )θ∗n] is the kernel function used for the pooled estimator, and h is the

smoothing parameter associated with the kernel K(·).

We estimate εt j by ε̂t j ≡ Yt j − ĝ(Xt jθ
∗
n), and E[ε̂t j|Xt jθ

∗] f j(Xt jθ
∗) by ( 1

(n−1)h)∑s6=t ε̂s jKs j,t j.

Hence, the estimator of I is

In =
1
J

J

∑
j=1

n

∑
t=1

1
n(n−1)h ∑

s 6=t
(Ys j− ĝ(Xs jθ

∗
n)) f̂ (Xs jθ

∗
n)(Yt j− ĝ(Xt jθ

∗
n)) f̂ (Xt jθ

∗
n)Kt j,s j. (A.8)
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Our test statistic is defined as

Jn ≡ nh1/2In/vn, (A.9)

where

vn =

√√√√ 1
J2n(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

ε̂2
t jε̂

2
s jK

2
s j,t j. (A.10)

We define

I j
n =

n

∑
t=1

1
n(n−1)h ∑

s 6=t
(Ys j− ĝ(Xs jθ

∗
n
∗)) f̂ (Xs jθ

∗
n)(Yt j− ĝ(Xt jθ

∗
n)) f̂ (Xt jθ

∗
n)Kt j,s j, (A.11)

and

J j
n ≡ nh1/2I j

n/v j
n, (A.12)

where

v j
n =

√
1

n(n−1)h

n

∑
t=1

∑
s 6=t

ε̂2
t jε̂

2
s jK

2
s j,t j. (A.13)

We specify the following assumptions, under which the asymptotic validity of this test statistic,

Jn, can be established.

Assumption A1.

(i) The data consist of a random sample (Yt j,Xt j), j = 1, ...,n. The random variable Yt j is bino-

mial with realizations 1 and 0.

(ii) The model satisfies an index restriction: E[Yt j|Xt j] =E[Yt j|Xt jθ j] =Pr[Yt j = 1|Xt jθ j], where

the parameter vector θ j (6= 0) lies in a compact parameter space Θ.

(iii) For each j, the model is identified in this sense that if P[Yt j = 1|Xt jθ
1
j ] = P[Yt j = 1|Xt jθ

2
j ],

then we have θ1
j = θ2

j , where θi
j ∈Θ, for i=1, 2.

21



Assumption A2.

(i) εt j,Xt j is a strictly stationary and absolutely regular process with the mixing coefficient

θm = O(ρm) for some 0 < ρ < 1. With probability one, E[εt j|At
−∞(Xt j),At−1

−∞ (Yt j)] = 0. E[|ε4+η

t j |]<

∞ and E[|εi1
t1 jε

i2
t2 j, ..., |, ...,ε

il
tl j|1+ζ]< ∞ for some arbitrarily small η > 0 and ζ > 0, where 2≤ l ≤ 4

is an integer, 0≤ i j ≤ 4 and ∑
l
j=1 i j ≤ 8.

(ii) Let σ2
j(x) = E[ε2

t j|Xt j = x],µ j(x) = E[ε4
t j|Xt j = x]. σ2

j(x) and µ j(x) satisfy some Lipschitz

conditions: |σ2
j(u+v)−σ2

j(u)| ≤D(u)||v|| and |µ j(u+v)−µ j(u)| ≤D(u)||v||with E[|D(Xt j)|2+η′ ]<

∞ for some small η′ > 0.

(iii) Let fτ1,...,τl be the joint probability density function of (X1, jθ
∗,X1+τ1, jθ

∗, ...,X1+τl , jθ
∗)(1≤

l≤ 3). Then fτ1,...,τl exists and satisfies a Lipschitz condition : | fτ1,...,τl(x1θ∗+u1,x2θ∗+u2, ...,xlθ
∗+

ul)− fτ1,...,τl(x1θ∗,x2θ∗, ...,xlθ
∗)| ≤ Dτ1,...,τl(x1,x2, ...,xl)||u||, where Dτ1,...,τl(x1,x2, ...,xl) is inte-

grable and satisfies the condition that
∫

Dτ1,...,τl(x,x, ...,x)||x||2ξdx < M < ∞, and∫
Dτ1,...,τl fτ1,...,τl(x1θ∗, ...,xlθ

∗)dx < M < ∞ for some ξ > 1.

(iv) The kernel function K(·) is symmetric and bounded with
∫

K(u)du = 1, and
∫

u2K(u)du <

∞. |Dr
xK(x)|< c and

∫
|Dr

xK(x)|dx|< c, where r = 0,1,2,3,4.

(v) The smoothing parameter hn = O(n−ᾱ) for some 1/8 < ᾱ < 1/6. The trimming function

used to downweight observations has the form τ≡ {1+exp[(hδ/5
n − t ′)/hδ/4

n ]}−1, where δ > 0 and

t ′ is to be interpreted as a density estimate.

