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Abstract 

This paper presents a dynamic general equilibrium model where asymmetric information 
about asset quality leads to asset illiquidity. Banking arises endogenously in this 
environment as banks can pool illiquid assets to average out their idiosyncratic qualities 
and issue liquid liabilities backed by pooled assets whose total quality is public 
information. Moreover, the liquidity mismatch in banks’ balance sheets leads to 
endogenous bank capital (outside equity) requirements for preventing bank runs. The 
model indicates that banking has both positive and negative effects on long-run economic 
growth and that business-cycle dynamics of asset prices, asset illiquidity and bank capital 
requirements are interconnected. 

JEL classification: E44, G21, D82 
Bank classification: Financial stability; Financial system regulation and policies  

Résumé 

L’auteur présente un modèle d’équilibre général dynamique dans lequel l’asymétrie de 
l’information relative à la qualité des actifs entraîne leur illiquidité. L’activité bancaire 
est générée de façon endogène : les banques peuvent regrouper les actifs illiquides de 
façon à ce que leurs caractéristiques idiosyncrasiques se neutralisent et émettre des 
passifs illiquides adossés au bloc d’actifs constitué, dont la qualité globale est connue de 
tous. Dans le modèle, la disparité qui existe en matière de liquidité entre les actifs et les 
passifs figurant au bilan des banques impose la détention de fonds propres (l’apport de 
capitaux extérieurs) afin de prévenir des retraits massifs de dépôts. Le modèle indique 
que l’activité bancaire a des effets tant positifs que négatifs sur la croissance économique 
à long terme et que la dynamique du cycle des prix d’actifs, l’illiquidité des actifs et le 
niveau requis de fonds propres sont interdépendants. 

Classification JEL : E44, G21, D82 
Classification de la Banque : Stabilité financière; Réglementation et politiques relatives 
au système financier 

 

 



1 Introduction

This paper presents a dynamic general equilibrium model of banking where asymmetric

information about asset quality leads to illiquidity of real assets, liquidity transformation by

banks, and bank capital requirements endogenously. The model provides explanations as to

why banks can issue liquid liabilities while other assets are illiquid, and why part of bank

liabilities must be outside equity, i.e., bank capital. Using this model, this paper analyzes the

long-run effects of banking on economic growth as well as business-cycle dynamics of asset

prices, asset illiquidity and bank capital requirements in response to productivity shocks and

changes in the degree of asymmetric information. This paper also discusses the implications

of the model for dynamic bank capital requirements recently discussed in policy forums.1

The model is a version of the AK model, where goods are produced from productive real

assets (physical capital) and new real assets are produced from goods. In the model, the

fraction of agents who can produce new real assets, which is determined by idiosyncratic

shocks, is so small that income from these agents’ real assets is not enough to achieve

the efficient level of aggregate investment in new real assets. Agents who can produce

new real assets can obtain goods from other agents by selling their existing real assets in

a competitive secondary market. However, because the productivity of each real asset is

private information for the seller in the secondary market, the secondary market price of real

assets becomes identical for every real asset sold, undervaluing high-quality real assets. The

market’s undervaluation discourages agents who can produce new real assets from selling the

high-quality fraction of their real assets, resulting in a decline in the transfer of goods to these

agents, which reduces aggregate investment in new real assets. The market’s undervaluation

is the definition of illiquidity in this paper.

This basic feature of the model is similar to the findings of Eisfeldt (2004) on illiquidity

1For example, see the reports by the Bank for International Settlements (2008), the Financial Stability
Forum (2009), and the Committee of European Banking Supervisors (2009).
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of real assets due to asymmetric information about asset quality.2 It is also closely related

to the results of Kiyotaki and Moore (2008), who introduce a constraint on the resaleable

fraction of real assets in a dynamic general equilibrium model. This paper endogenizes

the resaleability constraint in Kiyotaki and Moore’s model as agents choose not to sell the

undervalued fraction of their real assets in the secondary market.

The model shows that banking emerges endogenously in this environment. While the

illiquidity of real assets leads to agents’ demand for liquid assets, banks can meet this demand

as they can pool illiquid assets to average out the assets’ idiosyncratic qualities, which makes

the total quality of bank assets public information. As a result, bank liabilities backed by

pooled bank assets are priced fairly in the market, i.e., liquid. The model also explains

existence of bank capital requirements as the liquidity mismatch in banks’ balance sheets

makes self-fulfilling bank runs possible if all bank liabilities are deposits. The holders of bank

liabilities require part of bank liabilities to be outside equity (i.e., bank capital) to prevent

bank runs.3

The comparative statics of the model indicate that banking has both positive and negative

effects on long-run economic growth. The positive effect is a direct effect of supply of liquid

liabilities by banks, which increases the transfer of goods to agents who can produce new

real assets through sales of liquid assets, expanding aggregate investment in new real assets.

The negative effect is an indirect general equilibrium effect, or externality, of supply of liquid

liabilities by banks, which raises the required rate of returns for illiquid real assets and thus

lowers their price. This effect reduces the transfer of goods to agents who can produce

new real assets through sales of illiquid real assets. The numerical examples of the model

show that the positive effect dominates the negative effect if there is no operational cost of

2Both Eisfeldt (2004) and this paper impose Akerlof’s (1970) lemon problem on the competitive secondary
asset market. Kurlat (2009) analyzes the effect of learning in a similar model of illiquid assets. See the paper
by Gale (1992) for a model of competitive markets with adverse selection in a more general setup.

3This is the same type of self-fulfilling bank run as analyzed by Diamond and Dybvig (1983).
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banking, but that this is not the case if the cost is large.4

The dynamic analysis of the model shows that business-cycle dynamics of asset prices,

asset illiquidity and bank capital requirements are interconnected. The model incorporates

two types of business-cycle shocks: productivity shocks and changes in the degree of asym-

metric information. Changes in the degree of asymmetric information cause fluctuations in

the economic growth rate because resulting changes in asset illiquidity affect the transfer of

goods to agents who can produce new real assets. The model shows that, for both types

of shocks, higher secondary market prices of real assets during economic booms mitigate

illiquidity of real assets because higher prices make agents who can produce new real assets

willing to sell better real assets in the secondary market. As the average quality of real

assets sold in the market improves, the market’s undervaluation (illiquidity) of high-quality

real assets becomes less. Also, less illiquidity of real assets leads to higher market prices of

real assets as real assets become more convenient stores of wealth. Thus there are two-way

interactions of asset prices and asset illiquidity in equilibrium dynamics.

The model identifies downside risk to the market value of real assets and expected illiquid-

ity of real assets as crucial factors for bank capital requirements. As these factors fluctuate

over the business cycle, bank capital requirements are also dynamic. The model shows that,

when the aggregate productivity of real assets shifts between high and low states randomly,

bank capital requirements are pro-cyclical as pro-cyclical downside risk to the market value

of real assets becomes the dominant factor for bank capital requirements. However, when

a deterioration in asymmetric information causes an economic downturn, an increase in

expected illiquidity of real assets raises bank capital requirements. These results suggest

that the so-called “counter-cyclical capital buffer” recommended by the Financial Stability

Forum (2009) is effective in preventing self-fulfilling bank runs when downside risk to the

4In the model, the operational cost of banking is a bank equity holding cost for agents, which generates
an equity premium on bank equity.
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market value of bank assets is the dominant concern regarding financial stability, but that

the counter-cyclical capital buffer would not help to free up bank capital as designed in a

liquidity crisis.5

The model of banking in this paper adds to the vast literature on asymmetric information

and financial intermediation. Specifically, the model is related to the papers by Williamson

(1988) and Gorton and Pennacchi (1990).6 Related to their work, this paper analyzes the

role of banks in providing bank liabilities free of asymmetric information that contaminates

the secondary market for real assets. As in Gorton and Pennacchi’s model, bank liabilities

circulate among agents.

This paper is also related to the model of Holmström and Tirole (1998) as it focuses on

the effect of asset pooling by banks. In Holmström and Tirole’s model, banks pool short-term

assets to provide liquidity insurance for firms that invest in long-term assets, i.e., funding

liquidity. In contrast, in this paper, asset pooling by banks creates liquid bank liabilities,

i.e., market liquidity.7

The analysis of bank capital requirements is related to the findings of Diamond and Ra-

jan (2000, 2001), who analyze the role of outside bank equity as a buffer to volatile bank

asset value in a model where both the role of banking and bank fragility arise endogenously

from costly enforcement of debt repayment. Also, this paper’s model incorporates equilib-

rium pricing of liquid bank liabilities on the basis of agents’ demand for liquid assets as in

Holmström and Tirole (2001). This paper incorporates these features of banking in a unified

5The counter-cyclical capital buffer requires banks to increase bank capital during booms to absorb losses
in downturns.

6Williamson models a bank as a coalition of agents that internalizes the externality of adverse selection
in the asset market. Modelling banks as a coalition is similar to the model of Boyd and Prescott (1986).
Gorton and Pennacchi analyze the role of banks in providing information-insensitive riskless bank debt that
circulates among uninformed agents who avoid trading risky assets with informed agents.

7In fact, Kiyotaki and Moore (2005) foresee this result by interpreting their resaleability constraint as a
reduced-form representation of the effectiveness of liquidity creation by banks through asset pooling when
asymmetric information about asset quality exists. This paper confirms their insight.
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framework, adding to the literature on dynamic general equilibrium models of banking.8

In addition, the key feature of banks in the models of Diamond and Rajan (2000, 2001)

is that banks have higher collateral value of borrowers’ assets than other agents. This paper

derives this feature of banks endogenously from the ability for banks to conduct liquidity

transformation, showing that banks intermediate collateralized lending.

The remainder of the paper is organized as follows. Section 2 describes the model. Sec-

tion 3 solves the model. Section 4 analyzes the effects of asset illiquidity and liquidity

transformation by banks on aggregate investment. Section 5 investigates the dynamics of

asset illiquidity, asset prices and bank capital requirements. Section 6 discusses why banks

intermediate collateralized lending. Section 7 analyzes the sensitivity of bank capital re-

quirements to the bank liquidation procedure. Section 8 concludes.

2 The model

2.1 Agents

Time and utility.—Time is discrete and there is a continuum of infinite-lived agents who

gain utility from consumption of goods. The utility function for each agent is:

E0

∞
∑

t=0

βt ln ci,t, (1)

where ci,t is the consumption of goods, i is the index for each agent, t denotes the time

period, and β (∈ (0, 1)) is the time discount rate.

Production of goods.—Agents can produce homogeneous goods using trees (physical cap-

8For examples of dynamic general equilibrium models of banking in the literature, see the papers by
Williamson (1987), Chen (2001) and Kato (2006). The last two papers extend the models of Holmström and
Tirole (1997, 1998), respectively, to dynamic general equilibrium models.
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ital) they own at the beginning of each period:

yi,t = αtki,t−1, (2)

where yi,t is output, ki,t−1 is the quantity of trees held at the beginning of period t, and αt

is an aggregate productivity shock.

Depreciation of trees.—After production, each infinitesimal unit of trees, which are di-

visible, depreciates at its own rate. The distribution of depreciation rates is i.i.d. uniform

such that:

fi,δ,t =
ki,t−1

2∆t

for δ ∈ [δ̄ −∆t, δ̄ +∆t], (3)

where fi,δ,t is the density of agent i’s trees that depreciate at rate δ in period t, δ̄ (∈ (0, 1))

is the average depreciation rate, and ∆t (∈ (0, 1− δ̄)) is a stochastic mean-preserving spread

to the range of depreciation rates of trees.

Depreciation in the model represents permanent shocks to the individual productivity

levels of real assets in general. Given that private information about productivity of real

assets exists widely in reality, assume that the depreciation rate of each tree is only observed

by the agent who owns the tree at the beginning of the period.9 Also assume that the

current depreciation rate of each tree becomes public information at the beginning of the next

period.10 This assumption keeps the information dynamics in the model simple and tractable.

Given these assumptions, ∆t becomes a shock to the degree of asymmetric information in

9Physical depreciation of consumer durables such as cars and houses is a good example of private infor-
mation about productivity of real assets. For empirical analysis of business capital, see Eisfeldt and Rampini
(2006).

10Assume that all agents can learn the previous depreciation rate of each tree by observing the amount
of goods produced by each tree. After the revelation of depreciation rates, trees net of depreciation become
homogeneous once again and then each infinitesimal unit of homogeneous trees depreciates at its own rate.
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the economy in this paper.11

The secondary market for trees.—After depreciation of trees, agents can trade trees in

a competitive secondary market. The depreciation rate of each tree sold is private infor-

mation for the seller, given the assumption in the previous paragraph. Assume that agents

are anonymous so that the price of each tree in the market cannot be contingent on the

characteristics of the buyer or the seller, including the volume of sales by the seller. As a

consequence, every tree is traded at an identical price in each period.12 At the same time

with the secondary market for trees, agents can also trade bank liabilities (demand deposits

and bank equity) in competitive markets. The details on banks will be described in the next

subsection.

Investment in new trees.—After asset market transactions, a fraction of agents can invest

goods in production of new trees: ni,t = φi,txi,t, where ni,t is the quantity of new trees,

φi,t ∈ {0, φ} (φ > 0), and xi,t is the amount of goods invested in new trees. Thus, only

agents with φi,t = φ have investment opportunity. The value of φi,t is determined by an

idiosyncratic Markov process with a transition probability function, P , such that P (φi,t+1 =

φ | φi,t = φ) = ρP and P (φi,t+1 = 0 | φi,t = 0) = ρU for all i and t. Each agent learns the

value of φi,t at the beginning of period t.

The maximization problem for each agent.—Each agent maximizes the utility function

(1) subject to the following constraints in each period, which are implied by the assumptions

11Williamson (1987) analyzes the effects of a mean-preserving spread to the distribution of investment
returns. In his model, the mean-preserving spread worsens credit rationing due to costly state verification.
In this paper, the mean-preserving spread worsens adverse selection in the competitive secondary market for
trees as described below.

