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Abstract 

Expected returns vary when investors face time-varying investment opportunities. Long-
run risk models (Bansal and Yaron 2004) and no-arbitrage affine models (Duffie, Pan, 
and Singleton 2000) emphasize sources of risk that are not observable to the 
econometrician. We show that, for both classes of models, the term structure of risk 
implicit in option prices can reveal these risk factors ex-ante. Empirically, we construct 
the variance term structure implied in SP500 option prices. The variance term structure 
reveal two important drivers of the bond premium, the equity premium, and the variance 
premium, jointly. We also consider the term structure of higher-order risks as measured 
by skewness and kurtosis and still find that two factors are sufficient to summarize the 
information content from the term structure of risks. Overall, our results bode well for the 
ability of structural models to explain risk-returns trade-offs across different markets 
using only very few sources of risk. 

JEL classification: G12, G13 
Bank classification: Financial markets; Asset pricing 

Résumé 

Les rendements espérés varient lorsque les occasions de placement qui s’offrent aux 
investisseurs ne sont pas constantes dans le temps. Les modèles avec risque de long terme 
(Bansal et Yaron, 2004) et les modèles affines basés sur l’absence d’arbitrage (Duffie, 
Pan et Singleton, 2000) mettent l’accent sur des sources de risque qui échappent à 
l’observation de l’économètre. Les auteurs montrent que, pour chacune de ces classes de 
modèles, la structure par terme des risques implicitement contenue dans les prix 
d’options peut révéler ces facteurs de risque a priori. De manière empirique, les auteurs 
construisent la structure par terme de la variance à partir des prix des options sur l’indice 
SP500. Cette structure par terme fait ressortir deux importants facteurs qui déterminent, 
conjointement, la prime obligataire, la prime sur actions et la prime liée à la variance. Les 
auteurs étudient par ailleurs la structure par terme des risques d’ordre supérieur quantifiés 
d’après les coefficients d’asymétrie et d’aplatissement. Là aussi, ils concluent que deux 
facteurs suffisent pour résumer le contenu informatif de la structure par terme des risques. 
Dans l’ensemble, les résultats obtenus augurent bien de la capacité des modèles 
structurels à rendre compte, à l’aide d’un nombre limité de facteurs, des arbitrages risque-
rendement qui s’exercent sur différents marchés. 

Classification JEL : G12, G13 
Classification de la Banque : Marchés financiers; Évaluation des actifs 

 



1 Introduction

Expected returns vary whenever investors face time-varying investment opportunities. For

example, in Merton (1973), the premium between equilibrium expected returns on equity

and the risk-free rate, EPt, is proportional to the conditional variance of wealth, σ2t ,

EPt = γσ2t , (1)

where γ is the coefficient of risk aversion. Unfortunately, the ex-ante conditional equity

premium and variance are not directly observable to the econometrician.1 In addition, recent

equilibrium models imply that expected returns depend on other risk factors and, moreover,

that the relationship between risks and returns varies across markets and across investment

horizons. But, again, we do not observe expected returns and the relevant measures of risk.

Hence, recent theoretical innovations only add to the challenges of empirical work and,

therefore, the analysis of trade-offs between risks and returns remains a central question

for researchers and practitioners in finance. Attesting to this, in his presidential address to

the American Finance Association, John Cochrane refers to a “Multivariate Challenge” to

returns predictability (Cochrane 2011). Specifically, he noted the abundance of empirical

results linking one potential risk factor at a time to one type of return at a time. He laid

particular emphasis on the fact that there is a strong common element underlying these

relationships and asked “what is the factor structure of time-varying expected returns?”

This question is at the heart of our investigation. We build on the insight that option

prices can provide model-free forward-looking measures of risks. Our main contribution is to

show that the term structure of variance implicit in option prices can be used to reveal risk

factors. Empirically, we find that (i) the variance term structure reveals two factors that

drive significant variations in expected returns, (ii) the same two factors predict the bond,

equity and variance premia, and (iii) the predictive content is particularly strong at short

horizons, less than one year, where other popular predictors are relatively less effective, and

(iv) the variance factors are related to its level and slope but they mix information from

higher order principal components as well. Together, our results bode well for our ability

to link risk-return trade-offs across different markets, and across horizons, within a unified

theoretical framework. More immediately, the results show the rich information content of

the term structure of option prices.

1This may explain why the empirical support for the theoretical prediction in Equation 1 is remarkably
uneven.French et al. (1987), Campbell and Hentschel (1992), Ghysels et al. (2004), find a positive relation
between volatility and expected returns. Turner et al. (1989), Glosten et al. (1993) and Nelson (1991) find
a negative relation. Guo and Savickas (2006) finds that a positive relationship between index volatility and
individual stock returns. Ludvigson and Ng (2005) find a strong positive contemporaneous relation between
the conditional mean and conditional volatility and a strong negative lag-volatility-in-mean effect.
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1.1 The variance term structure spans risk factors

We motivate our investigation in the context of Long-Run Risk economies (LRR) that

match important stylized facts in finance. Specifically, we consider the class of affine LLR

economies (Eraker 2008) that generalize the seminal paper of Bansal and Yaron (2004) to

conditionally non-gaussian state variables. Risk-return trade-offs in these economies imply

that the bond, equity and variance premia2 at different investment horizons are linear

functions of the same risk factors. In other words, all expected returns should exhibit a

similar factor structure. The same result holds true in the broader family of affine no-

arbitrage jump-diffusion models (Duffie, Pan, and Singleton 2000) that ignore structural

cross-parameter restrictions. In any case, as in Merton’s model above, the risk factors are

unobservable to the econometrician.3 Nonetheless, theory also predicts that the risk factors

form a basis for the term structure of variance. In other words, a small number of linear

combinations from the variance term structure, which can be measured from option prices,

should span time-variations in expected returns.

1.2 The variance term structure predicts the bond and equity premium

Empirically, we follow the standard model-free approach from Bakshi and Madan (2000) to

measure variance using options on SP500 futures across a range of maturities. We proceed

in four steps. First, we show that the variance term structure exhibits a low-dimensional

factor structure. Its first three principal components explain close to 95% of total variations,

they have a systematic effect across maturities and each component can be interpreted as

level, slope and curvature factors, respectively.

Second, we estimate how many factors from the variance term structure are sufficient

to summarize its predictive content for bond and equity returns, jointly. We use the robust

procedure of Cook and Setodji (2003). This dimension reduction procedure does not focus

a priori on the leading principal components.4 The test does not rely on any distributional

assumption. It is also robust to departures from linearity. We find that two factors are suffi-

cient to summarize the joint predictability of the bond and equity premia across maturities

and across horizons.

In a third step, we estimate these factors via multivariate Reduced-Rank Regressions

(RRR) of returns on the variance term structure - a generalization of multivariate OLS

2The variance premium is the difference between the expected variance under the historical measure and
the risk-neutral measure, Q, which is given by V RP (t, τ) = EQ

t [σ
2
r,t+τ ] − Et[σ

2
r,t+τ ]. This is analogous to

the definition of the Equity Premium, EP (t, τ) = Et[rt,t+τ ]− EQ
t [rt,t+τ ].

3The defining structure of affine LLR models combines recursive preference with small but persistent
stochastic factors in the distribution of consumption growth. The latter are difficult to measure by construc-
tion. Similarly, no-arbitrage jump-diffusion models rely on unobservable factors that drive variations in the
stochastic drift, volatility and jump intensity of the underlying process.

4Cochrane and Piazzesi (2005) provide an example in the context of bond returns where a small principal
component of forward rates, which is typically ignored to explain the variations in forward rates themselves,
plays an important role in predicting bond excess returns.
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regressions to the case where the rank of the coefficient matrix corresponds to the number

of linear combinations estimated above.5 A rank-two coefficient matrix yields R2s ranging

from 5% to 7% for bond returns. This compares with R2s ranging from 1% to 2% using

the variance premium as reported in Mueller, Vedolin, and Zhou (2011). Next, the variance

term structure predicts equity returns with R2s that range from 3% to 6% at horizons

between 1 and 12 month. The predictability is stronger at intermediate horizons and peaks

for 3-month returns. This is consistent with Bollerslev, Tauchen, and Zhou (2009). They

show that the variance premium predicts equity returns with comparable R2s and that other

popular predictors are typically less informative at these horizons. Importantly, their results

also exhibit a peak at the 3-month horizon. Overall, the results confirm the information

content of the variance term structure. Moreover, the reduced-rank restriction is supported

in the data : allowing for more than two risk factors yields little statistical or economic

gains.

Finally, we show formally that the variance term structure should also span the variance

premium. We use this additional prediction as an out-of-sample check and ask whether the

same two variance factors estimated to predict the bond and equity premia only can predict

the variance premium also. We find that regressions of excess variance6 on variance factors

yield R2s reaching up to 10% at the 6-month horizon with an inverted U-shape across

horizons between one month and one year. Each of the factors plays an important role but

at different horizons.