We now briefly comment on the above assumptions. (i)-(ii) in Assumption A1 state the model

by which the data are generated. In particular, (ii) in Assumption A1 allows us to aggregate

a multidimensional Xt j into a single-index case. (iii) in Assumption A1 can be interpreted as

the parameter restrictions that are necessary for identification. Klein and Spady (1993, Theorem

1 and Theorem 2) provide sufficient conditions for identification for a general case where the
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index function is specified as a nonlinear function. (i) in Assumption A2 requires that Xt j be

a stationary absolutely regular process with a geometric decay rate, and imposes some moment

conditions on {εt j}. (ii) in Assumption A2 contains some smoothness conditions on the second

and fourth conditional moment functions of εt j. (iii) in Assumption A2 contains some Lipschitz-

type conditions and moment conditions. (iv) in Assumption A2 is a standard assumption on the

kernel function. (v) in Assumption A2 implies that log(n)hη1 → 0 and n7/8h/(logn)η2 → ∞ for

arbitrary positive constants η1 and η2. It allows the choice of a wide range of smoothing parameter

values and is stronger than the usual conditions of h→ 0 and nh→ ∞.

The following result describes the asymptotic properties of the test statistic.

Theorem 1. Under the Assumptions (A1) and (A2), we have

(i) under H0, for any j ∈ {1,2, ...,J}, J j
n → N(0,1) in distribution as n→ ∞, and v j

n is a con-

sistent estimator of v j, where v j =
√

2
∫

K2(u)du{
∫

f 2
j (x)σ

4
j(x)dx}, and σ2

j(x) = E[U2
t j f 2(Xt jθ0)|

Xt jθ0 = x]. Under H1,Pr[J j
n ≥ Bn]→ 1 as n→ ∞, for any nonstochastic sequence Bn = o(nh1/2

n ).

(ii) if (Xt j,Yt j) are independently and identically distributed in the i subscript, then under

H0, Jn → N(0,1) in distribution as n → ∞, and vn is a consistent estimator of v, where v =√
2
∫

K2(u)du{1
J ∑

J
j=1

∫
f 2

j (x)σ
4
j(x)dx}, and σ2

j(x) = E[U2
t j f 2(Xt jθ)|Xt jθ = x]. Under H1,Pr[Jn ≥

Bn]→ 1 as n→ ∞, for any nonstochastic sequence Bn = o(nh1/2
n ).

Proof of Theorem 1:

Throughout the appendix, we will use the short-hand notation Kt j,s j = K[
(Xt j−Xs j)θ

∗

h ], K̂t j,s j =

K[
(Xt j−Xs j)θ

∗
n

h ], and K(s)
t j,s j = K(s)[

(Xt j−Xs j)θ
∗

h ], for s = 1,2.

Jn =
1
J

J

∑
j=1

n

∑
t=1

1
n(n−1)h ∑

s 6=t
{(g j(Xs jθ

∗)− ĝ(Xs jθ
∗
n)) f̂ (Xs jθ

∗
n)(g j(Xt jθ

∗)− ĝ(Xt jθ
∗
n)) f̂c(Xt jθ

∗
n)

+Ut jUs j f̂c(Xs jθ
∗
n) f̂c(Xt jθ

∗
n)+2Ut j f̂c(Xt jθ

∗
n)(g j(Xs jθ

∗)− ĝ(Xs jθ
∗
n)) f̂c(Xs jθ

∗
n)}K̂t j,s j

≡ Jn1 + Jn2 +2Jn3. (A.14)
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We shall complete the proof of the part (i) in Theorem 1 by showing that Jni = op(nh1/2) for

i = 1,3 and nh1/2Jn2 converges to normal in distribution.

E|Jn1| = E| 1
Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

(g j(Xs jθ)− ĝ(Xs jθ
∗
n)) f̂ (Xs jθ

∗
n)

×(g j(Xt jθ)− ĝ(Xt jθ
∗
n)) f̂c(Xt jθ

∗
n)K̂t j,s j|

≤ 1
2Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

E{[(g j(Xs jθ)− ĝ(Xs jθ
∗
n))

2 f̂ 2(Xs jθ
∗
n)

+(g j(Xt jθ)− ĝ(Xt jθ
∗
n))

2 f̂ 2(Xt jθ
∗
n)]K̂t j,s j}

=
1

Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

E[(g j(Xs jθ)− ĝ(Xs jθ
∗
n))

2 f̂ (Xs jθ
∗
n)K̂t j,s j]

=
1
Jn

J

∑
j=1

n

∑
t=1

E[(g j(Xt jθ)− ĝ(Xt jθ
∗
n))

2 f̂ 2(Xt jθ
∗
n) f̂ j(Xt jθ

∗
n)]

=
1
Jn

J

∑
j=1

n

∑
t=1

E[(g j(Xt jθ)− ĝ(Xt jθ
∗
n))

2 f̂ 2(Xt jθ
∗
n) f j(Xt jθ0)]

+
1
Jn

J

∑
j=1

n

∑
t=1

E[(g j(Xt jθ)− ĝ(Xt jθ
∗
n))