12This anonymous feature of the market is similar to centralized asset markets in reality, such as stock
exchanges. If there are multiple competitive markets sorted by the quantity of trees sold by each seller,
then the quantity could signal the average depreciation rate of trees sold in each market. Even in this case,
anonymity of sellers would let each seller split her trees into multiple lots and sell them in different markets
to maximize the total revenue from the sales. This paper abstracts from the interaction between competitive
market prices and this type of strategic seller behaviour.
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set so far:

ci,t + xi,t +Qthi,t + bi,t + (1 + ζ)Vtsi,t

= αtki,t−1 +Qt

∫ δ̄+∆t

δ̄−∆t

li,δ,t dδ + R̃tbi,t−1 + (Dt + Vt)si,t−1, (4)

ki,t = φi,txi,t + (1− δ̂t)hi,t +

∫ δ̄+∆t

δ̄−∆t

(1− δ)

(

ki,t−1

2∆t

− li,δ,t

)

dδ, (5)

li,δ,t ∈

[

0,
ki,t−1

2∆t

]

, ci,t ≥ 0, xi,t ≥ 0, hi,t ≥ 0, bi,t ≥ 0, si,t ≥ 0, (6)

where hi,t is the quantity of trees gross of depreciation bought in the secondary market,

li,δ,t is the density of trees gross of depreciation with depreciation rate δ sold by the agent,

Qt is the secondary market price of trees, δ̂t is the average depreciation rate of trees sold

in the secondary market, bi,t−1 is the amount of demand deposits held at the beginning of

period t, si,t−1 represents the units of bank equity held at the beginning of period t, R̃t is

the ex-post deposit interest rate, Dt is the amount of bank dividends per unit of equity, Vt

is the ex-dividend price of bank equity, and ζ (> 0) is an exogenous marginal cost of holding

bank equity, which is a reduced-form representation of equity management costs, such as

transaction costs and monitoring costs.13 This cost leads to an equity premium on bank

equity as described later. Each agent chooses {ci,t, xi,t, hi,t, li,δ,t bi,t si,t}
∞
t=0 taking as given

the probability distribution of {Qt, δ̂t, R̃t, Dt, Vt, αt, ∆t, φi,t}
∞
t=0.

14

Equations (4) and (5) are the flow-of-funds constraint and the law of motion for trees

net of depreciation (i.e., ki,t), respectively, and Constraints (6) are a short-sale constraint

on trees and non-negativity constraints on the choice variables. Note that the market price

of trees, Qt, is identical irrespective of the value of δ in li,δ,t in Equation (4) because the

depreciation rate of each tree sold is private information for the seller. Also, because every

13The face value of deposits is protected by the court. In contrast, equity holders need to identify the cash
flow for each bank and negotiate with the bank on the amount of dividends in each period.

14The choice variables are state-contingent. The notation of state contingency is omitted here.
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unit of trees is infinitesimal, the average depreciation rate of trees bought by each buyer

equals the average depreciation rate of trees sold in the market, δ̂t, by the law of large

numbers.15 Thus, (1− δ̂t)hi,t in Equation (5) is the total quantity of trees net of depreciation

that the agent obtains through the secondary market with certainty. In Equations (5) and

(6), ki,t−1(2∆t)
−1 is the density of the agent’s trees with depreciation rate δ as specified by

Equation (3).

Equation (4) and Constraints (6) imply that agents cannot borrow due to their anonymity,

which makes it difficult to enforce their intertemporal commitments. Assume that new trees

cannot be collateral when agents invest in them because new trees materialize only at the

beginning of the next period. The assumption of no borrowing lets the model have a closed-

form solution to dynamic equilibrium equations when there is no bank, which enables the

basic features of the model to be clarified analytically. Section 6 will extend the model

by allowing agents to borrow against new trees. The section will show that the ability of

banks in pooling illiquid assets and providing liquid liabilities, which will be described in

the next subsection, increases the collateral value of new trees for banks, inducing banks to

intermediate collateralized lending.

2.2 Banks

There are many small homogeneous banks that buy trees in the secondary market by fi-

nancing the cost through issuing demand deposits and bank equity to agents in competitive

markets. In contrast to agents, banks are not anonymous. Banks can commit to redeeming

deposits and paying dividends by goods produced from their trees in the future with no

agency problem. This paper considers only deposit and equity contracts, assuming that con-

15This is a common feature of competitive equilibrium models with adverse selection. See Gale (1992) and
Eisfeldt (2004) for example.
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tingent contracts are not verifiable.16 The production function for goods and the distribution

of depreciation rates of trees for banks are the same as in Equations (2) and (3) for agents.

The flow of funds and the law of motion for trees for each bank.—Because banks are

homogeneous, consider a representative bank to simplify the notation. The flow-of-funds

constraint on the representative bank and the law of motion for its trees are:

DtSB,t−1 + R̃tBB,t−1 +Qt(HB,t − LB,t) = αtKB,t−1 +BB,t + Vt(SB,t − SB,t−1), (7)

KB,t = (1− δ̂t)HB,t + (1− δ̄)(KB,t−1 − LB,t), (8)

where SB,t−1 represents the units of bank equity outstanding at the beginning of period t,

BB,t−1 is the amount of demand deposits outstanding at the beginning of period t, HB,t is

the amount of trees gross of depreciation bought by the bank in the secondary market, LB,t

is the amount of trees gross of depreciation sold by the bank in the secondary market, and

KB,t−1 is the amount of trees held at the beginning of period t.17 Equation (8) implies that

banks, like agents, do not know the depreciation rate of each tree they buy in the secondary

market, so the average depreciation rate of trees bought by each bank in the market equals

δ̂t by the law of large numbers, as in Equation (5) for agents. Also, note that LB,t is not

specific to the depreciation rate of each tree sold. It is assumed that banks do not know

the depreciation rate of each tree they have, so they cannot sell their trees selectively. As

a result, in the last term on the right-hand side of Equation (8), the average depreciation

rate of trees sold by each bank equals the average depreciation rate of all of its trees, δ̄, by

16Thus the analysis of the (non) existence of bank runs under the optimal contingent contract, such as the
work by Green and Lin (2003), Peck and Shell (2003), Andolfatto and Nosal (2008) and Ennis and Keister
(2009), is beyond the scope of this paper. Also, note that equity is not contingent contracts that specify
contingent returns ex-ante. Instead, ex-post negotiation of dividends must take place as if default on debt
occurs every period. See Hart and Moore (1994) for more details on the feature of equity as a financial
contract.

17The last term on the right-hand side of Equation (7) is the revenue from newly issued equity if it is
positive or the expenditure on equity repurchases if it is negative.
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the law of large numbers. This assumption makes banks keep holding trees in equilibrium

as shown by Proposition 1 below.18 Overall, banks do not have any informational advantage

over agents in the secondary market for trees and the only advantage of banks over agents

is the ability of banks to issue deposits and equity against the trees they hold.

Bank runs.—The ex-post deposit interest rate, R̃t, equals the non-contingent ex-ante de-

posit contract rate denoted by R̄t−1, which is determined in period t−1, if the representative

bank does not default. But assume that a self-fulfilling bank run occurs if the face value of

deposits, R̄t−1BB,t−1, exceeds the liquidation value of trees held by the bank at the beginning

of the period, (αt+Qt)KB,t−1.
19 In this case, the bank cannot roll over its deposits and must

maximize the repayment to depositors by liquidating all of the trees it owns. Because the

liquidation value of the bank’s trees is less than the face value of deposits, the bank must

default. Bank equity thus loses value and no dividend is paid on equity. Hence:

R̃t =















R̄t−1, if R̄t−1BB,t−1 ≤ (αt +Qt)KB,t−1,

(αt+Qt)KB,t−1

BB,t−1
, if R̄t−1BB,t−1 > (αt +Qt)KB,t−1,

(9)

LB,t = KB,t−1, HB,t = Vt = Dt = 0, if R̄t−1BB,t−1 > (αt +Qt)KB,t−1. (10)

The recovery rate of deposits in the second line of Equation (9) is determined by the flow-

of-funds constraint (7), given Equation (10).

Note that the liquidation value of the representative bank’s trees, (αt+Qt)KB,t−1, is eval-

18If banks had private information about the depreciation rate of each tree they owned, then in equilibrium
the existence of banks would worsen the adverse selection problem in the secondary market for trees because
banks never have opportunity to invest in new trees and would sell only a low-quality fraction of their trees.
Even in this case, the average depreciation rate of trees held by each bank would be public information
through rational expectations of bank behaviour, which would make deposits and bank equity liquid as
explained below.

19As shown below, the present discounted value of future income generated by the bank’s trees exceeds
the liquidation value of trees in equilibrium. Thus, if the bank can roll over deposits, then the bank can
avoid default. However, if all of the depositors expect that the bank cannot roll over deposits, then their
expectations become self-fulfilling.
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uated by the competitive secondary market price of trees, Qt. The underlying assumptions

are that the only channel for banks to sell their trees is the competitive secondary market

and that each bank is so small that a failure of a bank does not affect the market price.

Thus agents who run to a bank take Qt as given. Section 7 will extend the model to discuss

the effect of an alternative bank liquidation procedure in which a bank hit by a bank run

can set up a market for liquidating the bank’s trees separately from the secondary market

for trees.

The model assumes no deposit insurance or suspension of convertibility of deposits by the

government, which would prevent self-fulfilling bank runs as shown by Diamond and Dybvig

(1983).20 This is a simplifying assumption, given that short-term funding not covered by

deposit insurance, such as wholesale funding, is an important source of finance for banks

and that suspension of convertibility of deposits is a drastic policy measure that is not often

used. As will be shown below, this assumption lets the model incorporate bank capital

requirements due to the risk of self-fulfilling bank runs, which enables this paper to analyze

dynamics of bank capital requirements with endogenous fluctuations in illiquidity of bank

assets.

The maximization problem for each bank.—Given Equations (7)-(10), the representative

bank maximizes the value of the bank for equity holders, (Dt + Vt)SB,t−1, in each period

given the predetermined value of SB,t−1.
21 In so doing, the bank internalizes the first-order

conditions with respect to si,t and bi,t in the maximization problem for agents defined by

Equations (1) and (4)-(6), which represent the responses of the ex-ante deposit contract rate,

20In this paper’s model, limiting the repayment of deposits to the flow income from each bank’s trees
prevents bank runs because banks are not forced to sell their trees to redeem deposits. Even though the
flow income from banks’ trees is not enough to redeem all deposits held by depositors who need to convert
deposits into goods (i.e., productive agents who were unproductive in the previous period), banks can redeem
deposits held by these agents by issuing new deposits to other agents, if there is no stochastic shock to the
economy.

21There is no disagreement between productive and unproductive equity holders, since the maximum of
each agent’s utility function increases in the agent’s net worth regardless of the value of φi,t, given the
probability distribution of exogenous variables for agents.
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R̄t, and the equity price, Vt, to the bank’s behaviour:

Vt = Et [ΛV,t+1(Dt+1 + Vt+1)] , (11)

1 = Et

[

ΛR,t+1min
{

R̄t, (αt+1 +Qt+1)KB,t(BB,t)
−1
}]

, (12)

where:

ΛV,t+1 ≡
βci∗,t

(1 + ζ)ci∗,t+1

, i∗ ≡ argmax
i∈I

Et

[

βci,t(Dt+1 + Vt+1)

(1 + ζ)ci,t+1

]

, (13)

ΛR,t+1 ≡
βci∗∗,t
ci∗∗,t+1

, i∗∗ ≡ argmax
i∈I

Et

[

βci,tmin
{

R̄t, (αt+1 +Qt+1)KB,t(BB,t)
−1
}

ci,t+1

]

, (14)

and I denotes the set of all indices for agents. In Equations (12) and (14), Equation (9) is

substituted into R̃t+1, and KB,t(BB,t)
−1 is replaced with infinity if BB,t = 0. The maximum

operators in Equations (13) and (14) indicate that the buyers of the bank liabilities are the

agents who value the liabilities the most.22 Note that the bank equity holding cost, ζ, makes

agents require a higher rate of return on bank equity than on deposits. This is an equity

premium.

Substituting Equation (11) into Equation (7) implies that (Dt + Vt)SB,t−1 is determined

recursively. The maximization problem for the representative bank is defined as:

(Dt + Vt)SB,t−1 = Ωt(KB,t−1, BB,t−1, R̄t−1) ≡

max
{HB,t,LB,t,BB,t,R̄t}

αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1 +BB,t

+ Et

[

ΛV,t+1Ωt+1(KB,t, BB,t, R̄t)
]

,

s.t. Equations (8)− (10) and (12), LB,t ∈ [0, KB,t−1], HB,t ≥ 0, BB,t ≥ 0, (15)

22If there is no supply of bank liabilities, then the left-hand sides of Equations (11) and (12) need only
to be weakly greater than the right-hand sides. For this case, assume that the left-hand side equals the
right-hand side in each equation in equilibrium without loss of generality.
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where the last three constraints are a no short-sale constraint on trees in the secondary

market and non-negativity constraints on choice variables. The bank takes as given the

probability distribution of {Qt, δ̂t, αt, ΛV,t, ΛR,t}
∞
t=0.

23

Note that banks can choose to shut down their business by liquidating all of their trees

if financial intermediation is not profitable. Thus, if banks conduct financial intermediation

by buying trees and issuing liabilities, then it is an endogenous result in the model.

2.3 Shock processes

There are two types of aggregate shocks, αt and ∆t. Each type of shock follows a two-state

Markov process. More specifically, αt ∈ {ᾱ, α}, ∆t ∈ {∆̄,∆}, and the transition probability

function denoted by P is such that P (αt+1 = ᾱ | αt = ᾱ) = η̄α, P (αt+1 = α | αt = α) = η
α
,

P (∆t+1 = ∆̄ | ∆t = ∆̄) = η̄∆, and P (∆t+1 = ∆ | ∆t = ∆) = η
∆
for all t.