1.3 The factor structure extends to skewness and kurtosis

The variance term structure may fail to reveal all risk factors. This may arise if some factors

do not affect the variance, or if the effects are small relative to the measurement errors in

the variance or relative to the innovations in returns.7 On the other hand, theory predicts

that expected returns should nonetheless be linked with measures of higher-order risks

such as asymmetry and tail thickness. In particular, all the cumulants of multi-horizon

returns, including the variance, are affine.8 Therefore, we can use the term structure of

higher-order risks to discern further risk factors. Empirically, we construct model-free

5Estimation and inference in RRR models is available in closed-form. See Anderson (1951) and, more
recently, Hansen (2008) as well as Reinsel and Velu (1998) for a textbook treatment.

6 The excess variance, xV Rt,t+τ , is defined relative to the Variance Premium in a way that is analogous
to the definition of excess returns, xRt,t+τ , relative to the Equity Premium. We have that xRt,t+τ =
rt,t+τ − EQ

t [rt+1] and xV Rt,t+τ = EQ
t [σ

2
t,t+τ ]− σ2

t,t+τ , respectively.
7This is yet another similarity with the term structure of interest rates. In principle, yields can reveal

all state variables related to the future behavior of the short rate. However, specific cases arise where some
factors have small or no impact on interest rates and remain hidden. See Duffee (2011).

8Recall that the first cumulant corresponds to the mean, the second cumulant corresponds to the variance,
the third cumulant corresponds to the third central moment and provides a measure of skewness, while the
fourth cumulant corresponds to the fourth central moments minus 3 times the squared variance and provides
a measure of the tails. The use of the cumulant-generating function to characterize the effect of higher-order
cumulants on properties of asset prices is also suggested by Martin (2010). The cumulant term structure
has been neglected in the literature.
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measures of asymmetry and tail tichness based on cumulants (labeled as skewness and

kurtosis hereafter). We find that each of the term structure of variance, skewness and

kurtosis has a similar predictive content for the bond , equity and the variance premia.

Importantly, each term structure’s predictive content can be summarized by two factors.

As above, we proceed in four steps. First, we document the factor structure. Second,

we estimate the number of factors. Third, we estimate RRR models linking the skewness

or kurtosis term structure, respectively, to the bond and equity returns. Finally, we use

the same factors and confirm that the predictability extends to the variance premium. Two

factors remain sufficient in every case. Strikingly, combining factors from the term structure

of variance, skewness and kurtosis does not provide significant improvements in our ability

to predict bond and equity returns. If anything, higher-order risk measures improve our

ability to predict bond returns and may be correlated with flight-to-quality.

1.4 Literature

Christoffersen, Jacobs, and Chang (2011) review the vast literature that uses option-implied

information in forecasting, including for returns predictability.9 Our approach is most closely

related to Bakshi, Panayotov, and Skoulakis (2011). They study the predictive content of

the 1-month and 2-month forward variances for SP500 and Treasury bill returns.10 We

use a broader range of maturities, as well as higher-order moments, and consider the joint

variations of expected returns across markets. Motivated by theory, we uncover the factor

structure of option-implied variance and higher-order risk measures.

Leippold, Wu, and Egloff (2007), Amengual (2009), and Carr and Wu (2011) find that

two factors are needed to describe the variance premium dynamics. We link these factors to

the term structure of risk implicit in option prices. Bollerslev, Tauchen, and Zhou (2009),

and Drechsler and Yaron (2011) ask whether the variance premium can predict the equity

premium. Similarly, Zhou (2011) and Mueller, Vedolin, and Zhou (2011) ask whether the

variance premium predict bond returns. But the variance premium is not observable to

the econometrician and one must resort to proxies based on lagged observations to use in

predictability regressions.11 In contrast, we turn this view on its head and ask whether

the ex-post excess variance is predictable using the same factors that drive the equity

and the bond premium. The key insight from Bollerslev, Tauchen, and Zhou (2009) still

holds: the variance premium is tightly linked to fundamental risk-return trade-offs. Backus,

Chernov, and Martin (2010) find that the level of disaster risk required to explain the large

unconditional equity premium is not consistent with the distribution implicit in option

9In particular, Ang et al. (2006) shows that option-implied market volatility is priced in the cross-section
of equity returns. Chang, Christoffersen, and Jacobs (2011) shows that option-implied market skewness is
priced in the cross-section of equity returns.

10Strictly speaking, they focus on the information content of payoffs contingent on the exponential of
future integrated variance.

11The variance premium is unobservable because the conditional expectation of integrated variance under
the historical probability measure is unobservable.
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prices. We focus on conditional moments and provide further stylized facts from the option

market. Constantinides and Ghosh (2011) use the risk-free rate and the price-dividend

ratio to invert for the risk factors in the LRR specification of Bansal and Yaron (2004).

Our empirical implementation is robust to misspecification of the underlying model.

The rest of the paper is organized as follow. Section 2 considers affine LRR economies

and derives the multi-horizon cumulant-generating function of excess returns and excess

variance. We then show how the term structure of uncertainty can be used to reveal

fundamental risk factors. Section 3 introduces the data and measurement of risk from

option prices. Section 4 evaluates the information content from the term structure of risk-

neutral variance. Section 5 repeats the exercise by extending the information set to include

the term structure of skewness and kurtosis. Section 6 concludes.

2 Variance Term Structure In Equilibrium

This Section motivate the empirical analysis that forms the core of the paper. We study

the bond, equity and the variance premia within the broad family of affine general equi-

librium models described in Eraker (2008). Equivalently, we could motivate our analysis

within a reduced-form no-arbitrage representation of the economy in the family of asset

pricing models with affine transforms (Duffie, Pan, and Singleton, 2000).12 We focus on the

distribution of multi-period returns under the risk-neutral and historical measure, Q and P,
respectively, via their cumulant-generating function. In particular, we derive expressions for

the multi-horizon equity premium and bond premium. We also derive expressions for the

conditional variance of returns across investment horizons. We then show how to recover

the bond and equity premium from the term structure of variance.

2.1 Long-Run Risk Economies

Affine general equilibrium models build on the insights from the long-run risk literature

and nest existing specifications where the mean and volatility of consumption growth are

stochastic, possibly with jumps, and follow affine processes (e.g. Bansal and Yaron 2004,

Bollerslev, Tauchen, and Zhou 2009, Drechsler and Yaron 2011). Consider an endowment

economy where the representative agent’s preference ordering over consumption paths can

be represented by a recursive utility function of the Epstein-Zin-Weil form,

Ut =

[
(1− δ)C

(1−γ)/θ
t + δ

(
Et

[
U1−γ
t+1

])1/θ]θ/(1−γ)

, (2)

with θ defined as,

θ ≡ 1− γ

1− 1/ψ
,

12The essential component in the argument is that the joint Laplace transform of the state vector and of
the change of measure is affine, or approximately so.Chamberlain (1988) provides an alternative argument
based on a martingale representation argument. We thank Nour Meddahi for this suggestion.
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where δ is the agent’s subjective discount rate, ψ measures the elasticity of intertemporal

substitution and γ determines risk aversion as well as the preference for intertemporal

resolution of uncertainty. Next, assume that the joint dynamics of the (log) consumption

growth process, ∆ct+1, and the K state variables in the economy, Xt+1, have the following

Laplace transform,

Et

[
exp

(
u∆ct+1 + v⊤Xt+1

)]
= exp

(
F0 (u, v) +X⊤

t FX (u, v)
)
, (3)

where the scalar function F0 (u, v) and the vector function FX (u, v) describe the exogenous

dynamics of the process Y ⊤
t+1 ≡

(
∆ct+1, X

⊤
t+1

)
and must satisfy F0 (0, 0) = FX (0, 0) = 0.

As discussed above, this setting nests existing General Equilibrium models based on Epstein-

Zinn-Weil preferences, with or without long-run risks.

Using the standard Campbell-Shiller approximation, ret+1 = κ0 + κ1wt+1 − wt +∆ct+1,

the wealth-consumption ratio is given by,

wt = A0 +A⊤
XXt,

for values of wt near its steady-state. See appendix A.1.1 for details. We show that the

change of measure,Mt,t+1, from the historical probability, P, to the risk-neutral probability,

Q, is then given by:

Nt,t+1 = exp
(
H0 +H⊤

XXt − γ∆ct+1 − p⊤XXt+1

)
, (4)

where H0 = −F0 (−γ,−pX), HX = −FX (−γ,−pX) and pX = (1− θ)κ1AX . Lemma 1

characterizes the joint conditional distribution of returns and state variables under P and

Q, respectively.