2 f̂ 2(Xt jθ0)( f̂ j(Xt jθ
∗
n)− f j(Xt jθ0))]

≡ Jn11 + Jn12 = op((nh1/2)−1), (A.15)

where Jn11 = op((nh1/2)−1) and Jn12 = op((nh1/2)−1) are derived by similar argument as in lem-

mas C.3(i) and C.4 (i) in Li (1999), respectively. Now we consider Jn2 :

Jn2 =
1

Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

Ut jUs j f (Xs jθ
∗
n) f (Xt jθ

∗
n)K̂t j,s j

+
2

Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

Ut jUs j( f̂ (Xt jθ
∗
n)− f (Xt jθ

∗
n)) f (Xs jθ

∗
n)K̂t j,s j

+
1

Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

Ut jUs j( f̂ (Xt jθ
∗
n)− f (Xt jθ

∗
n))(( f̂ (Xs jθ

∗
n)− f (Xs jθ

∗
n))K̂t j,s j

≡ Jn21 + Jn22 + Jn23. (A.16)
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For Jn21, we have

Jn21 =
1

Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

Ut jUs j f (Xs jθ) fc(Xt jθ)K̂t j,s j

+
2

Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

Ut jUs j[ f (Xs jθ
∗
n)− f (Xs jθ)] f (Xt jθ)K̂t j,s j

+
1

Jn(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t

Ut jUs j[ f (Xs jθ
∗
n)− f (Xs jθ)][ f (Xt jθ

∗
n)− f (Xt jθ)]K̂t j,s j

≡ J1
n21 + J2

n21 + J3
n21. (A.17)

We are going to prove that J1
n21 converges to a normal distribution in distribution and Ji

n21 =

op((nh1/2)−1) for i = 2 and 3. Let J1
n21, j =

2
n(n−1)h ∑1≤s<t≤nUt jUs j f (Xs jθ) fc(Xt jθ)K̂t j,s j, then

J1
n21 =

1
J ∑

J
j=1 J1

n21, j. Applying a Taylor series expansion to K̂t j,s j, we have K̂t j,s j =Kt j,s j+K(1)
t j,s j(Xt j−

Xs j)(θ
∗
n−θ0)+

1
2K̄(2)

t j,s j[(Xt j−Xs j)(θ
∗
n−θ0)]

2. Therefore, for 1≤ j ≤ J we have

J1
n21, j =

2
n(n−1)h ∑

1≤s<t≤n
Ut jUs j f (Xs jθ) f (Xt jθ)Kt j,s j

+
1

n(n−1)h ∑
1≤s<t≤n

Ut jUs j f (Xs jθ) f (Xt jθ)K
(1)
t j,s j[(Xt j−Xs j)/h](θ∗n−θ0)

+
1

2n(n−1)h ∑
1≤s<t≤n

Ut jUs j f (Xs jθ) f (Xt jθ)K
(2)
t j,s j[(Xt j−Xs j)/h]2[θ∗n−θ0]

2

≡ J1
n21, j(1)+ J1

n21, j(2)(θ
∗
n−θ0)+ J1

n21, j(3)(θ
∗
n−θ0)

2. (A.18)

Now we consider J1
n21, j(2).

Let (a) denote the case of min{|s− s′|, |s− t|, |s− t ′|}> m and (b) the case of

min{|s− s′|, |s− t|, |s− t ′|} ≤ m. We have
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E(||J1
n21, j(2)||2) = n−2(n−1)−2h−2

∑
t

∑
s 6=t

∑
t ′

∑
s′ 6=t ′

E[εt jεs jεt ′ jεs′ j

×K(1)
t j,s j[(Xt j−Xs j)/h]K(1)

t ′ j,s′ j[(Xt ′ j−Xs′ j)/h]]

= n−2(n−1)−2h−2{∑
(a)

+∑
(b)
}

×E[εt jεs jεt ′ jεs′ jK
(1)
t j,s j[(Xt j−Xs j)/h]K(1)

t ′ j,s′ j[(Xt ′ j−Xs′ j)/h]]

≤ n−2(n−1)−2h−2{cn4
θ

δ/(1+δ)
m +mn3}

×maxt 6=s,t ′ 6=s′E[εt jεs jεt ′ jεs′ jK
(1)
t j,s j[(Xt j−Xs j)/h]K(1)

t ′ j,s′ j[(Xt ′ j−Xs′ j)/h]]

= (n2h)−2(o(1)+mn3O(h2/η)) (A.19)

for 1 < η < 2,m = [Clog(n)] and

maxt 6=s,t ′ 6=s′E[εt jεs jεt ′ jεs′ jK
(1)
t j,s j[(Xt j−Xs j)/h]K(1)

t ′ j,s′ j[(Xt ′ j−Xs′ j)/h]]

≤ cmaxt 6=s,t ′ 6=s′{[E|εt jεs jεt ′ jεs′ j|ξ]1/ξE[|K(1)
t j,s j[||(Xt j−Xs j)/h||]K(1)

t ′ j,s′ j[||(Xt ′ j−Xs′ j)/h||]η]1/η}

= O(h2/η) (A.20)

where η=(1−ξ−1)−1, ξ> 2,1<η< 2. Hence E(||J1
n21(2)||2)= o((n2h)−2)+O(m(nh2(η−1)/η)−1),

which indicates that J1
n21, j(2)(θ

∗
n−θ0) = op((nh1/2)−1).