2.4 Equilibrium conditions

Market equilibrium conditions in the model are:

δ̂t =

∫

I

∫ δ̄+∆t

δ̄−∆t
δ li,δ,t dδ dµ+ δ̄ LB,t

∫

I

∫ δ̄+∆t

δ̄−∆t
li,δ,t dδ dµ+ LB,t

, (16)

∫

I

hi,t dµ+HB,t =

∫

I

∫ δ̄+∆t

δ̄−∆t

li,δ,t dδ dµ+ LB,t, (17)

∫

I

bi,t dµ = BB,t, (18)

∫

I

si,t dµ = SB,t, (19)

23Assume that if there is no existing equity holder for a bank (i.e., SB,t−1 = 0), then the bank maximizes
the net profit from an initial public offering of its equity and consumes the profit right away. Because the
net profit equals the value of Ωt, this case is covered by the maximization problem (15). It can be shown
that the net profit from the initial public offering becomes zero in equilibrium.
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where µ is the measure of indices for agents on I. These equations are, in order, the definition

of δ̂t and the market clearing conditions for trees, deposits, and bank equity. An equilibrium

in the model is characterized by fulfillment of the following: the maximization problem for

each agent defined by Equations (1) and (4)-(6) is solved for all i ∈ I; the maximization

problem for the representative bank (15) is solved for t = 0, 1, 2, ...; the bank and agents

hold rational expectations; and Equations (16)-(19) are satisfied for all t = 0, 1, 2, ....

3 Equilibrium behaviour of agents and banks

This section solves the model. Call agents with φi,t = φ “productive” and those with

φi,t = 0 “unproductive”. Throughout the paper, suppose that the following conditions hold

in equilibrium:

φ > (1− δ̂t)Q
−1
t , (20)

1 > Et

[

βci,tR̃t+1

ci,t+1

∣

∣

∣

∣

∣

φi,t = φ

]

, (21)

(1 + ζ)Vt > Et

[

βci,t(Dt+1 + Vt+1)

ci,t+1

∣

∣

∣

∣

φi,t = φ

]

. (22)

These conditions will be verified in the numerical examples of equilibria considered below.

The first condition says that agents with one unit of goods can obtain a larger amount of

trees net of depreciation by investing in new trees than by buying trees in the secondary

market. Thus productive agents do not buy trees. The second and third conditions say that

the rate of return on investing in new trees for productive agents dominates the rates of

return on deposits and bank equity. Under these conditions, productive agents only invest

in new trees (i.e., xi,t > 0 and hi,t = bi,t = si,t = 0, if φi,t = φ) and unproductive agents

become the buyers of deposits and bank equity in equilibrium. Thus ΛV,t+1 and ΛR,t+1 are
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determined by the stochastic discount factor, βci,t(ci,t+1)
−1, for unproductive agents.24

Also, hereafter, the number of exogenous states is limited to two by considering one of

the two types of aggregate shocks, αt and ∆t, at a time. If ᾱ > α, so that αt fluctuates, then

set ∆̄ = ∆. Otherwise set ᾱ = α and ∆̄ > ∆. This assumption simplifies the representative

bank’s problem about whether it should take the risk of a bank run, which makes the

computation of equilibrium dynamics tractable.

3.1 Asset illiquidity and adverse selection by agents

The maximization problem for each agent defined by Equations (1) and (4)-(6) implies that

each agent sells a tree if the marginal revenue from the sale, Qt, is greater than the internal

rate of return on keeping the tree until the next period, given the tree’s depreciation rate:

li,δ,t =















ki,t−1(2∆t)
−1, if Qt ≥ λi,t(1− δ),

0, otherwise,

(23)

where λi,t is the shadow value of trees net of depreciation at the end of period t (i.e., ki,t),

so that λi,t(1− δ) is the shadow value of trees with depreciation rate δ.25

In equilibrium, the shadow value of trees net of depreciation is less than or equal to the

marginal cost of obtaining them for each agent because otherwise the agent would be better

off cutting consumption to spend more on trees, which would contradict the definition of

24As shown by Equation (34) below, unproductive agents have an identical stochastic discount factor in
each period in equilibrium due to the log utility function.

25The shadow value of ki,t is given by current consumption, ci,t, multiplied by the Lagrange multiplier for
the law of motion for trees net of depreciation (Equation (5)) in the maximization problem for each agent
defined by Equations (1) and (4)-(6).
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equilibrium. Given Conditions (20)-(22), it can be shown that:

λi,t =















φ−1, if φi,t = φ,

λU,t ≤ Qt(1− δ̂t)
−1, if φi,t = 0,

(24)

where λU,t denotes the value of λi,t for unproductive agents. The value of λi,t for productive

agents equals the marginal cost of producing new trees. The right-hand side of the weak

inequality in Equation (24) is the marginal cost for unproductive agents to obtain trees

net of depreciation through the secondary market. If the inequality holds strictly, then

unproductive agents do not buy trees. Thus:















λU,t = Qt(1− δ̂t)
−1, if hi,t > 0 for all i s.t. φi,t = 0,

hi,t = 0 for all i s.t. φi,t = 0, if λU,t < Qt(1− δ̂t)
−1.

(25)

Equations (23) and (24) imply that there exists a lower bound for the depreciation rates

of trees sold by each agent, δi,t, such that:26

δi,t =















δP,t ≡ max
{

δ̄ −∆t, 1−Qtφ
}

, if φi,t = φ,

δU,t ≡ max
{

δ̄ −∆t, 1−Qt(λU,t)
−1
}

, if φi,t = 0.

(26)

For each agent, trees whose depreciation rates are lower than δi,t are illiquid in the sense that

the secondary market price of trees, Qt, is less than the internal value of the trees for the

holder. As a result, agents do not sell these trees (i.e., adverse selection). Hereafter, consider

δP,t and δU,t as the indicators of illiquidity of trees for productive agents and unproductive

agents, respectively.

26The maximum operator ensures that the value of δi,t is within the range of the distribution of depreciation

rates. Condition (20) and Equations (24) and (26) imply that δP,t < δ̂t and δU,t ≤ δ̂t. Thus δi,t ≤ δ̄ + ∆t

for all i.
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Equation (16) implies that the adverse selection leads to δ̂t > δ̄, if there exist illiquid trees

(i.e., if δP,t > δ̄−∆t or δU,t > δ̄−∆t). On the other hand, Condition (20) and Equation (26)

imply δP,t < δ̂t, which leads to δ̂t < δ̄ +∆t, i.e., a positive volume of trade in the secondary

market for trees, given Equation (16). Intuitively, productive agents sell some high-quality

trees (whose depreciation rates are below δ̂t) despite the market’s undervaluation as the

return on investment in new trees exceeds the cost of the market’s undervaluation for these

trees. The supply of undervalued trees by productive agents saves the secondary market for

trees from a complete shutdown (δ̂t = δ̄ +∆t).
27

3.2 Liquidity transformation by banks

The solution to the maximization problem (15) leads to the following proposition.

Proposition 1 As assumed above, the number of exogenous states is two in each period.

Given the values of period-t variables, denote the smaller value of αt+1 + Qt+1 by ωt+1, the

larger value by ω̄t+1, and the conditional probability that αt+1 + Qt+1 = ω̄t+1 by Pt(ω̄t+1).

Suppose Conditions (20)-(22) hold in equilibrium. Then:

R̃tBB,t−1 + (Dt + Vt)SB,t−1 =














[

αt + λB,t(1− δ̄)
]

KB,t−1, if R̄t−1BB,t−1 ≤ (αt +Qt)KB,t−1,

(αt +Qt)KB,t−1, if R̄t−1BB,t−1 > (αt +Qt)KB,t−1,

(27)

where λB,t ≡ max{λ′B,t, λ
′′
B,t} and λ′B,t and λ′′B,t, respectively, are the present discounted

values of the future marginal income from the representative bank’s trees conditional on

27Note that the measure of the trees whose depreciation rates equal δ̄ +∆t is zero in the economy.
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R̄tBB,t = ωt+1KB,t and R̄tBB,t = ω̄t+1KB,t such that:

λ′B,t ≡ Et

{

βci,t
[

αt+1 + λB,t+1(1− δ̄)− ωt+1

]

(1 + ζ)ci,t+1

+
βci,t ωt+1

ci,t+1

∣

∣

∣

∣

∣

φi,t = 0

}

, (28)

λ′′B,t ≡ Pt(ω̄t+1)Et











βci,t
[

αt+1 + λB,t+1(1− δ̄)− ω̄t+1

]

(1 + ζ)ci,t+1

∣

∣

∣

∣

∣

φi,t = 0

αt+1 +Qt+1 = ω̄t+1











+ Et

[

βci,t (αt+1 + Qt+1)

ci,t+1

∣

∣

∣

∣

φi,t = 0

]

, (29)

R̄tBB,t =















ωt+1KB,t, if λ′B,t > λ′′B,t,

ω̄t+1KB,t, if λ′B,t < λ′′B,t.

(30)

Also, if banks buy trees in the secondary market, then the present discounted value of the

future marginal income from the representative bank’s trees equals the marginal acquisition

cost of the trees and also banks keep holding their trees:

λB,t =
Qt

1− δ̂t
, if HB,t > 0, (31)

LB,t = 0, if δ̂t > δ̄ and HB,t > 0. (32)

Proof. See Appendix A.

Equation (27) implies that, because each bank can commit to paying all of the current

and future income from its trees to the holders of bank liabilities, the total market value

of bank liabilities, R̃tBB,t−1 + (Dt + Vt)SB,t−1, equals the present discounted value of the

current and future income from the bank’s trees, [αt +λB,t(1− δ̄)]KB,t−1, given no bank run

in the current period. As shown by the flow-of-funds constraint (4), agents can obtain this

value of goods when they transfer bank liabilities to other agents in the markets. Thus, bank

liabilities are fairly priced in the markets, i.e., liquid.
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Note that, if there were asymmetric information about the quality of each bank’s trees,

then bank liabilities would be illiquid like trees. This does not happen in the model because

asset pooling by each bank averages out the idiosyncratic depreciation rates of the bank’s

trees, so that the total quantity of trees net of depreciation held by each bank (i.e., (1 −

δ̄)KB,t−1) becomes public information.

If δ̂t > δ̄ due to adverse selection as described in Section 3.1, then substituting Equation

(31) into Equation (27) and comparing the first and second lines of Equation (27) imply

that agents can increase the market value of their assets by holding liquid bank liabilities

instead of illiquid trees. On the flip side, liquidation of a bank’s trees due to a bank run is

costly for the holders of bank liabilities. Proposition 1 shows that, if λ′B,t > λ′′B,t, then the

cost of a bank run is so high that, despite an equity premium generated by the bank-equity

holding cost, ζ, each bank limits the face value of deposits, R̄tBB,t, to ωt+1KB,t, which is the

maximum face value of deposits without any possibility of a bank run in the next period.

Given the endogenous limit on the face value of deposits, Equations (11), (27) and (31)

imply that banks must finance by bank equity a part of the acquisition cost of banks’ trees,

which equals the present discounted value of the future income from the trees in equilibrium

as shown by Equation (31):

VtSB,t = Et







βci,t

[

αt+1 +Qt+1(1− δ̂t)
−1(1− δ̄)− ωt+1

]

KB,t

(1 + ζ)ci,t+1

∣

∣

∣

∣

∣

∣

φi,t = 0







, (33)

which is positive, given δ̂t > δ̄.
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3.3 Equilibrium laws of motion for aggregate variables

Given the log utility function, each agent consumes a fraction 1− β of net worth and saves

the rest in each period:

ci,t = (1− β)wi,t, (34)

λi,tki,t + bi,t + (1 + ζ)Vtsi,t = βwi,t, (35)

where wi,t is the agent’s net worth defined by:

wi,t ≡

(

αt +

∫ δi,t

δ̄−∆t

λi,t(1− δ)

2∆t

dδ +

∫ δ̄+∆t

δi,t

Qt

2∆t

dδ

)

ki,t−1 + R̃tbi,t−1 + (Dt + Vt)si,t−1. (36)

In Equations (35) and (36), trees are evaluated by the shadow value of trees net of depreci-

ation for each agent, λi,t, except the fraction of trees sold.28

Now suppose λ′B,t > λ′′B,t and HB,t > 0 for all t so that there is no bank run and banks

are always providing liquidity transformation services in equilibrium. Note that δ̂t > δ̄ is a

necessary condition for λ′B,t > λ′′B,t. Substituting Equations (17)-(19), (24), (27), (31) and

(32) into Equations (5), (8), (16), (28) and (35) implies:

KP,t

φ
= β

{(

αt +

∫ δP,t

δ̄−∆t

1− δ

φ · 2∆t

dδ +

∫ δ̄+∆t

δP,t

Qt

2∆t

dδ

)

[ρPKP,t−1 + (1− ρU)KU,t−1]

+(1− ρU)

[

αt +
Qt(1− δ̄)

1− δ̂t

]

KB,t−1

}

, (37)

28To confirm Equations (34)-(36), apply the envelope theorem to the first-order condition with respect to
ki,t in the maximization problem for each agent defined by Equations (1) and (4)-(6), which yields:

λi,t = Et

[

βci,t
ci,t+1

(

αt+1 +

∫ δi,t+1

δ̄−∆t+1

λi,t+1(1 − δ)

2∆t+1

dδ +

∫ δ̄+∆t+1

δi,t+1

Qt+1

2∆t+1

dδ

)]

.
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λU,tKU,t +

[

(1 + ζ)Qt

1− δ̂t
−
ζωt+1

R̄t

]

KB,t =

β

{[

αt +

∫ δU,t

δ̄−∆t

λU,t(1− δ)

2∆t

dδ +

∫ δ̄+∆t

δU,t

Qt

2∆t

dδ

]

[(1− ρP )KP,t−1 + ρUKU,t−1]

+ ρU

[

αt +
Qt(1− δ̄)

1− δ̂t

]

KB,t−1

}

, (38)

KP,t = φXP,t +

∫ δP,t

δ̄−∆t

1− δ

2∆t

dδ [ρPKP,t−1 + (1− ρU)KU,t−1] , (39)

KU,t = (1− δ̄)HU,t +

∫ δU,t

δ̄−∆t

1− δ

2∆t

dδ [(1− ρP )KP,t−1 + ρUKU,t−1] , (40)

KP,t +KU,t +KB,t = φXP,t + (1− δ̄)(KP,t−1 +KU,t−1 +KB,t−1), (41)

δ̂t =
θt−1

∫ δ̄+∆t

δP,t
δ dδ +

∫ δ̄+∆t

δU,t
δ dδ

θt−1(δ̄ +∆t − δP,t) + δ̄ +∆t − δU,t
, (42)

Qt

1− δ̂t
= Et







βci,t

[

αt+1 +
Qt+1

1−δ̂t+1

(1− δ̄)− ωt+1

]

(1 + ζ)ci,t+1
+
βci,t ωt+1

ci,t+1

∣

∣

∣

∣

∣

∣

φi,t = 0







, (43)

where KP,t ≡
∫

{i|φi,t=φ}
ki,t dµ, XP,t ≡

∫

{i|φi,t=φ}
xi,t dµ, KU,t ≡

∫

{i|φi,t=0}
ki,t dµ, HU,t ≡

∫

{i|φi,t=0}
hi,t dµ, BU,t ≡

∫

{i|φi,t=0}
bi,t dµ, SU,t ≡

∫

{i|φi,t=0}
si,t dµ, and θt−1 ≡ [ρPKP,t−1 +

(1 − ρU)KU,t−1][(1 − ρP )KP,t−1 + ρUKU,t−1]
−1.29 Given Conditions (20)-(22), λ′B,t > λ′′B,t,

and HB,t > 0 for all t, these equations together with Equations (25) and (26) determine

the equilibrium dynamics of the model recursively. The conditions are verified in all of the

numerical examples of equilibria considered below.

