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Abstract

Models with imperfect information that generate persistent monetary nonneutrality

predominantly rely on assumptions leading to substantial heterogeneity of information across

price-setters. This paper develops a quantitative general equilibrium model in which the degree of

heterogeneity of information is determined endogenously. In the model, firms use two

technologies to acquire information: costly updating to full information and costless learning

from publicly observed market signals. Price changes of firms that update information

infrequently are synchronized with market signals. This leads to an externality whereby less

frequent updating increases the information conveyed by prices and quantities. When the model is

calibrated to moments from a panel of BLS commodity sectors, it is found that the private value of

costly updating to full information is close to zero, market signals are informative, and the real

effects of monetary shocks are small.

JEL classification: D83, E31, E32
Bank classification: Business fluctuations and cycles; Inflation and prices; Transmission of
monetary policy

Résumé

Les modèles où l’information est imparfaite et où la monnaie n’est pas neutre en longue période

reposent essentiellement sur des hypothèses qui introduisent une forte hétérogénéité dans

l’information dont disposent les décideurs de prix. L’auteur construit un modèle d’équilibre

général quantitatif dans lequel le degré d’hétérogénéité de l’information est déterminé de manière

endogène. Les entreprises du modèle acquièrent de l’information par deux voies : au moyen d’une

mise à jour qui leur donne accès à une information complète mais qui comporte un coût, et à la

faveur d’une connaissance gratuite, déduite de signaux de marché de notoriété publique. Les

entreprises qui actualisent peu fréquemment l’information modifient leurs prix au rythme des

signaux du marché. Ce comportement donne lieu à une externalité du fait que la sporadicité des

mises à jour accroît la quantité d’information véhiculée par les prix et les volumes. En étalonnant

son modèle en fonction de moments calculés à partir des données du Bureau of Labor Statistics

sur les prix d’une gamme étendue de produits, l’auteur constate que la mise à jour non gratuite est

d’une valeur quasi nulle pour l’entreprise, que les signaux du marché apportent de l’information

et que les chocs monétaires ont peu d’effets réels.

Classification JEL : D83, E31, E32
Classification de la Banque : Cycles et fluctuations économiques; Inflation et prix; Transmission
de la politique monétaire



1 Introduction

What is the nature of short-run monetary nonneutrality and how important is it

for business cycles? These questions have motivated business cycle researchers for

decades. In seminal work, Lucas (1972) laid out foundations for the nonneutrality

of money under rational expectations and imperfect information about fundamental

disturbances. In Lucas�model, information becomes public knowledge soon after the

monetary shock, which thus has strictly short-lived real e¤ects. After Lucas (1972),

the search for sources of persistent imperfect information that could generate some

degree of monetary nonneutrality closer to that observed in the data1 since become

a priority for business cycle scholars.

The most recent generation of monetary business cycle models based on imperfect

information has been successful in generating substantial monetary nonneutrality and

in�ation persistence. The key feature accounting for the long-lasting real e¤ects of

monetary policy in these frameworks is dramatic heterogeneity of information across

price-setters, stemming from assumptions that leave information sets non-coincident

across �rms. Prices set by such �rms are determined by the marginal cost of pro-

duction and forecasts of competitors�prices.2 Following a money shock, the speed

at which a �rm adjusts its price thus depends on forecasts as to the speed at which

competitors�prices will responds. When information is very dispersed, modest price

adjustments are expected among competitors, leading to slow price responses and,

hence, long-lasting real e¤ects.3

Heterogeneity of information in the existing models of adjustment under imperfect

information is introduced by imposing restrictions on the way information is obtained.

These restrictions can be divided in two types. The �rst type limits the frequency

with which uninformed agents update their information sets.4 It is typically assumed

that updated information sets contain the full history of events. The frequency of

1Romer and Romer (1989, 2004), Bernanke and Mihov (1998), Christiano, Eichenbaum, and
Evans (2000), provide some empirical evidence on the size of real e¤ects of monetary shocks.

2An important, and standard, assumption here is complementarity in pricing, i.e., an increase
in the average price level implies that each �rm has an incentive to raise its own price. The degree
of complementarity depends on goods�demand elasticity, returns to scale in production, and the
elasticity of labor supply.