It remains to evaluate the order of J1
n21, j(3). We have

E||J1
n21, j(3)|| ≤ n2(n−1)−1n2maxs 6=tE|εt jεs jHt j,s j||(Xt j−Xs j)/h||2|

≤ maxs 6=t{[E|εt jεs j|ξ]1/ξ[E[Ht j,s j||(Xt j−Xs j)/h||2]η]1/η}

= O(h−(η−1)/η)

for some 1< η < 2. Hence J1
n21, j(3)(θ

∗
n−θ0)

2 =O(n−1h−(η−1)/η) = op((nh1/2)−1). Summarizing

the above, we have shown that J1
n21, j = Jn21, j(1)1 +op((nh1/2)−1). Therefore, J1

n21, j has the same

distribution as J1
n21, j(1).
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Let Zt = (Xt jθ,Ut j) and Hn(Zs,Zt) =Ut jUs j fc(Xs jθ) fc(Xt jθ)Kt j,s j; then, Hn(Zs,Zt) is symmet-

ric and E[Hn(Zs,Zt)|Zs = z] = 0. Thus, the central limit theorem of Fan and Li (1999) for a degen-

erate U−statistic will be used to derive the asymptotic normality distribution of J1
n21, j. It is easy

to check that the Assumptions A1 and A2 in this paper imply (D1)-(D2) in Li (1999). Hence, by

lemma 2.1 in Li (1999), we have nh1/2J1
n21, j(1)→N(0,σ2

j0), where σ2
j0 = 2

∫
K2(u)du

∫
f 2

j (x)σ
4
j(x)dx

and σ2
j(x) = E[U2

t j f 2
c (Xt jθ)|Xt jθ = x].

Using fc(Xs jθ
∗
n)− fc(Xs jθ) = ∇ fc(Xs jθ0)(θ

∗
n−θ0)+1/2(θ∗n−θ0)

′∇2 fc(Xs jθ̄)(θ
∗
n−θ0), where

θ̄ is between θ∗n and θ0, we get

J2
n21 =

2
n(n−1)h

J

∑
j=1

n

∑
t=1

∑
s 6=t
{(θ∗n−θ0)

′Ut jUs jO fc(Xs jθ0) fc(Xt jθ)K̂t j,s j

+(θ∗n−θ0)
′Ut jUs jO

2 fc(Xs jθ̄0)) fc(Xt jθ)/2(θ∗n−θ0)K̂t j,s j}

≡ (θ∗n−θ0)
′

J

∑
j=1

An j +(θ∗n−θ0)
′

J

∑
j=1

Bn j(θ
∗
n−θ0). (A.21)

For any j,1≤ j ≤ J, we have

An j =
1

n(n−1)h

n

∑
t=1

∑
s6=t

Ut jUs j∇ fc(Xs jθ0) fc(Xt jθ0)K̂t j,s j

=
1

n(n j−1)h

n j

∑
t=1

∑
s 6=t

Ut jUs j∇ fc(Xs jθ0) fc(Xt jθ0)Kt j,s j

+
1

n(n−1)h

n

∑
t=1

∑
s6=t

Ut jUs j∇ fc(Xs jθ0) fc(Xt jθ0)K
(1)
t j,s j[

(Xt j−Xs j)
′

h
](θ∗n−θ0)

+
1

2n(n−1)h

n

∑
t=1

∑
s 6=t

Ut jUs j∇ fc(Xs jθ0) fc(Xt jθ0)K
(2)
t j,s j[

(Xt j−Xs j)

h
]2(θ∗n−θ0)

2

≡ An j1 +An j2(θ
∗
n−θ0)+An j3(θ

∗
n−θ0)

′(θ∗n−θ0). (A.22)
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Let Wt ≡ ∇ fc(Xt jθ0). We have

E(||An j1||2) = n−2(n−1)−2h−2
n

∑
t=1

∑
s 6=t

n j

∑
t ′=1

∑
s′ 6=t ′

E[W ′t Us jUs′ jWt ′Kt j,s jKt ′ j,s′ j]

= n−2(n−1)−2h−2{∑
a
+∑

b
}maxt 6=t ′,s 6=s′E[W

′
t Us jUs′ jWt ′Kt j,s jKt ′ j,s′ j]