4 Effects of asset illiquidity and liquidity transformation by banks on aggregate

investment

This section describes an analytical result regarding the negative effect of illiquidity of trees

on aggregate investment in new trees in the baseline case of the model without banks, and

29Regarding the second term on the left-hand side of Equation (38), note that Equations (11), (12) and

(43) imply BB,t + (1 + ζ)VtSB,t = [(1 + ζ)Qt(1− δ̂t)
−1 − ζωt+1(R̄t)

−1]KB,t.
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then shows comparative statics analysis of how introduction of banking to the model economy

changes aggregate investment in new trees.

4.1 The negative illiquidity effect on aggregate investment : Comparison with the complete

information case

To derive equilibrium in the baseline case of the model without banks, impose KB,t = 0 on

Equations (37)-(42) for all t and ignore Equation (43) as this is derived from the maximization

problem for banks (15).

The following proposition shows that aggregate investment in new trees in the baseline

case without banks is lower than in the complete information case.30

Proposition 2 Suppose Condition (20) holds in equilibrium in the baseline case of the model

without banks. Then:

XP,t

Yt
=

θt−1

(1 + θt−1)φαt

[

φβ

(

αt +

∫ δ̄+∆t

δP,t

Qt

2∆t

dδ

)

− (1− β)

∫ δP,t

δ̄−∆t

1− δ

2∆t

dδ

]

< β −
(1− β)(1− δ̄)

φαt

, (44)

where Yt ≡
∫

I
yi,t dµ, so that XP,t(Yt)

−1 is the ratio of aggregate investment in new trees

to aggregate output. The right-hand side of the inequality, β − (1− β)(1− δ̄)(φαt)
−1, is the

value of XP,t(Yt)
−1 in the complete information case as well as in the representative agent

case where φi,t = φ for all i and t, if and only if:

(1− δ̄)(1 + θt−1 − β) ≥ φβαt. (45)

30In the complete information case, the secondary market price of trees, Qt, and the amount of trees
bought by each agent in the secondary market, hi,t, become specific to the depreciation rate of each tree
in the maximization problem for each agent defined by Equations (1) and (4)-(6). The market clearing
condition for the trees with each depreciation rate must be satisfied separately in equilibrium. See Appendix
B.1 for more details on the definition of the complete information case.

24



Also, if Conditions (20) and (45) hold in equilibrium in the baseline case of the model without

banks, then δP,t = 1−Qtφ > δ̄ −∆t.

Proof. See Appendix B.

Given the predetermined value of θt−1, all of the numerical examples considered below

satisfy Condition (45).31 The intuition for this proposition is as follows: In the complete

information case, the competitive secondary market price of each tree reflects the depreciation

rate of the tree, which makes all trees liquid in the secondary market. Given Condition (45),

productive agents have enough liquid trees (i.e., high θt−1) to achieve the desired level of

investment in new trees.32 On the other hand, asymmetric information makes a fraction of

trees illiquid in the baseline case of the model without banks. Illiquidity of trees reduces

the sales of trees by productive agents, as confirmed by δP,t > δ̄ −∆t, decreasing aggregate

investment in new trees.

4.2 General equilibrium effects of introduction of banking to the economy: Numerical anal-

ysis of comparative statics

To illustrate how introduction of banking to the model economy changes aggregate invest-

ment in new trees, Figure 1 compares the balanced growth paths in the baseline case of the

model without banks and those in the full model with banks under different values of the

bank equity holding cost, ζ, fixing the values of the other parameters to their benchmark

values. The benchmark parameter values are set to replicate post-war sample averages of

U.S. data on the balanced growth path in the full model with banks.33

31In the numerical examples below, the arrival of the opportunity to invest in new trees is i.i.d for each
agent (i.e., ρP = 1−ρU ) so that θt−1 = ρP (1−ρP )

−1. Thus, Condition (45) becomes a parameter restriction.
32In this case, the allocation of net worth among agents is irrelevant for aggregate investment in new trees

and, as a result, the complete information case becomes identical to the representative agent case.
33The benchmark parameter values are (δ̄, φ, β, ζ, ρP , ρU ) = (0.1, 4.75, 0.99, 0.02, 0.45, 0.55), ᾱ = α = 0.03,

and ∆̄ = ∆ = 0.09. Suppose the length of a period in the model is a year. For 1948-2007 in the U.S., the
average real GDP growth rate was 3.4%, the average real interest rate on three-month Treasury bills was
3.9%, and the average ratio of the bank credit of commercial banks to the fixed assets in the economy was
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Figure 1 shows that, in the long run, introduction of banking to the model economy

increases XP,t/Yt if the value of ζ is small, but reduces XP,t/Yt otherwise. There are two

opposite effects behind this result. First, the supply of liquid bank liabilities by banks

increases the transfer of goods from unproductive agents to productive agents via sales

of bank liabilities, which expands aggregate investment in new trees. This effect can be

confirmed by the following proposition.

Proposition 3 If Condition (20) holds and δ̂t > δ̄, then:

Qt(1− δ̄)

1− δ̂t
>

∫ δP,t

δ̄−∆t

1− δ

φ · 2∆t

dδ +

∫ δ̄+∆t

δP,t

Qt

2∆t

dδ. (46)

Proof. See Appendix C.

Equation (46) implies that the coefficient of KB,t−1 is larger than that of KU,t−1 in the

aggregate saving rule for productive agents specified by Equation (37). Thus, a shift in

the saving portfolio of unproductive agents from trees to bank liabilities, which increases

KB,t−1 and reduces KU,t−1, expands investments in new trees by productive agents who were

unproductive buying bank liabilities in the previous period.34 This is a direct positive effect

of introduction of banking on aggregate investment in new trees.

15.0%. These numbers are approximately replicated by the growth rate of aggregate output (Gt−1), R̄t−1,
and KB,t/(KP,t +KU,t +KB,t), in order, on the balanced growth path in the model. (See Equation (47) for
the definition of the variable Gt.) The capital-asset ratio of banks, VtSB,t(BB,t + VtSB,t)

−1, is around 8%,
which is the minimum requirement by the Basel agreement. The 10% annual average depreciation rate of
trees implied by δ̄ is a standard assumption. Rouwenhoust (1995) reports that the equity premium on S&P
500 was 1.99% on average for 1948-1992. The equity premium on bank equity in the model takes a similar
value. The data sources for the first three sample averages are NIPA data from the BEA and financial data
from the Federal Reserve Board. Note that ρP = 1−ρU , which implies that the arrival of the opportunity to
produce new trees is i.i.d. for each agent. This assumption is set to reduce the dimension of the parameter
space.

34Appendix C also shows that, if δ̂t > δ̄ and λU,t is sufficiently close to Qt(1 − δ̂t)
−1, then:

Qt(1− δ̄)

1− δ̂t
<

∫ δU,t

δ̄−∆t

λU,t(1− δ)

2∆t

dδ +

∫ δ̄+∆t

δU,t

Qt

2∆t

dδ.
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Second, the supply of liquid bank liabilities by banks also raises the expected future

consumption of unproductive agents because they will be able to obtain more goods from

the sales of their assets, and thus consume more, when they become productive in the next

period.35 A resulting decline in the stochastic discount factor, βci,t(ci,t+1)
−1, for unproductive

agents, which can be confirmed by an increase in R̄t in the figure, leads to a drop in the

secondary market price of trees, Qt, through Equation (43).36 Given δP,t = 1 − Qtφ in

the figure, a decline in Qt increases the illiquid fraction of trees held by productive agents

who were productive investing in new trees in the previous period, which reduces their

investments in new trees. This is an indirect negative effect of introduction of banking on

aggregate investment in new trees.

Figure 1 indicates that, if the bank equity holding cost, ζ , is low, then the positive

effect dominates the negative effect, increasing XP,t/Yt as well as the gross rate of growth of

aggregate output,

Gt ≡
Yt
Yt−1

. (47)

In this case, introduction of banking to the model economy makes the value of XP,t/Yt

approach, but remain less than, the value of XP,t/Yt in the complete information case,

β − (1 − β)(1 − δ̄)(φαt)
−1 (= 0.9268 under the benchmark parameter values). But if the

bank equity holding cost is large, then the opposite result holds as holding bank equity

consumes goods, adding to the indirect negative effect of introduction of banking to the

Thus, if unproductive agents remain unproductive in the next period, then holding bank liabilities can be
ex-post costly as they will lose the opportunity to sell trees with high depreciation rates at an overvalued
secondary market price. Overall, unproductive agents hold bank liabilities if the benefit shown by Proposition
3 exceeds the opportunity cost.

35Equation (34) implies that consumption is increasing in the net worth of the agent defined by Equation
(36).

36See Equation (12) for the relationship between βci,t(ci,t+1)
−1 and R̄t. For the baseline case without

banks, R̄t is the hypothetical deposit contract rate with no supply of deposits.
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model economy.37

5 Dynamics of asset illiquidity, asset prices and bank capital requirements

This section describes the equilibrium dynamics of the model, especially highlighting the

illiquidity of trees, the secondary market price of trees, and the capital-asset ratio of banks.

5.1 Dynamics of asset illiquidity and the asset price in the baseline case of the model without

banks

The equilibrium dynamics can be clarified analytically in the baseline case of the model

without banks. When there is no bank, nobody would buy trees in the secondary market

unless unproductive agents do. Thus, hi,t > 0 if φi,t = 0, which leads to λU,t = Qt(1− δ̂t)
−1

and δU,t = δ̂t, given Condition (20) and Equations (25) and (26).38 Then, Equations (37)-

(39) and (41) imply that the values of (Qt, δ̂t) in each period are determined by Equation

(42) and:

Qt

1− δ̂t

{

(1− δ̄)(1 + θt−1)− θt−1

∫ δP,t

δ̄−∆t

1− δ

2∆t

dδ

}

= β

(

αt +
Qt

1− δ̂t

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

Qt

2∆t

dδ

)

, (48)

given the predetermined value of θt−1, the exogenous values of αt and ∆t, and δP,t =

max{δ̄ − ∆t, 1 − Qtφ}. Equation (48) can be interpreted as the market clearing condition

37This result crucially depends on the assumption that the bank equity holding cost is a physical cost.
This result might not hold if the equity premium on bank equity is modeled as an endogenous spread due to
some agency problem. Also, note that the indirect negative effect of banking is not internalized by any agent
or bank. Even if the bank equity holding cost is large, agents and banks find banking profitable, taking as
given the secondary market price of trees, Qt.

38Condition (20) implies that 1 − Qtφ < δ̂t. Because δP,t = min{δ̄ − ∆t, 1 − Qtφ} and δ̂t ≤ δ̄ + ∆t by
definition, [δP,t, δ̄ +∆t] is not an empty set, so productive agents sell some fraction of trees in the market.
Because hi,t = 0 if φi,t = φ, the buyers of trees must be unproductive when there is no bank. Thus hi,t > 0

if φi,t = 0. Then Equations (25) and (26) imply λU,t = Qt(1 − δ̂t)
−1 and δU,t = δ̂t.
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for trees, where the left-hand side of the equation is the value of trees net of depreciation

that unproductive agents must hold at the end of the period, and the right-hand side is

the fraction of net worth that unproductive agents save. Both sides are normalized by

(1− ρP )KP,t−1 + ρUKU,t−1.

Figure 2 draws Equations (42) and (48) on the (Qt, δ̂t) plane and shows how a decline

in αt makes them shift. It is possible to show that the two equations are downward-sloping

and that Equation (48) has a steeper slope than Equation (42) at the intersection of the

two equations if β is sufficiently close to 1 and Condition (20) is satisfied at the intersection.

See Appendix D for the proof. In the figure, Equation (48) shifts inward as a decline in

αt lowers Qt through decreased aggregate spending on trees due to decreased unproductive

agents’ income, given δ̂t. Then, given δP,t = 1− φQt, a decline in the market price of trees,

Qt, discourages productive agents from selling high-quality trees in the secondary market,

leading to an increase in the average depreciation rate of trees sold in the secondary market,

δ̂t. Thus, the illiquidity of trees for each type of agent indicated by δP,t and δ̂t (= δU,t) is

negatively correlated with productivity shocks.

Figure 3 shows the effects of an increase in ∆t on the (Qt, δ̂t) plane, which increases

the degree of asymmetric information in the economy. While Equation (42) shifts upward

unambiguously, the direction of the shift in Equation (48) is ambiguous.39 It can be shown

that Equation (48) shifts inward if δP,t is sufficiently close to δ̂t and shifts outward if δP,t ≤ δ̄.

See Appendix E for the proof.40 The top panel of Figure 3 shows the first case.41 In this

case, a deterioration in asymmetric information increases illiquidity of trees, as indicated by

39As agents sell only low-quality trees in the secondary market, an increase in low-quality trees due to a
higher value of ∆t raises δ̂t, given Qt.