3See Hellwig (2008) for a review of incomplete information theories.
4Mankiw and Reis (2002, 2006), Bonomo and Carvalho (2004), Reis (2006).
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updating is either exogenous, as in Mankiw and Reis (2002), or endogenous due to a

�xed cost, as in Reis (2006). As long as the frequency of information updating is not

too high (around once a year), the heterogeneity of information between informed and

uninformed price-setters is signi�cant, and sizeable monetary nonneutrality results.

Under the second type of restriction on information acquisition, �rms update

their information continuously by observing noisy signals of their price targets.5 The

noise is speci�c to each �rm and is typically interpreted either as �uctuation in

some information-processing technology or as a constrant on the �rm�s information-

processing capacity, in the spirit of Sims (2003). With noise large enough relative

to the signal, the �rm�s ability to accurately predict competitors�prices is limited,

retarding the adjustment of prices following a monetary shock. Hence, heterogeneity

of information, hardwired into models of imperfect information via either of these

assumptions, ensures that monetary shocks will have considerable real e¤ects.

This paper extends the existing framework to a setting in which the degree of

heterogeneity in information is determined endogenously. This is achieved by assum-

ing that price-setting �rms have access to two technologies for acquiring information:

public and private. Public technology is available every period at no cost and allows

�rms to infer state history from observing a market signal, namely the demand for

the �rm�s output at a chosen price. This signal is public as it is perfectly correlated

across �rms in the same production sector; and it is endogenous since it re�ects the

price decisions of �rms in the sector. Private technology is available at �xed cost

and provides explicit knowledge of the full state history. For simplicity, use of the

public technology will be called "learning", while the private technology is dubbed

"updating".

In the model, �rms trade o¤ the use of e¢ cient but costly updating for less costly

but less e¢ cient learning. More informative market signals improve the �rm�s fore-

casting ability and thus weakens the incentive to update the information set. In

general equilibrium, there is an externality whereby the frequency of updating a¤ects

the amount of information conveyed by market prices and quantities. In the presence

of �xed cost, updating is infrequent, which implies that there is a number of �rms

5Woodford (2002, 2008), Hellwig (2002), Mackowiak and Wiederholdt (2009), Gorodnichenko
(2008), Lorenzoni (2009).
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that have not updated for some time. Information sets of such �rms tend to overlap

cosiderably since they mostly contain common observations of public signals. Price

changes by less informed �rms are thus synchronized more closely with public signals

and with other such �rms. Greater synchronization, in turn, implies that market

signals convey more information about competitors�prices. In equilibrium, how in-

formative market signals are a¤ects private value of updating to full information thus

determining the degree of heterogeneity of information across price-setters.

The model is calibrated to a cross-section of 111 BLS commodity sectors and is

used to ask: what is the private value of information updating, how much information

is conveyed by market signals, and what are the implications for the size of monetary

nonneutrality? The main �nding is that public market signals are very informative so

that the private value of updating is close to zero. The incentive to economize on �xed

costs by updating infrequently is reinforced by information externality: �rms that do

not update, improve the information content of market signals, which further weakens

the incentives to update. When market signals are highly informative, �rms can

quickly disentangle nominal and real disturbances, which results in transient monetary

nonneutrality. In the benchmark model, allowing for endogenous heterogeneity of

information decreases persistence of real e¤ects of monetary shocks from more than

one and a half years to less than three quarters.

Price-setting models with endogenous information choice may face a problem of

multiple equilibria, a point raised by Hellwig and Veldkamp (2009). They show that

multiplicity stems from strong incentives for �rms to synchronize the timing of their

information updating. To circumvent this problem, it is assumed in the model that

the �xed cost of updating is stochastic and drawn from a continuous dirstribution.

This leads to staggering of updating decisions and implies a continuous relationship

between distribution of �rms over information sets and precision of the public signal,

alleviating multiplicity of equilibria.