Lemma 1 Laplace transform of excess returns

If the representative agent has utility function given by Equation 2, and if the joint condi-
tional Laplace transform of consumption growth ∆ct+1 and the remaining K state variables
Xt+1 are given by Equation 3, then the joint conditional Laplace transform of Xt+1 and of
excess returns ret+1 from a claim on aggregate consumption is given by

EP
t

[
exp

(
u xret+1 + v⊤Xt+1

)]
= exp

(
F P
0 (u, v) +X⊤

t F
P
X (u, v)

)
,

under the historical measure, P, for a constant scalar u and a K-dimensional vector v.
Similarly, the corresponding conditional Laplace transform under the risk-neutral measure,
Q, is given by

EQ
t

[
exp

(
u xret+1 + v⊤Xt+1

)]
= exp

(
FQ
0 (u, v) +X⊤

t F
Q
X (u, v)

)
,

The coefficients are given in Appendix A.1.2.
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Lemma 1 shows that the conditional Laplace transform of excess returns is exponential-

affine under P and Q. Essentially, this follows from the choice of historical dynamics for the

state vector, given in Equation 3, and from the fact that the change of measure given by

Equation 4 is also exponential affine. Proposition 1 applies Lemma 1 repeatedly to charac-

terizes multi-horizon excess returns. It establishes that the cumulant-generating function

of multi-horizon excess returns is affine for any investment horizon τ .

Proposition 1 Cumulants of multi-horizon excess returns

The cumulant-generating function of excess returns from the claim on aggregate consump-
tion over an investment horizon τ ,

xrt,t+τ ≡
τ∑

j=1

xrt+j ,

is given by

logEP
t [exp (u xrt,t+τ )] = F P

r,0 (u; τ) +X⊤
t F

P
r,X (u; τ) ,

under the P measure and by

logEQ
t [exp (u xrt,t+τ )] = FQ

r,0 (u; τ) +X⊤
t F

Q
r,X (u; τ) ,

under the Q measure with coefficients given in Appendix A.1.2.

2.2 Bond Premium, Equity Premium and Variance Premium

An immediate corollary of Proposition 1 is that the Bond Premium and the Equity Premium

over any investment horizon τ , BP (t, τ) and EP (t, τ), respectively, are affine. We have that,

BP (t, τ) ≡ EP
t

[
xrbt,t+τ

]
= βb,0(τ) + βb(τ)

⊤Xt, (5)

and

EP (t, τ) ≡ EP
t

[
xret,t+τ

]
= βep,0(τ) + βep(τ)

⊤Xt. (6)

The bond premium and the equity premium are linear in the state variables whenever

θ ̸= 1 and AX ̸= 0. These conditions implies that pX ̸= 0 in Equation 4, and, therefore,

that the pricing kernel varies with Xt. Intuitively, the first condition implies that the

agent has preference over the intertemporal resolution of uncertainty (i.e. γ ̸= ψ). The

second condition implies thatXt+1 affects the conditional distribution of future consumption

growth.13 These two conditions are the fundamental ingredients of long-run risk models. The

13Strictly speaking, the prices of risk associated with innovations to Xt+1 may differ from zero, with γ ̸= ψ,
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price of risk parameters pX are generally left unrestricted in reduced-form representations.

Proposition 1 also implies that the Variance Premium over any investment horizon τ ,

V RP (t, τ), is affine,

V RP (t, τ) ≡ EQ
t

 τ∑
j=1

σ2t+j

− EP
t

 τ∑
j=1

σ2t+j

 (7)

= βvp,0(τ) + βvp(τ)
⊤Xt, (8)

where σ2t = V art(xrt,t+j). The coefficients βvp,0(τ) and βvp(τ) depend on the structure of

the model. The Variance Premium is zero in a LRR economy when the second conditional

moment of consumption is constant under both measures. Moreover, the Variance Premium

differs from zero but remains constant whenever the volatility of consumption volatility is

constant.14

2.3 Variance Term Structure

Equations 5 and 6 characterize the equilibrium risk-return trade-offs in a broad class of

economies with long-run risks. Different LRR models emphasize different risk factors, Xt,

and imply different patterns of risk loadings, βep,X but the risk premium dynamics are

linear in every case. The coefficients of that relationship could be estimated directly via

OLS if the risk factors, Xt were observable. This would provide a test to discriminate across

different specifications, or serve as guidance to investors. However, the risk factors proposed

in the literature, including in reduced-form specifications, are latent or difficult to measure.

For example, the expected consumption growth (Bansal and Yaron 2004), the volatility

of consumption volatility (Bollerslev, Tauchen, and Zhou 2009) or the time-varying jump

intensity (Drechsler and Yaron (2011), Eraker 2008) all escape direct measurement.

In contrast, the term structure of risk-neutral variance can be measured from option

prices. Moreover, Proposition 1 implies that the conditional variance of excess returns over

an horizon τ is also affine and given by:

V arQt (τ) = βvr,0 (τ) + βvr(τ)
⊤Xt, (9)

with coefficients given in Appendix A.1.2. This implies that measures of variance at different

maturities display a factor structure with dimension K. This is similar to interest rate

models where yields at different maturities sum the contributions of the real rate, inflation

and compensation for risk. In most models, these are determined by a small set of economic

variables (e.g. wealth, technology, habits) that are often not observed directly, at least at

but with a constant wealth-consumption ratio (and risk premium) if Ut/ct varies with Xt+1. This arises in
the knife-edge case where ψ = 1.

14Bollerslev et al. (2009) provide a results similar to Equation 7. Their solution contrasts with our since
they rely on an additional log-linearization and they only cover the special case τ = 1.
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the desired frequency. But the unobservable economic variables can be revealed via their

effects on yields. This important insight is applicable in our context.

2.4 Revealing Risk Factors

The risk-neutral variance can reveal the effect of risk factors. However, the measured

risk-neutral variance differs from the true value, V arQt (τ) = ˜V ar
Q
t (τ) + νt(τ), where we

assume that the measurement error, νt(τ), is uncorrelated with ˜V ar
Q
t (τ). In other words,

in contrast with computation of bond yields from bond prices, measurement errors cannot

be neglected when computing variance from option prices. Stacking measurements across

horizons τ = τ1, . . . , τq, and using Equation 9, we have that,

˜V ar
Q
t + νt = B0,vr +BvrXt

where the q×1 vector, B0,vr, stacks the constant βvr,0 (τ), and the q×K matrix Bvr stacks

the corresponding coefficients βvr(τ)
⊤. Note that we typically have more observations along

the term structure than there are underlying factors (i.e., q > K). We can then write,

X̃t = −B̄vrB0,vr + B̄vr
˜V ar

Q
(t) + B̄vrνt, (10)

where the K × q matrix B̄vr = (B⊤
vrBvr)

−1B⊤
vr is the left-inverse of Bvr.

15

Using Equations 5 and 6, and stacking across horizons, we have that,

BPt = Πbp,0 +Πbp
˜V ar

Q
t + νbpt (11)

EPt = Πep,0 +Πep
˜V ar

Q
t + νept , (12)

so that we can use the variance term structure as a signal for the underlying risk factors.

Each line of the vector Πep,0 and of the matrix Πep is given by,

Πep,0(τ) = βep,0(τ)− βep(τ)
⊤B̄vrB0,vr

Πep(τ) = βep(τ)
⊤B̄vr, (13)

respectively. This will be crucial in the following. The definitions of Πbp,0 and Πbp are

analogous. In practice, we do not observe the bond premium or the equity premium, but

15The left-inverse exists since we consider cases with q > K and Bvr has full (column) rank. If the latter
conditions is not satisfied, then the loadings of the conditional variance, V arQ(t, τ) on the risk factors Xt,k

are not linearly independent. This implies that less than K linear combinations of the risk factors can be
revealed from the variance term structure. In other words, some linear combinations of the risk factors are
unspanned by the variance term structure. In this case, we redefine the risk vector in Equation 10 to be
Xvr

t that only contain those Kvr < K linear combinations that are spanned. This issue also arises in the
interest rate literature and as been discussed in Duffee (2011).
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we can only measure ex-post excess returns,

xret,t+τ = EP (t, τ) + ϵet,t+τ

xrbt,t+τ = BP (t, τ) + ϵbt,t+τ ,

which can be re-written as:

xrbt+ = Πbp,0 +Πbp
˜V ar

Q
t + (νbpt + ϵbt+) (14)

xret+ = Πep,0 +Πep
˜V ar

Q
t + (νept + ϵet+), (15)

where the xrt+ notation signals that we have stacked ex-post excess returns at different

horizons.

Equations 14-15 form the basis of our empirical investigation below. But note that Πbp

and Πep have rank at most K irrespective of the number of horizons τ used at estimation.

This will be crucial in the following since it implies these equations cannot be estimated via

standard OLS. Before we address this, the next Section introduces the data.

3 Data and Measurement

3.1 Excess Returns

We use the CRSP data set to compute end-of-the-month equity returns on the SP500 at

horizons of 1, 2, 3, 6, 9 and 12 months. Longer-horizon returns are obtained from summing

monthly returns. We use the Fama-Bliss zero coupon bond prices from CRSP to compute

bond excess returns. Excess returns are computed using risk-free rates from CRSP.16

3.2 Excess Variance

As in the case of returns, longer-horizon realized variances are obtained from summing

monthly realized variances.17 We follow Britten-Jones and Neuberger (2000) to compute

expected integrated variance under the risk-neutral measure (see Equation 7) from option

prices. The excess variance is the difference between the realized variance under the histori-

cal measure and the ex-ante measure of conditional variance under the risk-neutral measure.