≤ cn−2(n−1)−2h−2{cn4
θ

δ/(δ+1)
m +mn3}maxt 6=t ′,s 6=s′{[E(|Us jUs′ j|ξ)]1/ξ

×[E(M(Xt)M(Xt ′)Kt j,s jKt ′ j,s′ j)
η]1/η}

= n−2(n−1)−2h−2{o(1)+n3O(h2/η)} (A.23)

for some η=(1−ξ−1)1/ξ (ξ> 2,1<η< 2). Hence, An j1 = op((n2hp)−1)+Op(m1/2(n−1/2h−(η−1)/η)),

which implies that (θ∗n − θ0)
′An j1 = op((nh1/2)−1) because of 1 < η < 2,m = [Clog(n)] and

h = O(n−α). For An j2, we have

E||An j2|| ≤ cn−1(n j−1)−1h−1n2maxs 6=tE||M(Xt j)M(Xs j)Ut jUs jK′t j,s j(
Xt j−Xs j

h
)||

≤ cn−1(n j−1)−1h−1n2maxs 6=t{[E|Ut jUs j|ξ]1/ξ

×[E||(M(Xt j)M(Xs j)K′t j,s j(
Xt j−Xs j

h
)||η)]1/η}

= O(h−1+1/η), (A.24)

where 1 < η < 1/2, which leads to (θ∗n−θ0)
′An j2(θ

∗
n−θ0) = Op(n−1h−1+1/η) = op((nh1/2)−1).

E|An j3| ≤ cn−1(n j−1)−1h−1
n j

∑
t=1

∑
s6=t

E|Ut jUs j∇ fc(Xs jθ0) fc(Xt jθ0)[
(Xt j−Xs j)

′(Xt j−Xs j)

h2 ]|.

We consider J3
n21.

J1
n23 =

1
n(n j−1)h

J

∑
j=1

n j

∑
t=1

∑
s6=t

Ut jUs jK̂t j,s j∇ fc(Xt jθ0)∇ f
′
c(Xs jθ0)(θ

∗
n−θ0)

′(θ∗n−θ0)

+2
1

n(n j−1)h

J

∑
j=1

n j

∑
t=1

∑
s 6=t

Ut jUs jK̂t j,s j∇ fc(Xt jθ0)(θ
∗
n−θ0)(θ

∗
n−θ0)

′
∇

2 fc(Xs jθ0)(θ
∗
n−θ0)

+
1

4n(n j−1)h
(θ∗n−θ0)

′
J

∑
j=1

n j

∑
t=1

∑
s 6=t

Ut jUs jK̂t j,s j∇
2 fc(Xt jθ̃)(θ

∗
n−θ0)(θ

∗
n−θ0)

′
∇

2 fc(Xs jθ̃)(θ
∗
n−θ0)

≡ J1
n23(1)+ J1

n23(2)+ J1
n23(3). (A.25)
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Using the same way in which we prove J1
n21, j(3)(θ

∗
n−θ0)

2 = op((nh1/2)−1), we can prove J1
n23(i)=

op((nh1/2)−1) for i = 1,2,3.

Now we consider Jn3. Under the null hypothesis, we have g j(Xs jθ) = g j(Xs jθ). We have

|g j(Xs jθ)− ĝ(Xs jθ
∗
n)| ≤ |g(Xs jθ)−g(Xs jθ

∗
n)|+ |g(Xs jθ

∗
n)− ĝ(Xs jθ

∗
n)| (A.26)

By Theorem 3.3 in Härdle and Stoker (1989), we have |g(Xs jθ
∗
n)− ĝ(Xs jθ

∗
n)|= Op(n−2/5), and

|g(Xs jθ)−g(Xs jθ
∗
n)|= |g′(Xs jθ̄)Xs j(θ

∗
n−θ)|= Op(n−1/2). Hence, we have g(Xs jθ

∗
n)− ĝ(Xs jθ

∗
n) =

Op(n−2/5), which implies that Jn3 = Op(n−2/5Jn2) = op((nh1/2)−1).

Section B: Monte Carlo Simulations of the Test Statistic
We examine the finite-sample performance of the test using Monte Carlo simulations. We

use the following data-generating processes for Xt j = (X1
t, j,X

2
t, j), where j = 1 and j = 2 represent

country 1 and country 2, respectively.

X1
t,1 = 1+0.2X1

t−1,1 + εt,1, (B.1)

X2
t,1 = 1+0.5X1

t−1,2 + εt,2 (B.2)

and

X1
t,2 = 1+0.2X1

t−1,2 +ηt,1, (B.3)

X2
t,2 = 1+0.5X2

t−1,2 +ηt,2 (B.4)

where εt,1 and εt,2 are independently and identically distributed as N(0,1), and ηt,1 and ηt,2 are

independently and identically distributed as t(3). Let Xt,1 = (X1
t,1X2

t,1) and Xt,2 = (X1
t,2X2

t,2). We

generate the discrete observations Yt,1 and Yt,2 as follows:

Yt,1 =

{
1 if ζt,1 < β′Xt1
0 if ζt,1 ≥ β′Xt1

(B.5)

29



and

Yt,2 =

{
1 if ζt,2 < β′Xt2
0 if ζt,2 ≥ β′Xt2

(B.6)

To examine the test’s size performance, we simulate the Yt,1 and Yt,2 by specifying ζt,1 and

ζt,2 following the standard normal distribution and logistic distribution, respectively. To study the

test’s power performance, we generate ζt,1 from the logistic distribution. We then select three other

distributions from the generalized lambda family proposed in Ramberg and Schmeiser (1974). The

distribution in this family is defined in terms of the inverse of the cumulative distribution functions:

F−1(u) = λ1 +[uλ3− (1−u)λ4]/λ2 for 0 < u < 1. In this simulation, each experiment is based on

1,000 replications. The critical values for the test are from the standard normal distribution; i.e.,

z0.01 = 2.33,z0.05 = 1.645 and z0.1 = 1.28.