Endogenous determination of the number of informed agents and the precision

of the public signal is akin to the setting in Grossman and Stiglitz (1980). As in

their asset trading model, here market signals convey information from more to less

informed agents, and the informativeness of the signals depends on the equilibrium

number of informed agents. This number, in turn, depends on the cost of informa-
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tion, the extent of uncertainty, the strength of the market signal, and the amount of

information gathered by the updating agents. In contrast to Grossman and Stiglitz

(1980), this paper uncovers the dynamic aspect of the interaction between the num-

ber of �rms that pay for information and the informativeness of the market signal.

Firms that choose not to pay for information base their decisions on a long sequence

of public signals and hence behave alike. This implies, in contrast to Grossman and

Stiglitz (1980), that information about the state history conveyed by market variables

increases with the number of agents not paying for information.

In Gorodnichenko (2008) observation of price as an endogenous free public signal

leads to an externality whereby �rms delay costly updating of information and instead

learn costlessly from those �rms that choose to update. Delays in price changes due

to this information externality lead to in�ation persistence. This paper di¤ers from

Gorodnichenko (2008) in two respects: �rms�pro�ts depend on the price level, and

�rms that do not update information are still allowed to change prices. The observed

price level thus conveys information about prices set by less informed �rms. Since

these �rms tend to behave alike, the public signal is informative. As a result, the

payo¤s from updating decrease, thus increasing the number of prices set by less in-

formed �rms and reinforcing the informativeness of the price level. Hence, in contrast

to Gorodnichenko�s case, the information externality in this paper reduces aggregate

persistence.

The paper proceeds as follows: Section 2 develops the model and de�nes an equi-

librium. Section 3 explains how the model is aggregated and solved. Section 4 presents

and discusses the results of model simulations. Section 5 concludes.

2 Model

Consider a Lucas-type economy, which consists of an in�nite number of structurally

identical island economies. Each island is populated by a unit measure of �nal good

producers and a unit measure of intermediate good producers. There is no trade

or communication across islands. Time is indexed by t = 1; 2; :::. There are two

sources of uncertainty on each island: the growth rate of the money stock, �t, and
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the disturbance of the demand for intermediate goods, �t.

It is assumed that innovations to the money growth process are identical across

islands, whereas innovations to each demand shifter are i.i.d. across islands. Hence,

money growth and the disturbance in demand for goods are interpreted as aggre-

gate and island speci�c shocks to the aggregate economy.6 In this setup, dynamics

stemming from �uctuations in the money growth are identical across islands, whereas

disturbances to island demand have no e¤ect on the dynamics on other islands. Hence,

to characterize aggregate dynamics, it is su¢ cient to characterize �uctuations on an

island conditional on the aggregate shock.

Let zt = f�t; �tg denote realization of uncertainty on an island in period t, and
zt = fz0; z1; :::; ztg denote the island�s history of states through period t.7 The rest of
this section lays out an island economy�s setup and de�nes an equilibrium.

2.1 Final good producers on an island

Final good on each island is produced by a unit measure of competitive producers

using intermediate goods as inputs. A Dixit-Stiglitz production function exhibits

constant elasticity of substitution over a variety of di¤erentiated input goods. Let Yt

denote the quantity of the �nal good produced on an island, and yt(�) be the quantity

of input goods purchased from an intermediate good producer � . Let Pt and Pt(�)

respectively denote the prices of �nal and intermediate goods. Final good producers

solve the following problem:

max
fyt(�)g

PtYt � ��1t

Z
Pt(�)yt(�)d�

subject to

Yt =

�Z
yt(�)

��1
� d�

� �
��1

: (1)

Here �t denotes a random shift in the demand for all intermediate input on the island.

We assume that ln�t follows a zero-mean AR(1) process ln�t+1 = �� ln�t + "�t+1,

6This island economy can also be set up as a multi-sector economy - with islands represented
by sectors and consumption expenditure shares constant across sectors. An island paradigm is
convenient for emphasizing that markets are physically separated.

7Throughout, island index is omitted.
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with i.i.d. normal innovations "�t � N(0; �2�).