This definition is completely analogous to the definition of excess returns. Explicitly, the

excess variance is given by:

xvet,t+τ ≡ ẼQ
t

 τ∑
j=1

σ2r,t+j

−
τ∑

j=1

σ2r,t+j , (16)

16The Fama-Bliss T-bill file covers maturities from 1 to 6 months. We use the 1-year rate from the
Fama-Bliss zero-coupon files. The 9-month T-bill rate is interpolated when necessary.

17We thank Hao Zhou for making end-of-the-month SP500 realized variance data available on his web
site.
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where σ2r,t+j is the realized variance in period t + j and ẼQ
t

(∑τ
j=1 σ

2
r,t+j

)
is measured

ex-ante from option prices.

3.3 Risk-Neutral Variance

We use the OptionMetrics database of European options written on the SP 500 index. We

first construct a weekly sample of closing bid and ask prices observed each Wednesday. This

mitigates the impact of intra-weekly patterns but includes 328,626 observations. Consistent

with the extant literature, we restrict our sample to out-of-the-money call and put options.

We also exclude observations with no bid prices (i.e. price is too low), options with less

than 10 days to maturity, options with implied volatility above 70% and options with zero

transaction volume. Finally, we exclude observations that violate lower and upper bounds

on call and put prices. The OptionMetrics database supplies LIBOR and EuroDollar rates.

To match an interest rate with each option maturity, we interpolate under the assumption of

constant forward rates between available interest rate maturities. We also assume that the

current dividend yield on the index is constant through the options’ remaining maturities.18

Finally, we restrict our attention to a monthly sample (see Appendix A.3). This yields 85,385

observations covering the period from January 1996 to October 2008. Table 1 contains the

number of option contracts across maturity and moneyness groups. The sample provides a

broad coverage of the moneyness spectrum at each maturity.

3.4 Summary Statistics

We then rely on the non-parametric approach of Bakshi and Madan (2000) to measure

the conditional variance implicit in option prices at maturities of 1, 2, 3, 6, 9, 12, and

18 months. These correspond to the maturity categories available on the exchange (see

Appendix A.4).19 Table 2 provides summary statistics of variance across maturities. Risk-

neutral variance is persistent with autocorrelation coefficients between 0.73 and 0.87 across

maturities. The term structure is upward sloping on average but with an inverted U-shape.

The volatility of risk-neutral variance peaks at 2 months and then gradually declines with

maturity. In other words, the average variance of stock returns increases with maturity but,

on the other hand, the conditional variance itself is less volatile for longer returns horizons.

It is also more symmetric and has smoother tails for longer horizons.

3.5 Principal Components

Variance measures are highly correlated across maturities (not reported). For example, the

correlation between 1-month and 2-month ahead risk-neutral variances (i.e. V arQ (t, 1) and

18See OptionMetrics documentation on the computation of the index dividend yield.
19We originally included the 24-month maturity category. However, its summary statistics contrast with

the broad patterns drawn in other categories. For this maturity, risk-neutral variance is more skewed to the
right, has fatter tails and is less persistent. Moreover, it is less correlated with other maturities. We consider
these results a reflection of higher measurement errors and exclude this category in the following.
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V arQ (t, 2)) is 0.88 while the correlation between 1-month and 1-year ahead variances is

0.69. This suggests that a few systematic factors can explain most of the variation across

maturities. Panel B of Table 2 reports the results from a Principal Component Analysis

(PCA), which is a simple way to summarize this factor structure. The first three principal

components explains 88%, 6% and 3% of the term structure of the risk-neutral variance,

respectively, and together explain 97.4% of total variation.

These components reflect systematic variation across the variance term structure. The

first component’s loadings range from 0.31 to 0.44 with an inverted U shape across ma-

turities. In other words, most of the variations in the risk-neutral variances can be sum-

marized by a change in the level and curvature of its term structure. Next, the second

component is similar to a slope factor. Its loadings increase, from -0.57 to 0.49, and pivot

around zero near the 6-month maturity. The third component’s loadings draw a curva-

ture pattern. The correlation between the first component and a measure of the level,

Lt = ˜V ar
Q
(t, 6), is 0.98, the correlation between the second component and a measure of

the slope, St = ˜V ar
Q
(t, 18) − ˜V ar

Q
(t, 1) is -0.90, and the correlation between the third

component and a measure of the curvature, Ct = 2 ˜V ar
Q
(t, 6)− ˜V ar

Q
(t, 18)− ˜V ar

Q
(t, 1), is

0.80.

4 Variance Risk-Returns Trade-Offs

Section 2 shows that a broad family of affine general equilibrium models, or affine reduced-

form, models contains at its core the implication that a few linear combinations from the

term structure of variance can be used to predict returns. Consistent with theory, Sec-

tion 3 shows that the term structure of variance can be summarized by its leading principal

components. This Section analyzes the relationship between the variance factors and the

compensation for risk.

4.1 Estimating the number of factors in the variance term structure

We first ask how many linear combinations from the variance term structure summarize its

information content for the bond and equity premia. In other words, we want to estimate

the rank of the coefficient matrix, Π, in multivariate regressions with the following general

form

Yt+ = Π ˜V ar
Q
t +ΨZt + ϵt+. (17)

where Yt is a vector of excess returns, ˜V ar
Q
t is a q×1 vector of risk-neutral variances and the

vector Zt contains any other regressors, including the constant. This nests Equations 14 and

15. Recall that Equation 13 shows that Π does not generally have full rank. The statistical

literature on Sufficient Dimension Reduction provides a useful approach to estimating this

rank.
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Cook and Setodji (2003) introduces a model-free test of the null hypothesis that the

rank is r (i.e., H0 : rankΠ = r) against the alternative that the rank is strictly greater than

r. The modified Cook and Setodji test-statistic, Λ̃r, is available in closed-form and has a

χ2 asymptotic distribution with known degrees of freedom. In particular, this test does

not require Gaussian innovations in Equation 17. The test is also robust against departure

from linearity.20 Cook and Setodji (2003) propose the following iterated algorithm as an

estimator for the rank of Π.

1. Initialize the null hypothesis with H
(0)
0 : rankΠ = r(0) = 0.

2. For the hypothesis H
(i)
0 , compare the Λ̃r(i) statistics with the chosen cut-off from the

χ2
g distribution, e.g., 5%.

3. If the probability of observing Λ̃r(i) is lower than the cut-off, then reject the null,

conclude that rankΠ > r(i), and repeat the test under a new null hypothesis where

the rank is incremented, i.e., r(i+1) = r(i) + 1.

4. Otherwise, conclude that rankΠ = r(i). That is, there is insufficient evidence against

rankΠ = r(i) but, yet, we have rejected rankΠ < r(i).

4.2 Estimating reduced-rank multivariate regressions

As stated above, Equations 14 and 15 form the basis of our empirical investigation and, for a

given rank, r, they correspond to multivariate Reduced-Rank Regressions (RRR) for which

estimators and the associated inference theory are available since at least Anderson (1951).

In particular, for a given estimate of the rank, r, the p × q matrix, Π, can be rewritten as

a product, Π = AΓ, where A and Γ have dimensions (p× r) and (r × q), respectively, and

where r < min(p, q).21 Then, we can re-write Equation 17 as,

Yt = AΓ ˜V ar
Q
t +ΨZt + ϵt, (18)

and the RRR estimators of A, Γ and Ψ are given from the solution to

arg min
A,Γ,Ψ

trace

(
T∑
t=1

ϵtϵ
⊤
t

)
, (19)

20Λ̃r, has a χ
2 asymptotic distribution with g degrees of freedom, where Λ̃r and g depend on the data and

are available in closed-form. If E[Yt|Xt] is not linear in Xt, in contrast with Equation 17, then inference
about the rank of Π from estimates of Equation 17 may still be used to form inference about the dimension
of the Central Mean Subpace (CMS) of Yt|Xt. A subspace M of Rq is a mean subspace of Yt|Xt if E[Yt|Xt]
is a function of M⊤Xt where the q× r matrix M is a basis for M. The CMS is the intersection of all mean
subspaces. See Cook and Setodji (2003).

21See Reinsel and Velu (1998) for a textbook treatment of RRR and a discussion of existing applications in
tests of asset pricing models (e.g. Bekker et al. (1996) and Zhou (1995)). Anderson (1999) provides a theory
of inference under general (e.g. not Gaussian) conditions. Hansen (2008) provides a recent formulation of
the estimator. The OLS regression emerges when k = min(p; q) or, trivially, when r = 0 and the regressors
are irrelevant.
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with closed-form expressions given in Appendix A.5. Note that that the estimated factors,

Γ̂ ˜V ar
Q
t , can be very different than the leading principal components of ˜V ar

Q
t .