40The intuition for this result regarding Equation (48) is that an increase in ∆t expands both ends of
the distribution of the depreciation rates so that whether the fraction of trees sold by productive agents
increases or not depends on the level of δP,t. If δP,t is sufficiently close to δ̂t, then the fraction of trees sold

by productive agents increases, which in turn reduces Qt through the market clearing condition, given δ̂t. If
δP,t ≤ δ̄, then the fraction of trees sold by productive agents declines, which in turn increases Qt, given δ̂t.

41Because Equation (42) implies that δ̂t is close to δ̄ +∆t if δP,t is close to δ̂t, the top panel of Figure 3
is a case where severe adverse selection takes place in the secondary market for trees.
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an upward shift in Equation (42), which in turn reduces the market price of trees, Qt.

Overall, Figures 2 and 3 illustrate that both shocks to αt and ∆t can cause a negative

correlation between Qt and δ̂t. The next subsection, however, shows that the two types of

shocks have opposite effects on bank capital requirements.

5.2 Cyclicality of bank capital requirements: Numerical analysis of equilibrium dynamics

Now investigate the equilibrium dynamics of the full model with banks, especially highlight-

ing the dynamics of the capital-asset (equity-asset) ratio of banks. Equations (11), (12), (33)

and (43) imply that the capital-asset ratio of banks satisfies:42

VtSB,t

BB,t + VtSB,t

=

Et

{

(1− δ̂t)βci,t
Qt(1 + ζ)ci,t+1

[

Qt+1(δ̂t+1 − δ̄)

1− δ̂t+1

+ (αt+1 +Qt+1 − ωt+1)

]
∣

∣

∣

∣

∣

φi,t = 0

}

. (49)

Note that the total value of bank liabilities, BB,t + VtSB,t, equals the value of bank assets in

the balance sheets of banks.

Equation (49) indicates that the equilibrium capital-asset ratio of banks depends on two

factors: the expected value of illiquidity of banks’ trees, δ̂t+1 − δ̄, and the downside risk to

the market value of banks’ trees, αt+1 + Qt+1 − ωt+1. The first factor matters as higher

expected illiquidity of bank assets lowers the limit on bank deposits, which increases the

fraction of bank asset value that must be financed through bank equity, as described in

Section 3.2. The second factor is relevant because a larger possible decline in the market

value of bank assets requires more bank capital as a buffer for preventing bank runs in the

next period. To illustrate that these two factors have opposite effects on the cyclicality of

the capital-asset ratio of banks, Figures 4 and 5 show sample paths of the model driven by

42Equations (11), (12) and (43) imply BB,t + VtSB,t = Qt(1 − δ̂t)
−1KB,t.
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periodic fluctuations in αt and ∆t, respectively.
43 See Appendix F for the numerical solution

method.

Figure 4 indicates that the capital-asset ratio of banks is pro-cyclical when business cycles

are driven by productivity shocks, αt. Note that Qt and δ̂t are, respectively, positively and

negatively correlated with αt, as explained in Section 5.1. Given that the economic growth

rate, Gt, is positively correlated with αt, the positive correlation between Qt and Gt implies

that the largest possible decline in the market value of banks’ trees becomes greater during

economic booms (i.e., when Gt is high) than during downturns (i.e., when Gt is low), which

leads to a pro-cyclical capital-asset ratio of banks. Even though the negative correlation

between δ̂t and Gt implies that expected illiquidity of banks’ trees is counter-cyclical given

the persistence of shocks, the effect of this factor is dominated by the effect of the pro-cyclical

downside risk to the market value of banks’ trees in the figure.

In contrast, Figure 5 indicates that the capital-asset ratio of banks is counter-cyclical

when business cycles are driven by changes in ∆t, i.e., changes in the degree of asymmetric

information. In the figure, Qt and δ̂t are, respectively, negatively and positively correlated

with ∆t. The underlying mechanism is the same as in the top panel of Figure 3 in Section 5.1.

Also, the economic growth rate, Gt, is negatively correlated with ∆t because an increase in

δP,t due to a rise in ∆t implies higher illiquidity of trees for productive agents, which reduces

aggregate investment in new trees by discouraging productive agents from selling their trees.

While the positive correlation between Qt and Gt and the negative correlation between δ̂t

and Gt have opposite implications for the cyclicality of the capital-asset ratio of banks, the

effect of the counter-cyclical fluctuations in expected illiquidity of banks’ trees dominates in

43In Figure 4, (ᾱ, α, η̄α, ηα) = (0.0306, 0.0294, 0.75, 0.75) and ∆̄ = ∆ = 0.09, so the growth rate of output
is around 4% in booms and around 2% in downturns, on average, and the expected durations of booms and
downturns are four years, given that the length of a period in the model is interpreted as a year. In Figure
5, (∆̄, ∆, η̄∆, η∆) = (0.1, 0.08, 0.75, 0.75) and ᾱ = α = 0.03. Thus: ∆t fluctuates symmetrically around

the benchmark value, 0.9; δ̄ − ∆̄ = 0; and the expected durations of booms and downturns are four years.
The other parameters take the benchmark values specified in Footnote 33.
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Figure 5, which leads to a counter-cyclical capital-asset ratio of banks.

5.3 Implications of the model for the “counter-cyclical capital buffer” discussed in policy

forums

While bank capital requirements in the model are imposed by rational investors who dislike

losing the internal value of bank assets due to a bank run, the equilibrium dynamics of bank

capital requirements can be seen as a benchmark for regulators who act rationally on behalf of

the public, taking the market prices as given.44 The results suggest that the counter-cyclical

capital buffer recommended by the Financial Stability Forum (2009), which requires banks

to increase bank capital in booms to absorb losses in downturns, is sufficient to prevent self-

fulfilling bank runs when downside risk to the market value of bank assets is the dominant

concern regarding stability of banks. However, if a deterioration in asymmetric information

in the asset market increases the illiquidity of bank assets significantly, then banks need to

raise more bank capital during the liquidity crisis to prevent self-fulfilling bank runs. This

result is consistent with the recent episode in which, amid a severe decline in market liquidity

of asset-backed securities, short-term lending to Bear Stearns dried up despite satisfying the

supervisory capital standard.45 This result also implies that the counter-cyclical capital

buffer will not help to free up bank capital as designed in a liquidity crisis.

6 Why do banks intermediate collateralized lending?

This section extends the model to discuss why banks are engaged with both liquidity trans-

formation and intermediation of collateralized lending in reality. Modifying the assumption

of no borrowing, suppose that productive agents can sell a right to receive a fraction of new

44Dewatripont and Tirole (1994) make a similar interpretation of their models, calling the interpretation
“representative hypothesis”.

45See the letter from the SEC chairman to the Basel Committee of Banking Supervision on March 20,
2008 (http://www.sec.gov/news/press/2008/2008-48_letter.pdf).
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trees that they invest in up to a certain limit:

mi,t ≥ −ψφi,txi,t, (50)

where mi,t is the net balance of the right to receive new trees, which is positive if the agent

buys the right or negative if the agent sells the right, and ψ (∈ (0, 1)) is the pledgeable

fraction of investment in new trees. Assume that pledged new trees are delivered to buyers

before production in the next period so that buyers can use the new trees for their own

production. The price of the right to receive new trees, which is denoted by Pt, is determined

in a competitive market. This price can be interpreted as the collateral value of pledged new

trees as agents receive an amount Pt|mi,t| of goods against a quantity |mi,t| of new trees

pledged as collateral.

The modified model, which is fully described in Appendix G, implies that productive

agents sell the right to receive new trees up to the limit, given Condition (20). Also, it is

possible to show that Pt equals the highest shadow value of trees net of depreciation among

agents and banks (i.e., Pt = max{maxi∈I λi,t, λB,t}) as those who have the highest shadow

value become the buyers of the right to receive new trees. Equations (24) and (31) imply

λU,t ≤ λB,t. Thus banks become buyers if banks exist. Moreover, if λU,t < λB,t, which is

the case in the numerical examples shown above, then unproductive agents do not buy the

right to receive new trees because the price, which equals to λB,t, is too high. This result

implies that banks intermediate collateralized lending without special ability in enforcing

debt repayment or monitoring borrowers in the model because the ability of banks in pooling

illiquid assets and providing liquid liabilities increases the collateral value of new trees for

banks.
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6.1 General equilibrium effects of banking on the collateral value of new real assets

If there is no bank, then unproductive agents buy the right to receive new trees because there

are no other possible buyers. Thus Pt = λU,t in this case. Given Pt = λU,t without banks

and Pt = λB,t with banks, Equations (25) and (31) imply that Pt = Qt(1 − δ̂)−1 regardless

of the existence of banks. Assuming that ψ is arbitrarily close to 0, Figure 6 compares the

steady state value of Qt(1 − δ̂)−1 with and without banks under the benchmark parameter

values, as in Figure 1. It shows that introduction of banking to the model economy reduces

the collateral value of new trees, Qt(1 − δ̂)−1. Figure 1 indicates two opposite effects of

introduction of banking. First, introduction of banking to the model economy reduces the

secondary market price of trees, Qt, by raising the internal rate of return for unproductive

agents, which is represented by R̄t. This effect reduces the collateral value of new trees.

Second, at the same time, a decline in Qt increases the average depreciation rate of trees

sold in the secondary market, δ̂t, as productive agents are discouraged from selling high-

quality trees, given δP,t = 1 − Qtφ in Figures 1 and 6. This effect increases the collateral

value of new trees because higher illiquidity of trees in the secondary market increases the

attractiveness of new trees, which are free of asymmetric information. However, the first

negative effect dominates the second positive effect under the benchmark parameter values.

7 The effect of an alternative bank liquidation procedure on bank capital re-

quirements

So far it has been assumed that a bank hit by a bank run can only sell trees one by one

in the the competitive secondary market. Now suppose that, before a bank run starts, the

bank or the government, foreseeing the bank run, can set up a competitive bank liquidation

market to liquidate the bank’s trees separately from the secondary market for trees. The

comparison of the two markets for bank liquidation is useful to clarify the effect of the bank
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liquidation procedure on bank capital requirements.

It can be shown that the bank or the government’s commitment to setting up a bank

liquidation market separately from the competitive secondary market for trees can prevent

self-fulfilling bank runs, making bank capital requirements unnecessary. See Appendix H

for details on the extension of the model and the proof of this result. To understand the

intuition for this result, note that the whole bank’s trees are sold in the bank liquidation

market and that no other seller exists in the market, which prevents adverse selection that

contaminates the secondary market for trees. As a result, the average depreciation rate of

the trees sold in the bank liquidation market equals the average depreciation rate of the

liquidated bank’s trees. Thus the liquidated bank’s trees are priced fairly on average in the

bank liquidation market and the total liquidation value of the liquidated bank’s trees equals

their total fundamental value, i.e., the present discounted value of the current and future

income from the liquidated bank’s trees.46 As rational agents expect this, self-fulfilling bank

runs do not occur. Hence the holders of bank liabilities do not need to impose costly bank

capital requirements on banks.

8 Conclusions

This paper has presented a dynamic competitive general equilibrium model of liquidity

transformation by banks, where illiquidity of bank assets leads to endogenous bank capi-

tal requirements for preventing self-fulfilling bank runs. The model shows that bank capital

requirements depend on two factors, downside risk to the market value of bank assets and

expected illiquidity of bank assets. It is shown that these two factors fluctuate with shocks

to the economy, making bank capital requirements dynamic. The model suggests that the

counter-cyclical capital buffer recommended by the Financial Stability Forum (2009) is suf-

46The market price of trees is determined by the average depreciation of trees sold in the bank liquidation
market, as in the secondary market for trees.
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ficient to prevent self-fulfilling bank runs when downside risk to the market value of bank

assets is the dominant concern regarding stability of banks. This result regarding the rela-

tionship between volatile bank asset value and the counter-cyclical capital buffer adds to the

findings of Meh and Moran (2010). In their model, banks need to finance part of lending

to borrowers through their own capital to commit to efficient monitoring services. If banks

suffer from unexpected loan losses, then bank capital requirements decline as the scarcity of

bank capital gives greater incentive for banks to monitor borrowers during such an episode.

The model, however, also shows that if a deterioration in asymmetric information in

the asset market increases the illiquidity of bank assets significantly, then banks need to

raise more bank capital during the liquidity crisis to prevent self-fulfilling bank runs. This

result implies that the counter-cyclical capital buffer will not help to free up bank capital as

designed in a liquidity crisis.

A question arises from this result regarding how a concern about a future liquidity cri-

sis would modify bank capital requirements. Because it is difficult to raise bank capital in

a liquidity crisis in reality, concern about a future liquidity crisis might increase desirable

bank capital requirements during a boom, unless there is some insurance mechanism for the

liquidity crisis, such as contingent capital. To answer this question, it would be necessary to

incorporate the difficulty in raising bank capital in a liquidity crisis by introducing hetero-

geneous banks and asymmetric information about the quality of each bank’s assets in the

model. This issue is left for future research.