Table 6 reports the estimated sizes and powers of our test. The results suggest that as n in-

creases, the estimated sizes converge to their nominal sizes although at a fairly slow rate. For a

given alternative distribution, our test detects the misspecification of the link functions quite well

in the logistic distribution. For a given alternative, the test’s power always increases rapidly with

respect to the sample size, in line with the test’s consistency property. It should be noted that the

power of our test is quite stable over different choices of c, which is particularly true for large

samples.
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Table 1: Interpretation of Variables

Category Variable Comments
Macroeconomic
indicator

Real GDP growth Economic recession often precedes crises

Nominal depreciation Financial crises could be driven by excessive foreign exchange
risk exposure

Real short-term interest High short-term real interest rates affect bank balance sheets
rate adversely and are often associated with capital outflows

Inflation Inflation is likely to be associated with high nominal interest
rates; it may proxy macroeconomic mismanagement and adversely
affect the financial sector through various channels

Financial M2/foreign exchange Expansionary monetary policy and/or a sharp decline in reserves
indicator reserve are associated with the onset of a crisis

Growth rate of private This indicator captures the extent to which financial
credit/GDP liberalization has progressed; financial liberalization may increase

financial fragility due to increased opportunities for excessive risk
taking and fraud

Bank reserve/bank asset Adverse macroeconomic shocks should be less likely to lead to
crises when the banking sector is liquid; we use the ratio to
capture liquidity

Current account/GDP Large current account deficits are associated with imbalances
that may lead to a crisis

House price index return Real estate market downturns are associated with crises

Stock price index return Stock market downturns are associated with crises
This table reports the indicators used in the paper. The first column shows the category headings and the
second column provides the name of the variable. The third column briefly summarizes the economic
rationale for the variable.
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Table 2: Estimation Results of the Parameters in the Semiparametric Model
Variable Coefficient Standard error
Constant -0.1021∗ 0.0119
Real GDP -0.1002∗ 0.0056
Depreciation 0.0982 0.4016
Real interest rate 0.0985∗ 0.0039
Inflation 0.0989∗ 0.0024
M2/foreign exchange reserve -0.0924∗ 0.1307
Growth rate of private credit/GDP 0.0980∗ 0.0613
Bank reserve/bank asset -0.4755∗ 0.0037
Current account/GDP 0.1022∗ 0.0621
House price index return -0.1026∗ 0.0278
Stock price index return 1.1416∗ 0.0051
This table reports the estimations of the coefficients. The standard errors
are obtained by a jackknife simulation approach. The star, ∗, indicates that
the estimation is significant at the 5 per cent level.

Table 3: Testing for Poolability by a Semiparametric Model

Canada France Germany United Kingdom United States
Canada 0.045 1.076 0.199 1.093
France 0.047 0.023 0.015
Germany 0.047 0.015
United Kingdom 0.018
This table reports values of the test statistic, J j

n , in equation (17). The null hypothesis is there
exists θ0 ∈Θ, such that gi(x′θ0) = g j(x′θ0) for i 6= j almost surely on the joint support of
gi(·) and gi(·); the alternative hypothesis is gi(x′θ) 6= g j(x′θ) for any θ ∈Θ with positive measure.
The critical value at 5 per cent significance level is 1.645. For example, the value 0.045 in row “Canada”
and column “France” indicates that we cannot reject the null hypothesis of poolability of the link
function between Canada and France.
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Table 4: In-Sample Performance

Semiparametric Model Binomial Logit Model

Canada: Cut-off Probability = 0.35 Cut-off Probability = 0.20
Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total

Yit = 1 27 1 28 20 8 28
Yit = 0 55 23 78 47 31 78
Total 82 24 106 67 39 106

Signal-to-noise ratio: 1.37 1.18
Probability of financial stress events correctly called: 0.96 0.71
Probability of false alarms in total alarms: 0.67 0.71
Probability of financial stress events given an alarm: 0.33 0.29
Probability of financial stress events given no alarm: 0.04 0.21
U.S.: Cut-off Probability = 0.40 Cut-off Probability = 0.20

Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total
Yit = 1 10 13 23 15 8 23
Yit = 0 15 68 83 26 57 83
Total 25 81 106 41 65 106

Signal-to-noise ratio: 3.28 2.08
Probability of financial stress events correctly called: 0.44 0.65
Probability of false alarm of total alarms: 0.52 0.64
Probability of financial stress events given an alarm: 0.48 0.36
Probability of financial stress events given no alarm: 0.15 0.12
U.K.: Cut-off Probability = 0.25 Cut-off Probability = 0.20

Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total
Yit = 1 23 6 29 23 6 29
Yit = 0 18 59 77 24 53 77
Total 41 65 106 27 59 106

Signal-to-noise ratio : 3.39 2.54
Probability of financial stress events correctly called: 0.79 0.78
Probability of false alarm of total alarms: 0.43 0.59
Probability of financial stress events given an alarm: 0.56 0.48
Probability of financial stress events given no alarm: 0.09 0.10
France: Cut-off Probability = 0.20 Cut-off Probability = 0.20

Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total
Yit = 1 8 3 11 11 0 11
Yit = 0 47 48 95 31 64 95
Total 55 51 106 42 64 106

Signal-to-noise ratio: 1.47 3.06
Probability of financial stress events correctly called : 0.73 1.00
Probability of false alarm of total alarms: 0.85 0.73

Continued on next page...
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...table 5 continued
Semiparametric Model Binomial Logit Model

Probability of financial stress events given an alarm: 0.15 0.26
Probability of financial stress events given no alarm: 0.05 0.00

Germany: Cut-off Probability = 0.20 Cut-off Probability = 0.20
Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total

Yit = 1 4 15 19 7 12 19
Yit = 0 12 75 87 8 79 87
Total 16 90 106 15 91 106

Signal-to-noise ratio : 1.53 4.00
Probability of financial stress events correctly called: 0.22 0.36
Probability of false alarm of total alarms: 0.75 0.53
Probability of financial stress events given an alarm: 0.25 0.47
Probability of financial stress events given no alarm: 0.16 0.13
This table reports the in-sample performance of the semiparametric model in terms of five
different criteria: signal-to-noise ratio, probability of financial stress events correctly
called, probability of false alarm of total alarms, probability of financial stress events given
an alarm, and probability of financial stress events given no alarm, which are defined as
[B/(B+D)]/[A/(A+C)],A/(A+C),B/(A+B),A/(A+B), and C/(C+D), respectively. For
comparison, the results for the multivariate logit model are also reported in this table. The
sample period is from 1981Q2 to 2007Q2.
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Table 5: Out-of-Sample Performance

Semiparametric Model Binomial Logit Model

Canada: Cut-off Probability = 0.35 Cut-off Probability = 0.20
Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total

Yit = 1 8 0 8 1 7 8
Yit = 0 3 0 3 1 2 3
Total 11 0 11 2 9 11

Signal-to-noise ratio: 1.00 0.38
Probability of financial stress events correctly called: 1.00 0.13
Probability of false alarm of total alarms: 0.27 0.50
Probability of financial stress events given an alarm: 0.73 0.50
Probability of financial stress events given no alarm: NaN 0.78

U.S.: Cut-off Probability = 0.40 Cut-off Probability = 0.20
Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total

Yit = 1 6 2 8 2 6 8
Yit = 0 1 2 3 2 1 3
Total 7 4 11 4 7 11

Signal-to-noise ratio : 2.25 0.37
Probability of financial stress events correctly called: 0.75 0.25
Probability of false alarm of total alarms: 0.14 0.50
Probability of financial stress event given an alarm: 0.86 0.50
Probability of financial stress event given no alarm: 0.50 0.86

U.K.: Cut-off Probability = 0.25 Cut-off Probability = 0.20
Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total

Yit = 1 4 3 7 4 3 7
Yit = 0 2 2 4 3 1 4
Total 6 5 11 7 4 11

Signal-to-noise ratio 1.14 0.76
Probability of financial stress events correctly called: 0.57 0.57
Probability of false alarm of total alarms: 0.33 0.43
Probability of financial stress event given an alarm: 0.67 0.57
Probability of financial stress event given no alarm: 0.60 0.75

France: Cut-off Probability = 0.20 Cut-off Probability = 0.20
Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total

Yit = 1 0 0 0 0 0 0
Yit = 0 4 7 11 0 11 11
Total 4 7 11 0 11 11

Continued on next page...
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...table 6 continued
Semiparametric Model Binomial Logit Model

Signal-to-noise ratio: NaN NaN
Probability of financial stress events correctly called: NaN NaN
Probability of false alarm of total alarms: 1.00 NaN
Probability of financial stress events given an alarm: 0.00 NaN
Probability of financial stress events given no alarm: 0.00 0.00

Germany: Cut-off Probability = 0.20 Cut-off Probability = 0.20
Sit = 1 Sit = 0 Total Sit = 1 Sit = 0 Total