22 Finally, A

and Γ are not separately identified, and we choose that rotation which yields orthogonal

factors. This is analogous to the standard identification choice in Principal Component

Analysis.

4.3 The advantages of reduced-rank regressions

Our methodological approach imposes the factor structure predicted by theory but remains

agnostic regarding other structural assumptions. This approach is in line with Cochrane

(2011) who emphasizes the need to uncover the factor structure behind time-varying ex-

pected returns. It is also closely related to Cochrane and Piazzesi (2008) who show that a

single factor from forward rates is sufficient to summarize the predictability of bonds with

different maturities.

In the same spirit, we test the joint hypothesis of linearity and reduced-rank structure

without any other joint hypothesis about the number and the dynamics of state variables,

the conditional distribution of shocks, or the preference of the representative agent. Oth-

erwise, the test will over-reject the null hypothesis of a given low number of factors, even

if it holds in the data, when these maintained hypotheses are not supported by the data.

Similarly, estimation based on the Kalman filter will be severely biased if the maintained

structural or distributional assumptions are not supported in the data. In contrast, our

approach does need additional hypotheses but, instead, exploits the fundamentally multi-

variate nature of the problem.23

4.4 Predictability Results

4.4.1 Excess Returns Predictability

Formally, we consider different versions of a joint model for the bond, equity premium,

and variance premia,

xrt+ = Π0 +AΓ ˜V ar
Q
t + ϵt+, (20)

where we stack Equations 14 and 15. Line-by-line estimation is not feasible when AΓ does

not have full rank. Panel A of Table 3 displays the p-values associated with the Cook-Setodji

statistics, Λ̃r, for different ranks ranging from 1 to q. The tests reject that rankΠ = 0 or

22See, for example, the discussion by Dennis Cook in his Fisher Lecture (Cook 2007) and in particular,
this quote from Cox (1968) “... there is no logical reason why the dependent variable should not be closely
tied to the least important principal component [of the predictors].” (Cochrane and Piazzesi 2005) is a case
in point in Finance in the context of bond returns predictability. Their returns-forecasting factor is a linear
combination of forward rates that is only weakly spanned by the leading principal components of forward
rates.

23In particular, our testing and estimation procedure could not be applied to each line of Equation 17
separately.
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rankΠ = 1. But we do not reject that rankΠ = 2. The results suggest that 2 risk factors

are sufficient to summarize the predictive content of the variance term structure.

Panel B reports the R2s of predictability regressions of bond excess returns across dif-

ferent rank hypotheses. In particular, the R2s in the case where the rank is r = 2 are 7.3%,

6.6%, 5.9% and 5.5% for annual returns on bonds with 2, 3, 4, and 5 years to maturity,

respectively. Compare this with the case where r = 7 and where the model corresponds

to standard OLS predictive regressions. The R2s in this case are 11.5%, 10.1%, 8.8% and

7.9%, respectively. Similarly, Panel C reports R2s for equity returns predictability. For

r = 2, the R2s are 3.1% and 6.3% for 1-month and 2-month excess returns. It then declines

smoothly to 3.6% at the 12-month horizon. In all cases, there is little gain from increasing

the rank from r = 2 to r = 7 given the large increase in the number of parameters.24

Estimation of the 14 unrestricted univariate regressions on 7 variance measures uses 98

parameters. In contrast, allowing for a factor structure in expected returns is parsimonious

and yields disciplined results. Estimation of the multivariate system with only two linear

combinations of variance reduces the number of parameters to 42. It is also more infor-

mative relative to the OLS. Standard OLS inference, based on F -statistics, rejects the null

hypothesis that the variance term structure is irrelevant (unreported). The Cook-Setodji

statistic above also leads to a rejection that the rank is r = 0. But OLS misses the factor

structure in expected returns. In contrast, following the Cook-Setodji procedure, we con-

clude that two factors are sufficient and that the increased predictive power of unrestricted

regressions (r = 7) can be attributed to sampling variability.

4.4.2 Excess Variance Predictability

Equation 7 relates the variance premium to Xt and provides a revealing way to check

whether the estimated risk factors truly reflect compensation for risks. We can write the

variance risk premium in terms of the variance term structure,

xvet+ = Πvrp,0 +Πvrp
˜V ar

Q
t + (νvrpt + ϵvt+), (21)

where the definitions of Πvrp,0 and Πvrp are analogous to those given in Equation 13 for

excess returns and xvet,t+τ is the ex-post excess variance over an horizon τ . Theory predicts

that the same risk factors can be used to predict excess returns and excess variance. We

can then combine Equation 21 with the linear combinations of variance estimated above,

Γ̂ ˜V ar
Q
t , and check that they also predict excess variance. This is akin to an out-of-sample

robustness check since the excess variance was not used to estimate these factors.

Specifically, Table 4 reports estimates and R2s from the following OLS regressions,

xvet+(τ) = Πvrp,0(τ) + a1,vrp(τ)Γ̂1
˜V ar

Q
t + a2,vrp(τ)Γ̂2

˜V ar
Q
t + ϵt+(τ), (22)

24We do not report estimates of A and Γ since the orthonormal rotation used for estimation has no special
economic meaning.
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where we use estimates of Γ̂ obtained above in the case with r = 2. The results are

striking. Together, the two linear combinations that were estimated to predict the bond

and equity premia also predict the variance premium with R2s ranging from 6.2%, 9.5%,

9, 0% and 10.1% at horizons of 1, 2, 3 and 6 months, respectively, and then to 8.7% and

2.7% at horizons of 9 and 12 months, respectively. Looking at individual coefficients shows

that each of the estimated linear combinations plays an important role. The first plays a

significant role in the variations of the variance premium at relatively short horizons, up to

three months ahead, while the second linear combination plays a significant role at longer

horizons, beyond three months.

It may appear tempting to use Equation 21 along with bond and equity returns in a RRR

regression. However, the excess variance equation presents an econometric difficulty. The

measurement errors in excess variance that arise because we measure ẼQ
t

(∑τ
j=1 σ

2
t+j

)
from

option prices are correlated with the measurement errors in ˜V ar
Q
t , which is also obtained

from option prices. Therefore, this equation cannot be used directly at estimation.25

5 Term Structure of Higher-Order Cumulants

We show that measures of higher order risks can also be used to reveal risk factors. Empir-

ically, we find that, the skewness and kurtosis term structures predict the bond premium,

the equity premium and the variance premium. Their predictive content is similar to that

of the variance term structure and can be summarized by 2 risk factors. Consistent with

theory, combining measures of variance, skewness and of kurtosis improves predictability

only marginally and, strikingly, the predictive content of this broad information set can still

be summarized by two factors.

5.1 Higher-Order Cumulants in Equilibrium

The variance term structure may fail to reveal all risk factors. This may arise if some factors

do not affect the variance, or if their effects are small relative to the measurement errors in

the variance or to the innovations in returns. It may be possible to increase the efficiency

of our estimates and parse the variance term structure to find additional factors. But this

neglects low-hanging fruits. An alternative way is to broaden the information set include

other measurements where the effect of other risk factors may be more easily measured.

Looking back, Proposition 1 implies that every cumulant26 of returns is affine in the state

25Stambaugh (1988) provides an example where measurement errors due to bid-ask spreads in bond prices
leads to over-rejection of small factor structure and wrongly favors larger factor structure (his Section 4.4,
p.58). Cochrane and Piazzesi (2005) provide a similar example. They use a single factor from forward
rates to study bond returns. They show that the single-factor restriction is rejected statistically but that
deviations from a single-factor structure are economically insignificant.

26Recall that the first cumulant corresponds to the mean, the second cumulant corresponds to the variance,
the third cumulant corresponds to the third central moment and provides a measure of skewness, while the
fourth cumulant corresponds to the fourth central moments minus 3 times the squared variance and provides
a measure of the tails.
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vector,

MQ
t,n (τ) = βn,0 (τ) +X⊤

t βn,X (τ) ,

for any returns horizon τ , and where coefficients depend on the underlying model.27 Then,

an argument similar to Section 2.4 shows that higher-order cumulants can also be used

reveal Xt,

X̃t = −B̄nB0,n + B̄nM̃t,n
Q
+ B̄nνn,t. (23)

In the following, we follow a path parallel to the previous section and construct model-free

measures of returns cumulants of order 3 and 4(see Appendix A.4). We also exchange a

slight abuse of terminology for ease in the exposition and label these cumulants skewness

and kurtosis, respectively.28

5.2 Summary Statistics and Factor Structure

Panel A and Panel B of Table 5 presents summary statistics of the conditional skewness and

kurtosis of returns, respectively. The average distribution of returns implicit in index option

is left-skewed and has fat tails. The average skewness lies below zero and slopes downward

with the horizon. On the other hand, the average tail is fatter at longer horizons. Skewness

and kurtosis are persistent, especially at intermediate horizons.