First-order conditions yield the demand function for intermediate goods:

yt(�) = Yt�
�
t

�
Pt

Pt(�)

��
; 8� 2 [0; 1] : (2)

Zero-pro�t condition implies that the island price index is

Pt = ��1t

�Z
Pt(�)

1��d�

� 1
1��

: (3)

As shown in Section 3, both nominal and real shocks have very similar e¤ects on

intermediate �rms�outputs and prices. Sorting out their impact on the island market

constitutes the signal extraction problem faced by the intermediate good producers.8

2.2 Intermediate good producers

On each island, there is a unit measure of ex-ante identical enterpreneurs who own

�rms producing perishable intermediate goods. Each enterpreneur is endowed with

a unit of labor per period and with a production technology that converts labor in-

put into �rm-speci�c variety of intermediate good. For simplicity, it is assumed that

an enterpreneur�s labor is productive only for his own �rm. Then it can be written

that the �rm produces y (�) units of intemediate good at a cost of  y (�)1+� = (1 + �)

units of the �nal good, where � represents the degree of decreasing returns to the

labor input.9 Markets for di¤erentiated goods are monopolistically competitive, so

each �rm sets the price for its good. Asset markets are incomplete so that enterpre-

neurs cannot share any risks. Entepreneurs use their total income (possibly including

transfers from the government) to �nance their expenditures on consumption of �nal

goods. Information that the enterpreneur obtains in the �nal goods market is not

revealed to the �rm.10 Our assumptions about the structure of the labor and asset

8Alternatively, the island shock can represent the shift in production technology: Yt =

�t

hR
yt(�)

��1
� d�

i �
��1
. In demand equation (2) ��t is then replaced with �

��1
t and price equation

(3) is unchanged. Results are una¤ected.
9For example, technology y = la, where l is the labor input, gives � = 1=�� 1.
10For example, an enterpreneur can consist of the worker, who earns income, and the shopper,

who spends it, and the worker and the shopper do not communicate.
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markets prevent �rms from inferring information conveyed by labor and asset prices.

These assumptions can be relaxed but would require more uncertainty to ensure that

information remains imperfect.

In contrast to �nal good producers, the intermediate good producers do not ob-

serve the full history of events on an island. They acquire information via two tech-

nologies, one that is more e¢ cient and costly, "updating", and another that is less

costly but is also less e¢ cient, "learning". Updating is available at �xed cost, �t (�),

and provides observation of the full history through to the beginning of period t, i.e.,

zt�1. The �xed cost, denominated in units of the �nal good, is assumed to be i.i.d.

across enterpreneurs and over time, drawn from a distribution with di¤erentiable

c.d.f. G (�) satisfying 11

G(0) = 0 ;

G0(�) > 0; � 2 (0; 1) ;

G(1) = �max <1 :

Learning is costless: agents make inferences about the history zt from the sequence

of public signals, st = fs0; s1; :::; stg, where st is the signal in period t. It is assumed
that in period t these producers observe their own prices and quantities, Pt(�) and

yt(�), but not island prices and quantities. From (2), this is equivalent to observing

the signal st = Yt�
�
tP

�
t . Thus the signal is both public, as it is observed by all �rms

on the island, and endogenous, since it re�ects price and quantity decisions made by

other �rms on the island.

At the beginning of period t, the information set of a producer that updated

to full information � periods ago is I�;t = fzt�� ; stg. Information that is due to
the market signal, st, is public as it is observed by all �rms on the island, whereas

information due to updating, zt�� , is (partially) private as it is observed only by those

�rms that pay the �xed cost. The resulting hierarchical information structure on an

island is thus very tractable: information sets of less informed �rms are �ner subsets

of those for more informed �rms, i.e., I�+1;t � I�;t, for � = 1; 2; :::. This implies

that less informed �rms mostly rely on information conveyed by public signals. The

11Dotsey, King, Wolman (1999) employ similar speci�cation for the �xed cost of changing prices.
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extent of heterogeneity of information is characterized by the distribution of �rms

across information sets I�;t: �rms are less heterogeneous in terms of information when

a smaller fraction of �rms opt to update to full information. The key feature of

the model is that heterogeneity of information is endogenous in that �rms�decisions

regarding updating determine the distribution of �rms across information sets, I�;t.