Yit = 1 7 0 7 0 7 7
Yit = 0 4 0 4 0 4 4
Total 11 0 11 0 11 11

Signal-to-noise ratio: 1.00 NaN
Probability of financial stress events correctly called: 1.00 0.00
Probability of false alarm of total alarms: 0.36 NaN
Probability of financial stress events given an alarm: 0.64 NaN
Probability of financial stress events given no alarm: NaN 0.64
This table reports the out-of-sample performance of the semiparametric model in terms of five
different criteria: signal-to-noise ratio, probability of financial stress events correctly
called, probability of false alarm of total alarms, probability of financial stress events given
an alarm, and probability of financial stress events given no alarm, which are defined as
[B/(B+D)]/[A/(A+C)],A/(A+C),B/(A+B),A/(A+B), and C/(C+D), respectively. For
comparison, the results for the multivariate logit model are also reported in this table. The
sample period is from 1981Q3 to 2010Q2. NaN indicates that there is no definition of
the criterion, since the denominator in the criterion is zero.
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Table 6: Percentage of Rejections of H0

c = 0.5 c = 1.0 c = 1.5

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

Percentage of Rejections of the true H0
Probit Model

50 0.009 0.018 0.031 0.001 0.007 0.010 0.001 0.003 0.003
100 0.005 0.019 0.029 0.000 0.002 0.008 0.001 0.002 0.003
200 0.006 0.017 0.031 0.003 0.008 0.011 0.001 0.004 0.005
500 0.007 0.021 0.043 0.004 0.008 0.015 0.000 0.002 0.007
1000 0.006 0.035 0.054 0.004 0.021 0.029 0.003 0.015 0.037

Logit Model
50 0.002 0.011 0.024 0.004 0.008 0.015 0.001 0.006 0.008

100 0.006 0.013 0.021 0.002 0.004 0.009 0.002 0.005 0.012
200 0.007 0.015 0.025 0.002 0.005 0.013 0.004 0.004 0.010
500 0.001 0.008 0.024 0.002 0.005 0.013 0.005 0.011 0.031
1000 0.005 0.025 0.047 0.004 0.012 0.032 0.004 0.037 0.042

Percentage of rejections of the false H0
λ1 = 3.586508,λ2 = 0.04306,λ3 = 0.025213,λ4 = 0.094029

50 0.604 0.714 0.773 0.751 0.843 0.877 0.761 0.845 0.890
100 0.911 0.958 0.977 0.975 0.989 0.992 0.977 0.993 0.997
200 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
λ1 = 9.7726,λ2 = 0.0151878,λ3 =−0.001,λ4 =−0.13

50 0.124 0.195 0.257 0.225 0.331 0.385 0.233 0.345 0.430
100 0.307 0.423 0.504 0.491 0.607 0.689 0.551 0.679 0.752
200 0.721 0.827 0.874 0.867 0.933 0.961 0.922 0.965 0.978
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
λ1 = 3.586508,λ2 = 0.04306,λ3 = 0.025213,λ4 = 0.094029

50 0.596 0.713 0.767 0.720 0.813 0.866 0.786 0.866 0.906
100 0.908 0.946 0.970 0.976 0.987 0.994 0.984 0.993 0.996
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
This table reports the finite-sample performance of the size and the power of the test J j

n .
For each sample size we simulate 1,000 samples. The null models are the probit model
and the logit model. Three other distributions from the generalized lambda family
proposed in Ramberg and Schmeiser (1974) are selected as alternative models under the
null hypothesis that the data come from a logit model.
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Figure 1: Financial Stress Index for Canada and the United States
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Figure 1 plots the FSI, created by the IMF for developed countries, for Canada and the United States. Each shaded
region in this figure represents a financial crisis, and the width of each shaded region indicates the period that the
crisis lasts. The sample period is from 1981Q2 to 2010Q2.
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Figure 2: Financial Stress Index for the United Kingdom and France
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Figure 2 plots the FSI, created by the IMF for developed countries, for the United Kingdom and France. Each shaded
region in this figure represents a financial crisis, and the width of each shaded region indicates the period that the
crisis lasts. The sample period is from 1981Q2, to 2010Q2.
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Figure 3: Financial Stress Index for Germany
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Figure 3 plots the FSI, created by the IMF for developed countries, for Germany. Each shaded region represents a
financial crisis, and the width of each shaded region indicates the period that the crisis lasts. The sample period is
from 1981Q2 to 2010Q2.
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Figure 4: Probability Forecasts for Financial Stress Events
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Figure 4 plots the probability forecasts for financial stress events for Canada and the United States for 1981Q2 to
2010Q2. In particular, the probabilities from 1981Q2 to 2007Q2 are the in-sample forecasts, and from 2007Q3 to
2010Q2 are the out-of-sample forecasts.
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Figure 5: Probability Forecasts for Financial Stress Events
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Figure 5 plots the probability forecasts for financial stress events for the United Kingdom and France for 1981Q2 to
2010Q2. In particular, the probabilities from 1981Q2 to 2007Q2 are the in-sample forecasts, and from 2007Q3 to
2010Q2 are the out-of-sample forecasts.
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Figure 6: Probability Forecasts for Financial Stress Events
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Figure 6 plots the probability forecasts for financial stress events for Germany for 1981Q2 to 2010Q2. In particular,
the probabilities from the second quarter 1981Q2 to 2007Q2 are the in-sample forecasts, and from 2007Q3 to
2010Q2 are the out-of-sample forecasts.
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