In addition, the model shows that the level of bank capital requirements declines if the

bank liquidation procedure can avoid undervaluation of banks’ illiquid assets. The same

result would hold if the government or the central bank could commit to lending to banks

hit by bank runs up to the fundamental value of bank assets, rather than the market value of

bank assets at illiquid market prices. Thus, along with improving the effectiveness of bank

capital regulations, it is important to design an efficient bank liquidation procedure and an
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efficient emergency lending facility for distressed banks to minimize the necessity of bank

capital requirements, given the cost of equity financing for banks.
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Figure 1: Comparative statics: balanced growth paths with and without banks
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Notes: The horizontal axis is the value of ζ. The other parameter values are (δ̄, φ, β, ρP , ρU )
= (0.1, 4.75, 0.99, 0.45, 0.55), ᾱ = α = 0.03 and ∆̄ = ∆ = 0.09. The solid lines represent
the model with banks and the dashed lines represent the model without banks.
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Figure 2: Dynamic equilibrium without banks: the effect of a decline in αt
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Notes: For each curve in the figure, parameter values used are (δ̄, φ, β, ζ, ρP , ρU ) = (0.1,
4.75, 0.99, 0.02, 0.45, 0.55) and ∆̄ = ∆ = 0.09. The solid lines are Equations (42) and (48)
with αt = 0.03 and the dashed lines are these equations with αt = 0.027. Given ρP = 1−ρU ,
θt−1 = ρP (1 − ρP )

−1 for all t, regardless of shocks.
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Figure 3: Dynamic equilibrium without banks: the effect of an increase in ∆t

(a)

0.1764 0.1766 0.1768 0.177 0.1772 0.1774 0.1776 0.1778 0.178
0.165

0.17

0.175

0.18

0.185

0.19

0.195

Qt

δ̂ t

Eq. (48)

Eq. (42)

(b)

0.1922 0.1923 0.1924 0.1925 0.1926 0.1927 0.1928
0.145

0.15

0.155

0.16

0.165

0.17

0.175

Qt

δ̂ t

Eq. (48)

Eq. (42)

Notes: Parameter values used are: (δ̄, φ, β, ζ) = (0.1, 4.75, 0.99, 0.02), ᾱ = α = 0.03
and ∆̄ = ∆ = 0.09 for both panels; (ρP , ρU ) = (0.45, 0.55) for the top panel; and (ρP ,
ρU ) = (0.2, 0.8) for the bottom panel. In each panel, the solid lines are Equations (42)
and (48) with ∆t = 0.09 and the dashed lines are these equations with ∆t = 0.099. Given
ρP = 1− ρU , θt−1 = ρP (1− ρP )

−1 for all t, regardless of shocks.
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Figure 4: Dynamic equilibrium with banks: business cycles driven by αt
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when αt keeps changing its value every 4 periods for a sufficiently long time. HU,t = 0 for
all periods.
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Figure 5: Dynamic equilibrium with banks: business cycles driven by ∆t

2 4 6 8 10

0.08

0.09

0.1

0.11
∆t

2 4 6 8 10
15.49

15.495

15.5
KP,t/Yt

2 4 6 8 10
13.85

13.86

13.87
KU,t/Yt

2 4 6 8 10
5.035

5.04

5.045

5.05
KB,t/Yt

2 4 6 8 10
0.968

0.97

0.972

0.974
BU,t/Yt

2 4 6 8 10
0.9246

0.9247

0.9247
XP,t/Yt

2 4 6 8 10
1.03176

1.03178
Gt

2 4 6 8 10
0.17

0.172

0.174

0.176
Qt

2 4 6 8 10
0.09

0.0905

0.091

0.0915
VtSB,t/(BB,t + VtSB,t)

2 4 6 8 10
0.17

0.18

0.19

0.2
δP,t

2 4 6 8 10
0.17

0.18

0.19

0.2
δU,t

2 4 6 8 10
0.17

0.18

0.19

0.2
δ̂t

2 4 6 8 10
1.039

1.04

1.041
R̄t

2 4 6 8 10
0.2114

0.2116

0.2118

0.212
λU,t

Notes: Parameter values are (δ̄, φ, β, ζ, ρP , ρU ) = (0.1, 4.75, 0.99, 0.02, 0.45, 0.55),
ᾱ = α = 0.03, (∆̄, ∆) = (0.1, 0.08), and η̄∆ = η

∆
= 0.75. The figure shows a sample path

when ∆t keeps changing its value every 4 periods for a sufficiently long time. HU,t = 0 for
all periods.
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Figure 6: Comparative statics: the collateral value of new trees (Qt(1 − δ̂t)
−1) with and

without banks
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Notes: The horizontal axis is the value of ζ. The other parameter values take the benchmark
values specified in Section 4.2: (δ̄, φ, β, ρP , ρU ) = (0.1, 4.75, 0.99, 0.45, 0.55), ᾱ = α = 0.03
and ∆̄ = ∆ = 0.09. The figure shows the limit case where ψ is arbitrarily close to 0, given
the other parameter values. The solid line represents the model with banks and the dashed
line represents the model without banks.

43



References

[1] Aikman, David, and Gertjan W. Vlieghe. 2004. ”How Much Does Bank Capital Mat-

ter?” Bank of England Quarterly Bulletin, Spring: 48-58.

[2] Akerlof, George A. 1970. “The Market for ”Lemons”: Quality Uncertainty and the

Market Mechanism.” Quarterly Journal of Economics, 84(3): 488-500.

[3] Andolfatto, David, and Ed Nosal. 2008. “Bank Incentives, Contract Design and Bank

Runs.” Journal of Economic Theory, 142(1): 28-47.

[4] Bank for International Settlements. 2008. ”Addressing Financial System Procyclicality:

a Possible Framework”, Note for the FSF Working Group on Market and Institutional

Resilience. www.financialstabilityboard.org/publications/r_0904e.pdf

[5] Boyd, John H., and Edward C. Prescott. 1986. “Financial Intermediary-Coalitions.”

Journal of Economic Theory, 38(2): 211-232.

[6] Chen, Nan-Kuang. 2001. “Bank Net Worth, Asset Prices and Economic Activity.” Jour-

nal of Monetary Economics, 48(2): 415-436.

[7] Committee of European Banking Supervisors. 2009. ”Position Paper on a Coun-

tercyclical Capital Buffer.” www.c-ebs.org/News--Communications/Archive/2009/

CEBS-today

-publishes-a-Position-Paper-on-a-counter.aspx

[8] Dewatripont, Mathias, and Jean Tirole. 1994. The Prudential Regulation of Banks.

Cambridge, MA: MIT Press.

[9] Diamond, Douglas W., and Philip H. Dybvig. 1983. ”Bank Runs, Deposit Insurance,

and Liquidity.” Journal of Political Economy, 91(3): 401-419.

44



[10] Diamond, Douglas W., and Raghuram G. Rajan. 2000. “A Theory of Bank Capital.”

Journal of Finance, 55(6): 2431-2465.

[11] Eisfeldt, Andrea L. 2004. “Endogenous Liquidity in Asset Markets.” Journal of Finance,

59(1): 1-30.

[12] Eisfeldt, Andrea L., and Adriano A. Rampini. 2006. “Capital Reallocation and Liquid-

ity.” Journal of Monetary Economics, 53(3): 369-399.

[13] Ennis, Huberto M., and Todd Keister. 2009. “Run Equilibria in the Green-Lin Model

of Financial Intermediation.” Journal of Economic Theory, 144(5): 1996-2020.

[14] Financial Stability Forum. 2009. “Report of the Financial Stability Forum on Ad-

dressing Procyclicality in the Financial System.” www.financialstabilityboard.org/

publications/r_0904a.pdf

[15] Gale, Douglas. 1992. “A Walrasian Theory of Markets with Adverse Selection.” Review

of Economic Studies, 59(2): 229-255.

[16] Gorton, Gary, and George Pennacchi. 1990. “Financial Intermediaries and Liquidity

Creation.” Journal of Finance, 45(1): 49-71.

[17] Green, Edward J., and Ping Lin. 2003. “Implementing Efficient Allocations in a Model

of Financial Intermediation.” Journal of Economic Theory, 109(1): 1-23.

[18] Hart, Oliver, and John Moore. 1994. “A Theory of Debt based on the Inalienability of

Human Capital.” Quarterly Journal of Economics, 109(4):849-879.

[19] Holmström, Bengt, and Jean Tirole. 1997. “Financial Intermediation, Loanable Funds,

and the Real Sector.” Quarterly Journal of Economics, 112(3): 663-691.

45



[20] Holmström, Bengt, and Jean Tirole. 1998. “Private and Public Supply of Liquidity.”

Journal of Political Economy, 106(1): 1-40.

[21] Holmström, Bengt, and Jean Tirole. 2001. “LAPM: A Liquidity-Based Asset Pricing

Model.” Journal of Finance, 56(5): 1837-1867.

[22] Kato, Ryo. 2006. “Liquidity, Infinite Horizons and Macroeconomic Fluctuations,” Eu-

ropean Economic Review, 50(5): 1105-1130.

[23] Kiyotaki, Nobuhiro, and John Moore. 2005. “Financial Deepening.” Journal of the Eu-

ropean Economic Association, 3(2-3): 701-713.

[24] Kiyotaki, Nobuhiro, and John Moore. 2008. “Liquidity, Business Cycles and Monetary

Policy.” http://www.princeton.edu/~kiyotaki/papers/ChiKM6-1.pdf

[25] Kurlat, Pablo. 2009. “Lemons, Market Shutdowns and Learning.” http://econ-www.

mit.edu/files/4822

[26] Meh, Césaire, and Kevin Moran. 2010. “The Role of Bank Capital in the Propagation

of Shocks.” Journal of Economic Dynamics and Control, 34(3): 555-576.

[27] Peck, James, and Karl Shell. 2003. “Equilibrium Bank Runs.” Journal of Political Econ-

omy, 111(1): 103-123.

[28] Rouwenhoust, K. Geert. 1995. “Asset Pricing Implications of Equilibrium Business Cy-

cle Models.” In Frontiers of Business Cycle Research, ed. Thomas Cooley, 294-330.

Princeton, NJ: Princeton University Press.

[29] Williamson, Stephen D. 1987. “Financial Intermediation, Business Failures, and Real

Business Cycles.” Journal of Political Economy, 95(6): 1196-1216.

46



[30] Williamson, Stephen D. 1988. “Liquidity, Banking, and Bank Failures.” International

Economic Review, 29(1): 25-43.

47



Appendices

A Proof of Proposition 1

The following lemma will be used in the proof.

Lemma 1 Suppose that Ωt+1 satisfies Equations (27)-(29) for period t + 1. Split the con-

straint set of the maximization problem (15) into three regions: R̄tBB,t ≤ ωt+1KB,t; R̄tBB,t ∈

(ωt+1KB,t, ω̄t+1KB,t]; and R̄tBB,t > ω̄t+1KB,t. Then, in equilibrium, R̄tBB,t equals ωt+1KB,t

at optimum in the first region and ω̄t+1KB,t at optimum in the second region.

Proof. Use the Lagrange method to solve the maximization problem in the first and the

second regions. For the second region, solve the maximization problem in the closure of the

region and suppose that Ωt+1 takes the limit value when R̄tBB,t = ωt+1KB,t. This makes the

function Ωt+1 differentiable in each region. This expansion of the second region does not affect

the solution to the maximization problem, since it will be shown that R̄tBB,t = ω̄t+1KB,t at

optimum in the second region.

In the first region, R̄t is determined solely by Equation (12) and can be taken as exogenous

for the representative bank. Equation (12) implies that R̄t > 0, since agents never choose

zero consumption with the time-separable log utility function in equilibrium. The first-order

condition with respect to BB,t is:

1−
1

1 + ζ
Et

[

βci,tR̄t

ci,t+1

∣

∣

∣

∣

φi,t = 0

]

− θ̄rgn1,tR̄t+1 = 0, (51)

where θ̄rgn1,t is the Lagrange multiplier for the upper bound of the first region (R̄tBB,t ≤

ωt+1KB,t). Thus, θ̄rgn1,t = ζ(1 + ζ)−1(R̄t)
−1 > 0, given ζ > 0 and R̄t > 0. Hence, R̄tBB,t =

ωt+1KB,t at optimum in the first region.
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For the second region, ifKB,t = 0, then the claim is automatically satisfied since Equation

(12) implies that BB,t must be 0, given that KB,t(BB,t)
−1 in the equation is replaced with

infinity if BB,t = 0, as defined in the main text. Hereafter suppose KB,t > 0 in the second

region. In equilibrium, Qt is alway positive and thus ωt > 0 for all t, since otherwise each

agent would demand an infinite amount of trees in the secondary market, which would violate

the market clearing condition for trees. In the second region, KB,t > 0 and ωt+1 > 0 imply

that BB,t > 0 and R̄t > 0, since BB,t must be non-negative by the non-negativity constraint.

The first-order conditions with respect to BB,t and R̄t in the second region, respectively, are:

1−
Pt(ω̄t+1)

1 + ζ
Et

[

βci,tR̄t

ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ω̄t+1

]

+ (θrgn2,t − θ̄rgn2,t)R̄t

− θPC,tPt(ωt+1)Et

[

βci,tωt+1KB,t

ci,t+1(BB,t)2

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ωt+1

]

= 0, (52)

−
Pt(ω̄t+1)

1 + ζ
Et

[

βci,tBB,t

ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ω̄t+1

]

+ (θrgn2,t − θ̄rgn2,t)BB,t

+ θPC,tPt(ω̄t+1)Et

[

βci,t
ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ω̄t+1

]

= 0, (53)

where θ̄rgn2,t is the Lagrange multiplier for the upper bound of the closure of the second

region (R̄tBB,t ≤ ω̄t+1KB,t), θrgn2,t is the Lagrange multiplier for the lower bound of the

closure of the second region (R̄tBB,t ≥ ωt+1KB,t), and θ̄PC,t is the Lagrange multiplier for

Equation (12). Equations (52) and (53) imply that θPC,t = BB,t. Substituting this into

Equation (52) leads to:

(θ̄rgn2,t − θrgn2,t)R̄t =
ζPt(ω̄t+1)

1 + ζ
Et

[

βci,tR̄t

ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ω̄t+1

]

, (54)
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which in turn indicates that θ̄rgn2,t > 0 and θrgn2,t = 0, given ζ > 0 and R̄t > 0. Thus,

R̄tBB,t = ω̄t+1KB,t at optimum in the second region.

Proof of Proposition 1:

Suppose that Ωt+1 satisfies Equations (27)-(29) for period t + 1. Note that Equation (27)

satisfies the bank-run conditions (9) and (10).

To verify Equation (27), split the constraint set of the maximization problem (15) into

three regions: R̄tBB,t ≤ ωt+1KB,t; R̄tBB,t ∈ (ωt+1KB,t, ω̄t+1KB,t]; and R̄tBB,t > ω̄t+1KB,t.

First of all, any point in the third region, R̄tBB,t > ω̄t+1KB,t, is weakly dominated by

R̄tBB,t = ω̄t+1KB,t, since the feasible set of the choice variables is identical and the value of

Ωt+1 is always 0 in the third region while it can be positive with R̄tBB,t = ω̄t+1KB,t. Thus,

the third region can be ignored.