The correlation matrices (Panel C and Panel D) suggest a low-dimensional factor struc-

ture as in the case of risk-neutral variance. Panel E and Panel F present PCA results for

the term structure of skewness and kurtosis, respectively. The first three principal compo-

nents of skewness explain 67%, 15% and 12% of total variations, respectively, and together

explain 93%. Similarly, the first three principal components of kurtosis explains 65%, 19%

and 12% of total variation, respectively. As for the variance, the loadings of reveal that the

leading components of skewness and kurtosis have a systematic effect on their respective

term structure.

5.3 Predictability results

We estimate different variations of the following multivariate regression,

xrt+ = Π0 +AΓ Ft + ϵt+ (24)

where, as above, xrt+ stacks 4 excess bond returns and 6 excess equity returns. We consider

different combinations of the variance, skewness and of kurtosis term structure to construct

the regressors, Ft.

27The scalar coefficient, βn,0 (τ), and the vector coefficient, βn,X (τ), are defined as

βn,0 (τ) = DnFQ
r,0 (0; τ) and βn,X (τ) = DnFQ

r,X (0; τ) ,

where the matrix jacobian operator Dn is defined in Appendix A.1. These can typically be computed in
closed-form, up to the usual recursions on τ .

28The conventional measure of skewness and kurtosis are not affine in the risk factors.
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5.3.1 Excess returns with skewness or kurtoris

We first consider each term structure separately. Panel A of Table 6 presents results.

First, model V (2) uses the term structure of variance as predictors (i.e., Ft = ˜V ar
Q
t ).

This reproduces a subset of the results presented above (Table 3) and provides a point of

comparison for models using skewness or kurtosis as predictors. Second, Model S(2) only

includes the term structure of skewness (i.e., Ft = ˜Skew
Q
t ). Third, modelK(2) only includes

the term structure of kurtosis (i.e., Ft = ˜Kurt
Q
t ). In model S(2), the p-value is 6.1% for the

null that r = 1 and 38.2% for the null that r = 2. Similarly, for the K(2) model, the p-value

is 7.9% for the null that r = 1 and 32.2% for the null that r = 2. Hence, the test based

on each of these higher moments come close to reject the rank-one restrictions in favor of a

higher rank while the rank-two restrictions is clearly not rejected. Nonetheless, we report

estimation results based on r = 2 for comparison because more general models combining

information from different term structures consistently reject the case r = 1 (see below).

The results show that the ability to predict bond and equity excess returns, as measured by

the R2s, is strikingly similar whether we use any one of the variance, skewness and kurtosis

term structures. This is consistent with theory. If anything, skewness and kurtosis appear

to be slightly more informative about bond returns while variance appears to be slightly

more informative about equity returns. We stress that this does not imply that only the

variance matters. The term structure of risk-neutral variance combines information about

historical variance, skewness and kurtosis (Bakshi and Madan 2006), and changes in the

prices of risk.

5.3.2 Combining variance, skewness and kurtosis term structure

The VSK(2,2) model combines the two risk factors estimated separately from each of

the variance, skewness and kurtosis term structures. Hence, this uses 6 predictors and

asks whether these risk factors add up to more than two factors when combined in the

same model. The evidence is unambiguous. The p-value is 1.1% for the null that r = 1

and 32.6% for the null that r = 2. Again, this is consistent with theory. The predictive

content available from the term structure of different risk measures is broadly overlapping.

As expected, estimation in the case r = 2 yields R2s that are very close to the highest

value obtain above. Of course, we could (at least) reach these values by setting r = 6.

What is unexpected is that we can summarize these 6 risk factors into two with little loss

of predictive ability.

The VSK(2,2) is a second-stage estimation that uses factors obtained in a first-stage

procedure. Next, we introduce model VSK(7,2) that combines the entire variance, skewness

and kurtosis term structures in a single RRR step. This is an alternative way to ask whether

the risk factors measured from different term structures add up to more than two factors.

Model VSK(7,2) model is estimated in one step but, on the other hand, it is more exposed to

over-fitting given the large number of regressors. Nonetheless, these model yield consistent
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evidence. The p-value is 1.4% for the null that r = 1 and 9.7% for the null that r = 2.

The p-value has decreased substantially but Cook and Setodji (2003) report that this test

tends to over-reject when the number of predictors and regressors is particularly high like

in model VSK(7,2). This bias our result toward concluding in favor of a greater number

of factor. Nonetheless, there is a substantial increase in predictability in the case r = 2

when we combine all the risk measures. R2s now range from 17% to 22% in the case of

bond returns (compare to the 9%-10% of more parsimonious models) and from 6% to 18%

in the case of equity returns (compare to the 3%-8%). The next section uses the variance

premium as an out-of-sample check.

5.3.3 Excess variance

We check that the in-sample predictability obtained from bond and stock returns extends

to the variance premium. Panel A of Table 6 presents results of excess variance predictability

regressions. The results are broadly consistent across all models, the R2s have an inverted U-

shape across horizons, reaching a maximum close to 10% at intermediate horizons between

3 and 6 months. This holds whether the risk factors were extracted from the variance,

skewness or kurtosis term structure. Once again, the theoretical prediction is supported in

the data. In particular, there is no improvement in excess variance predictability for the

VSK(7,7) model. Hence, this out-of-sample exercise suggests that some of the increased

excess returns predictability obtained above for the VSK(7,7) model is due to in-sample

over-fitting.

6 Conclusion

We find that the term structure of risks can be used to reveal risk factors that are important

drivers of bond premium, equity premium and variance premium variations. Consistent with

theory, we find that a small number of factors, two, summarize the relationship between the

equity premium, the bond premium and the variance implicit in option prices. The Long-

Run Risk literature emphasizes slowly moving factors that affect the future conditional

distribution of consumption growth. But, almost by construction, these factors are difficult

to measure from the macro data. Similarly, reduced-form parametrizations of the stock

returns process introduce latent variations in stochastic volatility or jump intensity. In

each case, the risk-return trade-offs are difficult to measure and present a challenge to

the econometrician. On the other hand, model-free measures of risk-neutral variance, and

higher-order moments, are available from option prices.

Our results open several avenues for future research. First, does the predictive content

from the term structure of option prices extend to other markets? In particular, is the

valuation of individual firms’ corporate bonds and equities related to the same risk factors?

Similarly, are the risk premia implicit in other derivative markets (e.g., interest rate or
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FX derivative markets) related to the risk factor from index options? Second, how can we

reconcile the factor structure common to the variance, skewness and kurtosis term structure

with its predictive content for returns within a reduced-form form asset pricing specification?

Finally, given an appropriate reduced-form specification that matches the stylized facts

uncovered here, what equilibrium model can relate these facts to preferences and economic

fundamentals?
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A Appendix

A.1 The Distribution of Multi-horizon returns in Equilibrium

A.1.1 Affine general equilibrium models

We consider an Affine General Equilibrium Model (AGEM) similar to Eraker (2008). Suppose that the state of the

economy can be summarized by a Markov process Yt+1 ≡
(
∆ct+1, X

⊤
t+1

)⊤
where ∆ct+1 is the consumption growth process

and Xt+1 is a vector of K (observed and unobserved) state variables independent of consumption growth. The moment-
generating function of this state vector under the physical measure is given by

Et

[
exp

(
x∆ct+1 + y⊤Xt+1

)]
= exp

(
F0 (x, y) +X⊤

t FX (x, y)
)
,

where the scalar function F0 (x, y) and the vector function FX (x, y) describe the exogenous dynamics of the vector process
Zt+1. Assume, further, that the representative agent has recursive preferences of Epstein-Zin-Weil type. Consequently, the
logarithm of the intertemporal marginal rate of substitution is given by

st,t+1 = θ ln δ − θ

ψ
∆ct+1 − (1− θ) rt+1, (25)

where rt+1 is the return to the aggregate consumption claim. Using the standard Campbell-Shiller approximation, rt+1 =
κ0 + κ1wt+1 − wt +∆ct+1, the log price-consumption ratio wt can be well-approximated by an affine function of the vector
state variable Xt as

wt = A0 +A⊤
XXt, (26)

where the scalar coefficient A0, and the vector coefficient AX depend on model and preference parameters. Solving for these
coefficients is standard in the literature. The (log) stochastic discount factor can then be re-written as

st,t+1 = θ ln δ − (1− θ)
(
κ0 + (κ1 − 1)A0 −A⊤

XXt

)
− γ∆ct+1 − (1− θ)κ1A

⊤
XXt+1, (27)

and the model-implied log risk-free rate is given by,

rf,t+1 = B0 +B⊤
XXt, (28)

where the scalar coefficient B0 and the vector coefficient BX depend on the exogenous dynamics and preference parameters,

B0 = −θ ln δ + (1− θ) (κ0 + (κ1 − 1)A0)− F0 (−γ,− (1− θ)κ1AX) (29)

BX = − (1− θ)AX − FX (−γ,− (1− θ)κ1AX) . (30)

It follows that, in this economy, the change-of-measure from the historical probability to the risk-neutral probability is given
by