By Lemma 1, R̄tBB,t = ωt+1KB,t and R̄tBB,t = ω̄t+1KB,t at optimum in the first and the

second regions, respectively. Denote the maximum values of the objective function of the

maximization problem (15) in the first and the second regions by Ω′
t and Ω′′

t , respectively.

Given that Ωt+1 satisfies Equations (27)-(29) for period t + 1, substituting the optimal

values of R̄tBB,t in the first and the second regions and Equations (9), (10) and (12) into

the objective function of the maximization problem (15) yields:

Ω′
t = αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1 + λ′B,tKB,t, (55)

Ω′′
t = αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1 + λ′′B,tKB,t. (56)

The global solution to the maximization problem (15) can be obtained by maximizing the

values of Ω′
t and Ω′′

t with satisfying Equation (8), LB,t ∈ [0, KB,t−1] and HB,t ≥ 0. Since the

first and the second regions have the same feasible set of HB,t and LB,t, Ωt = Ω′
t if λ

′
B,t ≥ λ′′B,t

and Ωt = Ω′′
t if λ′B,t ≤ λ′′B,t. This result proves Equations (28)-(30).
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Given this result, now prove Equations (31) and (32). The maximization problem (15)

can be rewritten as:

Ωt = max
{HB,t,LB,t}

αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1 + λB,tKB,t,

s.t. Equations (8), (9) and (10), LB,t ∈ [0, KB,t−1], HB,t ≥ 0, (57)

where λB,t = max{λ′B,t, λ
′′
B,t}. Note that Equation (12) is already incorporated by the

definitions of λ′B,t and λ′′B,t. The maximization problem (57) implies that the equilibrium

value of λB,t satisfies:

λB,t















































= Qt(1− δ̂t)
−1, if HB,t > 0,

= Qt(1− δ̄)−1, if LB,t ∈ (0, KB,t−1),

≤ Qt(1− δ̄)−1, if LB,t = KB,t−1,

∈ [Qt(1− δ̄)−1, Qt(1− δ̂t)
−1], if HB,t = 0 and LB,t = 0.

(58)

When δ̂t > δ̄, Equation (58) implies that LB,t = 0 if HB,t > 0 and that HB,t = 0 if

LB,t > 0. Thus Equations (31) and (32) are proved. Substituting Equations (8) and (58) in

the objection function in the maximization problem (57) proves Equation (27).

B Proof of Proposition 2

B.1 Part I: Definition of the complete information case of the model without banks

Suppose that the depreciation rate of each tree in each period is public information and

that there exists a competitive secondary market for trees with each depreciation rate in the

model without banks. The maximization problem for each agent defined by Equations (1)
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and (4)-(6) is modified to:

max
{ci,t, xi,t, li,δ,t}

∞

t=0

E0

∞
∑

t=0

βt ln ci,t (59)

s.t. ci,t + xi,t = αtki,t−1 +

∫ δ̄+∆t

δ̄−∆t

Qδ,tli,δ,t dδ, (60)

ki,t = φi,txi,t +

∫ δ̄+∆t

δ̄−∆t

(1− δ)

(

ki,t−1

2∆t

− li,δ,t

)

dδ, (61)

li,δ,t ≤
ki,t−1

2∆t

, ci,t ≥ 0, xi,t ≥ 0, (62)

where Qδ,t is the secondary market price of trees with depreciation rate δ and li,δ,t is the

net sales of trees in the secondary market if positive or the net purchase of trees in the

secondary market if negative. The variable hi,t and the non-negativity constraint on li,δ,t

are erased as they are not needed, given the change in the definition of li,δ,t. The market

clearing condition (17) is modified to
∫ δ̄+∆t

δ̄−∆t
li,δ,t dδ = 0 for δ ∈ [δ̄ −∆t, δ̄ + ∆t]. The other

equilibrium condition, Equation (16), does not exist in the complete information case, since

the variable δ̂t does not exist.

Suppose that Qδ,t(1 − δ)−1 = φ−1 for all δ ∈ [δ̄ − ∆t, δ̄ + ∆t]. The first-order condition

with respect to ki,t implies that:

ci,t = (1− β)

(

α +
1− δ̄

φ

)

ki,t−1, (63)

ki,t
φ

= β

(

α +
1− δ̄

φ

)

ki,t−1, (64)

for all i ∈ I. Then aggregating (64) implies that KP,t + KU,t = β
(

φαt + 1− δ̄
)

(KP,t−1 +

KU,t−1). Since aggregating Equation (61) and substituting the market clearing condition

yield that φXP,t = KP,t +KU,t − (1− δ̄)(KP,t−1 +KU,t−1), the ratio of aggregate investment

in new trees to aggregate output, XP,t(Yt)
−1, equals β − (1 − β)(1 − δ̄)(φαt)

−1, given Yt =
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αt(KP,t−1 +KU,t−1).

To verify Qδ,t(1 − δ)−1 = φ−1 for all δ ∈ [δ̄ − ∆t, δ̄ + ∆t], it is necessary and sufficient

to check the remaining equilibrium condition, li,δ,t ≤
ki,t−1

2∆t
for all δ ∈ [δ̄ − ∆t, δ̄ + ∆t].

Given Equation (61), this is satisfied if and only if KP,t ≥ φXP,t. This is equivalent to

KU,t ≤ (1− δ̄)(KP,t−1 +KU,t−1) and substituting this condition in Equation (64) aggregated

for unproductive agents (i.e., KU,tφ
−1 = β[α+(1− δ̄)φ−1][(1− ρP )KP,t−1+ ρUKU,t−1]) yields

that this condition is in turn equivalent to (1− δ̄)(1 + θt−1 − β) ≥ φβαt.

B.2 Part II: Comparison between the baseline case and the complete information case

Suppose Condition (20) holds in equilibrium in the model without banks. Show that:

(1 + θt−1)[φβαt − (1− β)(1− δ̄)]

− θt−1

[

φβ

(

αt +

∫ δ̄+∆t

δP,t

Qt

2∆t

dδ

)

− (1− β)

∫ δP,t

δ̄−∆t

1− δ

2∆t

dδ

]

> 0. (65)

The left-hand side is equivalent to:

φβαt − (1− β)θt−1

∫ δ̄+∆t

δP,t

1− δ

2∆t

dδ − (1− β)(1− δ̄)

−

∫ δ̄+∆t

δP,t

θt−1φβQt

2∆t

dδ

= φβαt − (1− β)

[

θt−1

∫ δ̄+∆t

δP,t

1− δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

1− δ

2∆t

dδ +

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ

]

−
θt−1φβQt

1− δ̂t

∫ δ̄+∆t

δP,t

1− δ̂t
2∆t

dδ

> φβαt − (1− β)

[

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

1− δ̂t
2∆t

dδ

]

−
θt−1φQt

1− δ̂t

∫ δ̄+∆t

δP,t

1− δ̂t
2∆t

dδ. (66)
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The last inequality is obtained by Condition (20), which implies φQt(1 − δ̂t)
−1 > 1, and

Equation (42), which implies:

θt−1

∫ δ̄+∆t

δP,t

1− δ̂t
2∆t

dδ +

∫ δ̄+∆t

δ̂t

1− δ̂t
2∆t

dδ = θt−1

∫ δ̄+∆t

δP,t

1− δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

1− δ

2∆t

dδ. (67)

Equation (42), which is equivalent to Equation (67), and Equation (48) imply that:

Qt

1− δ̂t
=

βαt

[

θt−1

∫ δ̄+∆t

δP,t

1− δ̂t
2∆t

dδ + (1− β)

(

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

1− δ̂t
2∆t

dδ

)]−1

. (68)

Substituting this into βαt on the right-hand side of Inequality (66) implies that the right-

hand side is equivalent to:

(1− β)

(

φQt

1− δ̂t
− 1

)

[

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

1− δ̂t
2∆t

dδ

]

. (69)

This is positive, given Condition (20).

Also, suppose that Conditions (20) and (45) hold and that δP,t = δ̄ −∆t in equilibrium.

Then Equations (67) and (68) imply that Qt(1− δ̂t)
−1 ≤ βα[(1 + θt−1 − β)(1− δ̄)]−1. This

contradicts Condition (45), given Condition (20). Thus, if Conditions (20) and (45) hold in

equilibrium, then δP,t > δ̄ −∆t.
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C Proof of Proposition 3

It is obvious that Inequality (46) holds when δP,t = δ̄ −∆ or δP,t = δ̄ +∆, given δ̂t > δ̄ and

Condition (20). When δP,t = 1− φQt:

Qt(1− δ̄)

1− δ̂t
−

(

∫ δP,t

δ̄−∆t

(1− δ)

φ · 2∆t

dδ +

∫ δ̄+∆t

δP,t

Qt

2∆t

dδ

)

=
1

φ

{

x(1− δ̄)

1− δ̂t
−

1− x− y − (1−x)2

2
+ y2

2

z − y
−
x[z − (1− x)]

z − y

}

, (70)

where

x ≡ φQt, y ≡ δ̄ −∆, z ≡ δ̄ +∆. (71)

Given the value of δ̂t, the right-hand side of Equation (70) can be rewritten as a quadratic

function of x. Note that x ∈ [1 − z, 1 − y] by the definition of δP,t given by Equation

(26). Since the coefficient of x2 is negative, the right-hand side takes the minimum value for

x ∈ [1− z, 1− y] when x = 1− z or x = 1− y. In either case, the minimum value is positive,

and so is the right-hand side of Equation (70) for x ∈ [1− z, 1− y].

In addition, prove the inequality in Footnote 34. Suppose λU,t = Qt(1 − δ̂t)
−1. Then

δU,t = δ̂t by Equation (26). Given δ̂t > δ̄, it holds that:

Qt(1− δ̄)

1− δ̂t
−

(

∫ δU,t

δ̄−∆t

λU,t(1− δ)

2∆t

dδ +

∫ δ̄+∆t

δU,t

Qt

2∆t

dδ

)

=
Qt(1− δ̄)

1− δ̂t
−

(

∫ δ̂t

δ̄−∆t

Qt(1− δ)

(1− δ̂t)2∆t

dδ +

∫ δ̄+∆t

δ̂t

Qt

2∆t

dδ

)

>
Qt(1− δ̄)

1− δ̂t
−Qt > 0. (72)

By continuity, the inequality in Footnote 34 holds if λU,t is sufficiently close to Qt(1− δ̂t)
−1.
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D Slopes of Equations (42) and (48)

Lemma 2 Equation (48) is a downward-sloping curve on the (Qt, δ̂t) plane, given the values

of αt, ∆t and θt−1. Equation (42) is also downward-sloping, if δP,t = 1 − φQt, and is a

flat line, if δP,t = δ̄ − ∆t. Equation (48) has a steeper slope than Equation (42) at the

intersection of the two curves, if β is sufficiently close to 1 and Condition (20) is satisfied

at the intersection.

Proof. Denote the implicit functions for δ̂t implied by Equations (42) and (48) by δ̂t =

h(Qt, αt, ∆t, θt−1) and δ̂t = ℓ(Qt, αt, ∆t, θt−1), respectively.

There are two cases to consider. The first case is that δP,t = 1− φQt at the intersection

of the two curves and the second case is that δP,t = δ̄ −∆t at the intersection.

In the first case, it can be shown that:

∂h(Qt, αt, ∆t, θt−1)

∂Qt

= −
θt−1φδ̂t(1− δP,t)

θt−1(δ̄ +∆t − δP,t) + δ̄ +∆t − δ̂t
, (73)

∂ℓ(Qt, αt, ∆t, θt−1)

∂Qt

= −

βαt(1−δ̂t)

Q2
t

+
θt−1φ(1−δP,t)

2∆t

β
(

αt

Qt
+ δ̄+∆t−δ̂t

2∆t

) , (74)

which are always strictly negative. This result proves that the implicit functions h and ℓ exist

by the implicit function theorem and that Equations (42) and (48) are downward-sloping on

the (Qt, δ̂t) plane.
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It can be shown that ∂ℓ(Qt, αt, ∆t, θt−1)
∂Qt

− ∂h(Qt, αt, ∆t, θt−1)
∂Qt

has the same sign with:

−

[

βαt(1− δ̂t)

Q2
t

+
θt−1φ(1− δP,t)

2∆t

]

[

θt−1(δ̄ +∆t − δP,t)

+δ̄ +∆t − δ̂t

]

+ θt−1φδ̂t(1− δP,t)β

(

αt

Qt

+
δ̄ +∆t − δ̂t

2∆t

)

= −
βαt(1− δ̂t)

Q2
t

[

θt−1(δ̄ +∆t − δP,t) + δ̄ +∆t − δ̂t

]

− θt−1φ(1− δP,t)

[

θt−1(δ̄ +∆t − δP,t) + δ̄ +∆t − δ̂t
2∆t

−δ̂tβ

(

αt

Qt

+
δ̄ +∆t − δ̂t

2∆t

)]

. (75)

At the intersection of Equations (42) and (48), it holds that:

θt−1(δ̄ +∆t − δP,t) + δ̄ +∆t − δ̂t
2∆t

− δ̂tβ

(

αt

Qt

+
δ̄ +∆t − δ̂t

2∆t

)

=
θt−1(δ̄ +∆t − δP,t) + δ̄ +∆t − δ̂t

2∆t

−
δ̂t

1− δ̂t

[

θt−1

∫ δ̄+∆t

δP,t

1− δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

1− δ

2∆t

dδ

+(1− β)

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ

]

=

[

θt−1(δ̄ +∆t − δP,t) + δ̄ +∆t − δ̂t
2∆t

]

(

1− δ̂t

)

−
δ̂t(1− β)

1− δ̂t

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ. (76)

The first equality is obtained from Equation (48) and the second equality is obtained from
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Equation (42). Note that:

δ̂t

1− δ̂t
≤

δ̄ +∆t

1− (δ̄ +∆t)
, (77)

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ ≤ 1− δ̄, (78)

since δ̂t ≤ δ̄ + ∆t. Thus, the last term on the last line of Equation (76) goes to 0 as β

goes to 1, if equilibrium continues to exist. Because Condition (20) and Equation (26) imply

that δP,t < δ̂t in equilibrium, this result proves that ∂ℓ(Qt, αt, ∆t, θt−1)
∂Qt

< ∂h(Qt, αt, ∆t, θt−1)
∂Qt

at

the intersection of Equations (42) and (48) for the first case (i.e., δP,t = 1 − Qtφ), if β is

sufficiently close to 1.