Mt,t+1 = exp (st,t+1 + rf,t+1) = exp
(
H0 +H⊤

XXt − γ∆ct+1 − p⊤XXt+1

)
, (31)

where
H0 = −F0 (−γ,−pX) , HX = −FX (−γ,−pX) and pX = (1− θ)κ1AX . (32)

A.1.2 Cumulants term structure

To compute risk-neutral cumulants of the excess return, ret+1, from the claim on aggregate consumption, it is sufficient

to know the moment-generating function of the vector process
(
ret+1, X

⊤
t+1

)⊤
under the risk-neutral measure. This moment-

generating function is given by

EQ
t

[
exp

(
x ret+1 + y⊤Xt+1

)]
= exp

(
FQ
r,0 (x, y) +X⊤

t F
Q
r,X (x, y)

)
(33)
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where the scalar function FQ
r,0 (x, y) and the vector function FQ

r,X (x, y) are defined by

FQ
r,0 (x, y) = H0 − xG0 + F0 (−γ + x,−px + y + xκ1AX)

FQ
r,X (x, y) = HX − xGX + FX (−γ + x,−px + y + xκ1AX) ,

(34)

and ret+1 is given by

ret+1 = rt+1 − µQ
t = −G0 −G⊤

XXt +∆ct+1 + κ1A
⊤
XXt+1, (35)

where µQ
t = EQ

t [rt+1] is given by

µQ
t = κ0 + (κ1 − 1)A0 +G0 + (GX −AX)

⊤
Xt, (36)

with coefficients,

G0 = DF0 (−γ,−pX)

(
1

κ1AX

)
and GX = DFX (−γ,−pX)

(
1

κ1AX

)
. (37)

The operator D defines the Jacobian matrix of a real matrix function of a matrix of real variables.29 Formally, for a given
function Υ defined over Rm ×Rn and with values in Rp ×Rq, which associates to the m×n matrix ξ the p× q matrix Υ (ξ),
we have that DΥ(ξ) is the pq ×mn matrix defined by

DΥ(ξ) =
∂vec (Υ (ξ))

∂vec (ξ)
⊤ and DΥ(ξ∗) =

∂vec (Υ (ξ))

∂vec (ξ)
⊤

∣∣∣∣∣
ξ=ξ∗

, (38)

and we also define the operator Di for which the derivative is taken with respect to the ith argument of the function Υ.

To derive the term-structure of all risk-neutral moments, it is sufficient to compute the conditional moment-generating
function of aggregate returns, given by,

EQ
t

exp
x τ∑

j=1

ret+j

 = exp
(
FQ
r,0 (x; τ) +X⊤

t F
Q
r,X (x; τ)

)
(39)

where the sequence of functions FQ
r,0 (x; τ) and F

Q
r,X (x; τ) satisfy the following recursions,

FQ
r,0 (x; τ) = FQ

r,0 (x; τ − 1) + FQ
r,0

(
x, FQ

r,X (x; τ − 1)
)

FQ
r,X (x; τ) = FQ

r,X

(
x, FQ

r,X (x; τ − 1)
) (40)

with initial conditions FQ
r,0 (x; 1) = FQ

r,0 (x, 0) and F
Q
r,X (x; 1) = FQ

r,X (x, 0). Then, the nth order cumulants of excess returns

denoted, MQ
n (t, τ), is the derivative of the log moment-generating function of aggregate returns with respect to x, and

evaluated at x = 0,

MQ
n (t, τ) = βn,0 (τ) +X⊤

t βn,X (τ) , (41)

where

βn,0 (τ) = DnFQ
r,0 (0; τ) and βn,X (τ) = DnFQ

r,X (0; τ) . (42)

In particular,

βvr,0 (τ) = βvr,0 (τ − 1) +D2F
Q
0 (0, 0)βvr,X (τ − 1)

+

((
1

β1X (τ − 1)

))⊤

D2FQ
0 (0, 0)

(
1

βep,X (τ − 1)

) (43)

29See e.g. See Magnus and Neudecker (1988), Ch. 9, Sec. 4, p. 173.
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with βvr,0 (1) = D2
1F

Q
0 (0, 0), for the drift coefficient, and

βvr,X (τ) = D2F
Q
X (0, 0)βvr,X (τ − 1)

+

((
1

βep,X (τ − 1)

)
⊗ IK

)⊤

D2FQ
X (0, 0)

(
1

βep,X (τ − 1) ,

) (44)

with βvr,X (1) = D2
1F

Q
X (0, 0), for the slope coefficient, and where

βep,0 (τ) = βep,0 (τ − 1) +DFQ
0 (0, 0)

(
1

βep,X (τ − 1)

)
βep,X (τ) = DFQ

X (0, 0)

(
1

βep,X (τ − 1)

) (45)

with βep,0 (1) = D1F
Q
0 (0, 0) and βep,X (1) = D1F

Q
X (0, 0).

A.2 Affine Reduced-Form Models

Discrete time affine specifications of the return process have the following general Laplace transform of excess returns
(Darolles, Gourieroux, and Jasiak 2006),

Et

[
exp

(
x ret+1 + y⊤Xt+1

)]
= exp

(
A(x, y)⊤Zt +B(x, y)

)
, (46)

and the risk-free interest rate is defined as,
it = ρ0 + ρ′1Xt. (47)

Similarly, under the risk-neutral measure, Q, affine models have the following general representation,

EQ
t

[
exp

(
x ret+1 + y⊤Xt+1

)]
= exp

(
AQ(x, y)⊤Xt +BQ(x, y)

)
(48)

where

AQ(x, y) = A(u+ γ, v + Γ)−A(γ,Γ)

BQ(x, y) = B(u+ γ, v + Γ)−B(γ,Γ).

The parameters γ and Γ characterize the conditional state-price density, Zt+1,

Mt+1 = exp
(
γ ret+1 + Γ⊤ Ft + θt

)
, (49)

and Zt+1 must satisfy,

Et [Mt+1] = exp(−it) (50)

Et

[
Mt+1 exp(r

e
t+1)

]
= exp(−it)

which together imply that

θt = −A(γ,Γ)⊤Xt −B(γ,Γ)− it (51)

0 = A(1 + γ,Γ)⊤Xt +B(1 + γ,Γ)−A(γ,Γ)⊤Xt −B(γ,Γ).

If follows easily that multi-horizon returns have the following cumulant-generating function,

Et

[
exp

(
x ret,t+τ

)]
= exp

(
C(x, τ)⊤Xt +D(x, τ)

)
, (52)
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where

C(x, τ + 1) = A(x,C(x, τ)) (53)

D(x, τ + 1) = B(x,C(x, τ)) +D(x, τ),

and
C(u, 0) = 0, D(u, 0) = 0. (54)

The analog results follow under Q. Combining the cumulant-generating function under P and Q allows for the computation
of the bond, equity and variance premium by computing the appropriate nth-order Jacobian matrix as in section A.1.2 above.

A.3 Constructing A Monthly Sample

Option settlement dates follow a regular pattern though time: contracts are available for 3 successive months, then for the
next 3 months in the March, June, September, December cycle and, finally for the next two months in the June and December
semi-annual cycle. This leads to maturity groups with 1, 2 or 3 months remaining to settlement and then between 3 and
6, between 6 and 9, between 9 and 12 months, between 12 and 18 and between 18 and 24 months remaining to settlement.
We group option prices at the monthly frequency using their maturity date, so that enough observations are available within
each group to construct non-parametric measures. To see why this is a natural strategy, note first that each contract settles
on the third Friday of a month. Consider, then, all observations intervening between two successive (monthly) settlement
dates. Each of these observations can be unambiguously attributed to one maturity date. Moreover, within that period,
each contract will be attributed to the same maturity group.30 While a higher number of observations reduce sampling errors
in our estimates of risk-neutral moments, it may also increase noise if there is large within-month time-variation in the
distribution of stock returns at given maturities. To mitigate this effect, we always use the most recent observation when the
same contract (i.e. same maturity and strike price) is observed more than once.