For the second case (i.e., δP,t = δ̄ −∆t), Equation (42) implies that δ̂t is constant. Also,

it can be shown that:

∂ℓ(Qt, αt, ∆t)

∂Qt

= −

αt(1−δ̂t)
Q2

t

αt

Qt
+ δ̄+∆t−δ̂t

2∆t

< 0. (79)

Thus, the implicit functions h and ℓ exist and Equation (48) has a steeper slope than

Equation (42) on the (Qt, δ̂t) plane.

E Shifts in Equation (48) in response to changes in ∆t

Rewrite Equation (48) to define a function g:

g(δ̂t, Qt, αt,∆t, θt−1) ≡

Qt

1− δ̂t

{

(1− δ̄)(1 + θt−1)− θt−1

∫ δP,t

δ̄−∆t

1− δ

2∆t

dδ

}

− β

(

αt +
Qt

1− δ̂t

∫ δ̂t

δ̄−∆t

1− δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

Qt

2∆t

dδ

)

= 0. (80)
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Since ∂g

∂Qt
> 0, an increase in ∆t makes Equation (48) shift inward if ∂g

∂∆t
> 0 and outward

if ∂g

∂∆t
< 0. The following Lemma shows that both cases exist.

Lemma 3 ∂g

∂∆t
> 0, if δP,t is sufficiently close to δ̂t.

∂g

∂∆t
< 0, if δP,t ≤ δ̄.

Proof. Take the partial derivative:

∂g(δ̂t, Qt, αt, ∆t, θt−1)

∂∆t

=

Qt

1− δ̂t

{

−θt−1[1− (δ̄ −∆t)]

2∆t

+

∫ δP,t

δ̄−∆t

θt−1(1− δ)

2(∆t)2
dδ

− β

[

1− (δ̄ −∆t)

2∆t

−

∫ δ̂t

δ̄−∆t

1− δ

2(∆t)2
dδ +

1− δ̂t
2∆t

−

∫ δ̄+∆t

δ̂t

1− δ̂t
2(∆t)2

dδ

]}

. (81)

It can be shown that:

−[1− (δ̄ −∆t)]

2∆t

+

∫ δP,t

δ̄−∆t

1− δ

2(∆t)2
dδ















< 0, if δP,t ≤ δ̄,

> 0, if δP,t is sufficiently close to δ̄ +∆t,

(82)

given ∆t ∈ (0, 1− δ̄) and δ̄ ∈ (0, 1).

Also, given δ̂t ∈ [δ̄, δ̄ +∆t] by Equation (42), it can be shown that:

−

[

1− (δ̄ −∆t)−

∫ δ̂t

δ̄−∆t

1− δ

∆t

dδ + 1− δ̂t −

∫ δ̄+∆t

δ̂t

1− δ̂t
∆t

dδ

]

≤ 0, (83)

where the equality holds if and only if δ̂t = δ̄+∆t. Note that Equation (42) implies that δ̂t is

sufficiently close to δ̄+∆t if δP,t is sufficiently close to δ̄+∆t. Thus, substituting Inequalities

(82) and (83) in Equation (81) proves the proposition.
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F The numerical solution method for the equilibrium dynamics of the model

with banks

The dynamic equilibrium is approximated by the following projection method:

Step 0. It can be shown that the dynamic equilibrium in each period is homogeneous

of degree 1 with respect to KP,t−1, KU,t−1 and KB,t−1. Set grid points on the

state space forKP,t−1, KU,t−1 and the shock parameter (αt or ∆t). The value of

KB,t−1 is set to 1−KP,t−1 −KU,t−1 on each grid point. Guess the equilibrium

values of endogenous variables on each grid point, including ω̄t+1 and ωt+1.

Call this correspondence between state variables and endogenous variables as

a ‘candidate array’.

Step 1. Suppose the candidate array returns equilibrium values in the next period for

each set of KP,t, KU,t and the shock parameter. The next-period equilibrium

values on a point between the grid points in the state space are approximated

by linear interpolation. Given this, derive the candidate array for the current

period through the aggregate equilibrium conditions.

Step 2. Compare the candidate arrays for the current period and for the next period.

If the ratio of each element between the two arrays becomes sufficiently close to

1, then take the candidate array as the equilibrium correspondence. Otherwise,

update the candidate array for the next period by a linear combination of the

two arrays and go back to Step 1.

In the numerical examples in this paper, I set grid points in the ± 5% range of the

deterministic steady state values of KP,t−1 and KU,t−1. The number of grid points are 20

60



for these endogenous state variables. Note that the shock parameter only takes two values

by assumption. The convergence criterion in Step 2 is 1e-03. In updating the candidate

array in Step 2, the weight on the candidate array for the current period is 0.001. The

initial guess in Step 0 is obtained through homotopy starting from the parameter values

with which deterministic steady state values given the value of the shock parameter are a

successful initial guess of the candidate array that leads to convergence.

The equilibrium conditions are checked for each element of the converged candidate

array. For each figure, random simulations of the dynamics for 5000 periods confirm that

the equilibrium dynamics move within the grid points that satisfy the equilibrium conditions.

G The modification of the model when agents can borrow against new trees

In addition to the short-sale constraint on new trees (50), the flow-of-funds constraint (4)

and the law of motion for trees net of depreciation (5) for each agent are modified to:

Ptmi,t + ci,t + xi,t +Qthi,t + bi,t + (1 + ζ)Vtsi,t

= αtki,t−1 +Qt

∫ δ̄+∆t

δ̄−∆t

li,δ,t dδ + R̃tbi,t−1 + (Dt + Vt)si,t−1, (84)

ki,t = mi,t + φi,txi,t + (1− δ̂t)hi,t +

∫ δ̄+∆t

δ̄−∆t

(1− δ)

(

ki,t−1

2∆t

− li,δ,t

)

dδ, (85)

where Pt is the competitive market price of pledged new trees. Similarly, the flow-of-funds

constraint and the maximization problem for the representative bank are modified to:

KB,t =MB,t + (1− δ̂t)HB,t + (1− δ̄)(KB,t−1 − LB,t), (86)
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Ωt(KB,t−1, BB,t−1, R̄t−1) ≡

max
{HB,t,LB,t,BB,t,R̄t,MB,t}

PtMB,t + αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1

+BB,t + Et

[

ΛV,t+1Ωt+1(KB,t, BB,t, R̄t)
]

,

s.t. Equations (9), (10), (12) and (86), LB,t ∈ [0, KB,t−1], MB,t, HB,t, BB,t ≥ 0, (87)

where MB,t is the amount of the right to receive new trees bought by the bank. The market

clearing condition for the right to receive new trees is:

∫

i∈I

mi,t dµ+MB,t = 0, (88)

which is added to the equilibrium conditions listed in Section 2.4.

The first-order conditions with respect to xi,t and mi,t imply that:

Pt = λi,t, if mi,t > 0, (89)

mi,t = −ψφi,txi,t, if Pt > λi,t, (90)

λi,t ≤
1− Ptψφ

(1− ψ)φ
, if φi,t = φ. (91)

Similarly, the first-order condition with respect to MB,t yields that:

Pt = λB,t, if MB,t > 0, (92)

MB,t = 0, if Pt > λB,t. (93)

Equations (89), (90), (92) and (93) imply that Pt = max{maxi∈I λi,t, λB,t}, given that there

exist sellers of the right to receive new trees (i.e., agents with mi,t < 0). Then Condition

(20) implies that Pt is greater than φ−1, which is in turn greater than λi,t for productive

agents, given Equation (91). Thus, mi,t = −ψφi,txi,t if φi,t = φ. These results prove that,
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given Condition (20), productive agents sell the right to receive new trees and unproductive

agents buy the right to receive new trees (Pt = λU,t and mi,t > 0 if φi,t = 0) if there is no

bank. If banks exist and Equation (31) hold, then Equation (24) implies that banks buy the

right to receive new trees (Pt = λB,t and MB,t > 0), as described in Section 6.

H The effect of an alternative bank liquidation procedure

Suppose that, if a bank run is expected to happen, then the bank or the government sets up

a competitive bank liquidation market to sell the bank’s trees separately from the secondary

market for trees. Modify the maximization problem for each agent defined by Equations (1)

and (4)-(6) as follows:

max
{ci,t, xi,t, hi,t, li,δ,t bi,t si,t, h

LB
i,t }∞t=0

E0

∞
∑

t=0

βt ln ci,t (94)

s.t.

ci,t + xi,t +Qthi,t + bi,t + (1 + ζ)Vtsi,t +QLB
t hLBi,t

= αtki,t−1 +Qt

∫ δ̄+∆t

δ̄−∆t

li,δ,t dδ + R̃tbi,t−1 + (Dt + Vt)si,t−1, (95)

ki,t = φi,txi,t + (1− δ̂t)hi,t + (1− δ̄)hLBi,t +

∫ δ̄+∆t

δ̄−∆t

(1− δ)

(

ki,t−1

2∆t

− li,δ,t

)

dδ, (96)

li,δ,t ∈

[

0,
ki,t−1

2∆t

]

, ci,t, xi,t, hi,t, bi,t, si,t, h
LB
i,t ≥ 0, (97)

where QLB
t is the competitive price of the liquidated bank’s trees in the bank liquidation

market and hLBi,t is the quantity of trees bought in the bank liquidation market. Note that

the average depreciation rate of trees sold in the bank liquidation market equals δ̄, since all

of the liquidated bank’s trees are sold in the bank liquidation market and no agent can sell

their trees there. Thus (1− δ̄)hLBi,t in Equation (96) is the quantity of trees net of depreciation
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obtained through the bank liquidation market.

Similarly, the maximization problem for banks that are not hit by bank runs is modified

to:

(Dt + Vt)SB,t−1 = Ωt(KB,t−1, BB,t−1, R̄t−1) ≡

max
{HB,t,LB,t,BB,t,R̄t,H

LB
B,t

}
αtKB,t−1 −Qt(HB,t − LB,t)−QLB

t HLB
B,t − R̃tBB,t−1

+BB,t + Et

[

ΛV,t+1Ωt+1(KB,t, BB,t, R̄t)
]

, (98)

s.t.

KB,t = (1− δ̂t)HB,t + (1− δ̄)HLB
B,t + (1− δ̄)(KB,t−1 − LB,t), (99)

R̃t =















R̄t−1, if R̄t−1BB,t−1 ≤ (αt +QLB
t )KB,t−1,

(αt+QLB
t )KB,t−1

BB,t−1
, if R̄t−1BB,t−1 > (αt +QLB

t )KB,t−1,

(100)

Ωt = 0, if R̄t−1BB,t−1 > (αt +QLB
t )KB,t−1 (101)

Equations (12), LB,t ∈ [0, KB,t−1], HB,t ≥ 0, BB,t ≥ 0, HLB
B,t ≥ 0, (102)

where HLB
B,t is the quantity of trees obtained through the bank liquidation market, given no

bank run to the representative bank. Note that the second constraint implies that a bank

run occurs if the face value of deposits exceeds the liquidation value of the bank evaluated

by QLB
t . Also, Ωt = 0 in the third constraint is equivalent to Dt = Vt = 0 in Equation (10).

The marker clearing condition for the liquidated bank’s trees is
∫

I
hLBi,t dµ+HLB

B,t = LLB
t ,

where LLB
t is the total quantity of the liquidated bank’s trees. In equilibrium, this condition

and Equations (16)-(19) are satisfied in each period and the modified maximization problems

above are solved with rational expectations.

It can be shown that a modified version of Proposition 1 holds if the definitions of ω̄t+1
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and ωt+1 are modified to the high and the low values of αt+1 + QLB
t+1, respectively, and Qt

and Qt+1 in Equations (27)-(30) are replaced with QLB
t and QLB

t+1, respectively. Equations

(31) and (32) hold as they are.

Given this result, the first-order conditions with respect to hi,t and HB,t in the max-

imization problems for agents and banks above imply that Qt − λi,t(1 − δ̂t) ≥ 0 and

Qt − λB,t(1 − δ̂t) ≥ 0, where the equalities hold if hi,t > 0 and HB,t > 0, respectively.

Similarly, the first-order conditions with respect to hLBi,t and HLB
B,t in the maximization prob-

lems for agents and banks yield that QLB
t −λi,t(1− δ̄) ≥ 0 and QLB

t −λB,t(1− δ̄) ≥ 0, where

the equalities hold if hLBi,t > 0 and HLB
B,t > 0, respectively. Without loss of generality, assume

that QLB
t − λi,t(1− δ̄) = 0 for some i ∈ I or QLB

t − λB,t(1− δ̄) = 0 in equilibrium if there is

no liquidated bank.

Now suppose HB,t > 0 for all t, which implies that banks are always providing liquidity

transformation services. Then the inequalities shown above indicate that λB,t = Qt(1 −

δ̂t)
−1 ≥ λi,t for all i ∈ I. Thus QLB

t = λB,t(1− δ̄) = Qt(1− δ̂t)
−1(1− δ̄). Given Proposition

1 revised for the maximization problem (98)-(102), this result implies that R̃tBB,t−1+(Dt+

Vt)SB,t−1 = [αt + Qt(1 − δ̂t)
−1(1 − δ̄)]KB,t−1 for any value of R̄t−1BB,t−1. Hence the bank

liquidation market values the liquidated bank’s trees fairly and the total value of bank

liabilities always equals the present discounted value of the current and future income from

the liquidated bank’s tree. As rational agents expect this, they do not run to banks.

Also, it can be shown that λ′′B,t > λ′B,t and R̃tBB,t = ω̄t+1KB,t, if ζ > 0. This result

implies that, since the bank liquidation market values the liquidated bank’s trees fairly, the

holders of bank liabilities are indifferent to bank failures, so that equity holders do not impose

costly bank capital requirements. The contingent pay-off to deposits becomes equivalent to

the pay-off to bank equity without the bank-equity holding cost in this case.
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