A.4 Cumulants

We rely on the non-parametric approach of Bakshi and Madan (2000) to measure the conditional variance implicit in option
prices. Any twice-differentiable payoff, H(S(t + τ)), contingent on the future stock price, S(t + τ), can be replicated by a
portfolio of stock options. The portfolio allocations across option strikes are specific to each payoff H and given by derivatives
of the payoff function evaluated at the corresponding strike price. Following Bakshi and Madan, we take

H(S(t+ τ)) ≡(ret,t+τ )
n = ln

((
S(t+ τ)

(S(t)

)n)
,

so that the fair value, at time t, of a contract paying the second moments of returns over the next τ periods ahead,

V Q
2 (t, τ) ≡ EQ

t [e
−rτ

(
ret,t+τ

)2
], is given by

V Q
2 (t, τ)

2
=

∫ S(t)

0

1− ln(K/S(t))

K2
P (t, τ,K)dK +

∫ ∞

S(t)

1− log(K/S(t))

K2
C(t, τ,K)dK,

and can be directly computed from the relevant European call and put option prices, C(t, τ,K) and P (t, τ,K), with maturity
τ and strike price K. Finally, the risk-neutral variance at maturity τ is given by

V arQ(t, τ) = erτV Q
2 (t, τ)− µQ(t, τ)2,

30Take any contract, on any observation date. This contract is assigned to the 1-month maturity group if its settlement date occurs
on the following third-Friday, to the 2-month group if it occurs on the next to following third-Friday, etc. This grouping does not
change until we reach the next settlement date.
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where we follow Bakshi et al. (2003) to compute µQ(t, τ). Similarly, option-implied risk-neutral returns cumulants are given
by

MQ
1 (t, τ) ≡ µQ(t, τ) ≈ erτ − 1− erτ

2
V Q
2 (t, τ)− erτ

6
V Q
3 (t, τ)− erτ

24
V Q
4 (t, τ)

MQ
2 (t, τ) ≡ V arQ(t, τ) = erτV Q

2 (t, τ)− µQ(t, τ)2

MQ
3 (t, τ) = erτV Q

3 (t, τ)− 3µQ(t, τ)erτV Q
2 (t, τ) + 2µQ(t, τ)3

MQ
4 (t, τ) = erτV Q

4 (t, τ)− 4µQ(t, τ)erτV Q
3 (t, τ) + 6µQ(t, τ)2erτV Q

2 (t, τ)− 3µQ(t, τ)4,

where we closely followed Bakshi et al. (2003) in the computation of µQ. Recall that the first cumulant is the mean, the
second cumulant is the variance, the third cumulant is the third centered moment, and the fourth cumulant is the fourth
centered moment minus 3 times the squared variance.

A.5 Reduced-Rank Regressions

A multivariate reduced-rank regression model can be written as

Yt = AΓ⊤Ft +ΨZt + ϵt t = 1, . . . , T, (55)

where A and Γ have size (p×K) and (q ×K), respectively. The RRR estimators are given from the solution to

min
A,Γ,Ψ

∣∣∣∣∣
T∑

t=1

ϵtϵ
′
t

∣∣∣∣∣ , (56)

and closed-form expressions are given in Theorem 5 of Hansen (2008). In his notation, define the moment matrix,

Myf = T−1
T∑

t=1

YtF
⊤
t , (57)

and define the matrices Myy, Myz, Mff similarly. Also, define

Syy =Myy −MyzM
−1
zz Mzy (58)

Syf =Myf −MyzM
−1
zz Mzf ,

and define Sff and Syf = S⊤
fy similarly. Then, the estimator of A, Γ and of Ψ are given by,

Γ̂⊤ = [v̂1, . . . , v̂K ]ϕ (59)

Â = Sy,f B̂(B̂⊤Sff B̂)−1

Ψ̂ =MyzM
−1
zz − ÂB̂MfzM

−1
zz (60)

where [v̂1, . . . , v̂K ] are the eigenvectors corresponding to the largest K eigenvalues of,

|λSff − SfyS
−1
yy Syf | = 0, (61)

and ϕ is an arbitrary (K×K) matrix with full rank. It is a normalization device and corresponds to the choice of a particular
basis for the subspace spanned by the rows of Γ̂.
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Table 1: Option Sample Summary Statistics

Number of observations (out-of-the-money puts and calls) in each maturity (months) and moneyness (K/S) group. SP 500 futures

option data from January 1996 to October 2008.

Moneyness
Maturity < 0.90 0.90− 0.95 0.95− 0.975 0.975− 1 1− 1.025 1.025− 1.05 > 1.05

1 3173 3498 2229 2435 2429 2178 2638
2 4849 3350 2115 2423 2435 2098 3938
3 3077 1789 1151 1423 1371 1029 2649
6 4248 1694 987 1056 917 789 2957
9 2679 1020 635 645 484 405 2049
12 1621 598 368 417 375 264 1507
18 1504 500 279 313 267 169 1107
24 890 259 176 235 149 103 703

Table 2: Risk-Neutral Variance Summary Statistics

Summary statistics of conditional risk-neutral variance across maturities from 1 to 18 months (Panel A) and loadings from principal

component analysis of risk-neutral variance (Panel B). Risk-neutral variance measures at each maturity constructed using the model-free

method of Bakshi and Madan (2000). Option data from January 1996 to October 2008.

Panel A Summary Statistics

1 2 3 6 9 12 18
Mean 0.037 0.045 0.046 0.049 0.047 0.044 0.044
Std. Dev. 0.024 0.027 0.027 0.026 0.022 0.021 0.022
Skewness 1.484 1.193 1.047 0.888 0.549 0.847 0.478
Kurtosis 5.332 4.066 3.725 3.579 2.497 3.559 2.932
ρ(1) 0.738 0.730 0.788 0.820 0.871 0.812 0.809

Panel B Summary Statistics

1 2 3 4 5 6 7

Loadings

0.36 0.49 -0.75 -0.23 0.10 -0.05 -0.03
0.44 0.38 0.33 0.16 -0.41 -0.06 0.60
0.43 0.20 0.28 0.12 -0.07 0.52 -0.63
0.42 -0.06 0.26 0.02 0.32 -0.76 -0.27
0.35 -0.28 -0.01 0.15 0.70 0.37 0.40
0.31 -0.42 0.08 -0.81 -0.23 0.09 0.06
0.31 -0.57 -0.41 0.48 -0.42 -0.07 -0.06

R2 0.88 0.06 0.03 0.02 0.01 0.00 0.00
Cum. R2 0.88 0.94 0.97 0.99 0.99 1.00 1.00
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Table 3: Excess Return and the Variance Term Structure

Rank test p-values and R2s in multivariate regressions, Yt = Π0 + ΠFt + ϵt where each component of Yt is an excess bond or equity

returns, xrt,t+τ , and where Ft = { ˆV ar
Q
(t, τ)}τ=1,...,q is a q × 1 vector of risk-neutral variance measures. We consider annual excess

returns for bonds with maturities of 2, 3, 4 and 5 years, and SP 500 excess returns at horizons 1, 3, 6, 9 and 12 months. Panel A displays

p-values associated with the Cook and Setodji modified statistics, Λ̃r, in a test of the null hypothesis that the rank of the matrix Π

is r. Panel B displays the R2 associated with each of the individual bond returns predictability regression obtained via multivariate

reduced-rank regression (RRR) estimation but for different hypothesis on the rank of the matrix Π. Panel C displays the R2 associated

with each of the individual equity returns predictability regression. Risk-neutral variance measures at each maturity constructed using

the model-free method of Bakshi and Madan (2000). Monthly Returns and Option data from January 1996 to October 2008.

Panel A - Rank test p-values

H0 : r = 0 H0 : r = 1 H0 : r = 2 H0 : r = 3 H0 : r = 4 H0 : r = 5 H0 : r = 6
p-val 0.0 4.3 22.9 64.8 82.5 81.4 73.0

Panel B - Bond returns R2s

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
2 7.3 7.3 9.2 11.1 11.4 11.4 11.5
3 6.6 6.6 7.8 9.6 9.9 10.0 10.1
4 5.7 5.9 6.6 8.2 8.7 8.7 8.8
5 5.0 5.5 5.8 7.3 7.8 7.9 8.0

Panel C - Equity returns R2s

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
1 1.9 3.1 3.1 3.3 3.4 3.5 3.7
2 4.0 6.3 7.2 8.8 9.2 9.2 9.2
3 5.4 6.3 7.5 10.7 11.1 11.1 11.3
6 3.3 5.3 7.6 9.0 9.0 9.1 9.6
9 3.5 4.2 7.9 10.1 10.1 10.1 10.3
12 3.5 3.6 10.5 11.0 11.0 11.0 11.1

Table 4: Excess Variance Predictability

Results from multi-horizon predictability regressions of the excess variance over an horizon of of τ , xvt,t+τ , with τ = 1, 2, 3, 6, 9 and 12

months, respectively. The predictors include a constant and Γ̂Ft, the risk factors obtained from the multivariate reduced-rank regression

of bond and equity excess returns on the variance term structure (See Table 3). Newey-West t-statistics with lags corresponding to

the investment horizon plus 3 months in parenthesis and R2 reported in percentage. Risk-neutral variance measures at each maturity

constructed using the model-free method of Bakshi and Madan (2000). Monthly Variance and Option data from January 1996 to

October 2008.

1 2 3 6 9 12

Γ̂1
˜V ar

Q
t -0.011 -0.012 -0.010 -0.009 -0.003 -0.003

(-2.15) (-1.94) (-1.55) (-1.35) (-0.49) (-0.42)

Γ̂2
˜V ar

Q
t -0.005 -0.007 -0.008 -0.008 -0.009 0.005

(-1.23) (-1.78) (-1.74) (-2.21) (-2.51) (1.56)
R2 6.2 9.5 9.0 10.1 8.7 2.7
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