The timing of events within a period is as follows. At the beginning of period t,

producers form their prior distributions about the state history zt. Next, the �xed

costs of updating are realized and �rms decide whether or not to update. Those that

update pay �xed cost and directly observe the history through to last period, zt�1.

After that, the current state zt is realized, goods markets open, intermediate good

�rms observe current signal st, set current period prices Pt(�), produce and trade in

the �nal good market, collecting pro�t �t (�) � Pt(�)yt(�)
Pt

�  yt(�)
1+�

1+�
. After goods

markets are closed, �rms form their posterior distributions about zt based on the

signal history st.12

Firms whose last updating to full information occured in the same period have

identical information sets. Combined with the assumption that the cost of updating

is i.i.d., this implies that such �rms also choose the same prices and quantities. Hence,

the distribution of �rms can be indexed by the number of periods since last updating:

� = 1; 2; :::, where � = 1 denotes producers that updated at the beginning of the

current period.

The type � �rm solves the following dynamic problem :

V�;t = max
P�;t;y�;t

E�;t

"
P�;ty�;t
Pt

�  
y1+�� ;t

1 + �
+

�

�max

Z �max

0

eV�+1;t+1 (�) dG (�)# ; (4)

eV�+1;t+1 (�) = max fE�+1;t+1 (V1;t+1)� �; V�+1;t+1g ; (5)

subject to (2) and Bayesian laws of motion for distributions over individual state

histories.13 The initial distribution in period 0 is assumed to be equal to the uncon-

12It is assumed that after observing current signal, it takes time for �rms to form their posterior
distributions, so that price decisions are based on prior distributions of the state history. This
assumption also separates pricing and information decisions and makes the problem more tractable
without a loss of generality.
13Characterization these laws of motion is delayed till Section 3, in which for the linearized version

of the model the Bayesian updating implies that the laws of motion for conditional expectations of
the state are given by the Kalman �lter equations.
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ditional distribution of z0.

In (4) and (5) � 2 (0; 1) is a discount factor, and E�;t (�) � E (�jI�;t) denotes the
expectation based on information set I�;t. Value function eV�;t (�) (V�;t) represents
future pro�t streams to �rm � before (after) the updating decision in period t. The

i.i.d. assumption on �xed costs of updating implies that V�;t does not depend on the

realization of the �xed cost. After plugging (5) into (4) and integrating over � the

objective (4)-(5) reduces to

V�;t = max
P�;t;y�;t;��;t

E�;t

"
P�;ty�;t
Pt

�  
y1+�� ;t

1 + �

+�

 
��+1;t+1V1;t+1 �

Z G�1(��+1;t+1)

0

dG (�) + (1� ��+1;t+1)V�+1;t+1

!#
;(6)

whereG�1 (�) denotes the inverse function of the c.d.f. G (�), ��+1;t+1 = G�1 (E�+1;t+1 (V1;t+1)� V�+1;t+1)

is �rm ��s probability of updating in period t+1, and the integral in the last bracket

represents �xed costs that the �rm is expected to pay in period t+ 1.

Updating probabilities ��;t imply that the distribution of households across types

is given by

��;t = (1� ��;t)���1;t�1; � = 2; 3; ::: (7)

�1;t = 1�
1X
�=2

(1� ��;t)���1;t�1 ; (8)

where ��;t denotes the fraction of type � households at the end of period t.

First-order conditions for problem (6) yield

P 1+���;t =
�

� � 1 
�
Yt�

�
tP

�
t

	� 1

E�;t
�
P�1t

� ; (9)

V�;t = E�;tV1;t �G (��;t) : (10)

According to the pricing equation (9), intermediate good prices in period t depend

on island demand Yt�
�
tP

�
t and the �rm�s expectations on the island price level Pt.

Equation (10) is a cuto¤ rule saying that for a type � �rm there exists a value of

�xed costs, G (��;t), that makes it indi¤erent between updating and not updating to

full information. It is shown in Appendix A that equations (10) imply a closed-form
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system for updating probabilities ��;t, given pro�ts ��;t :

G (��;t) = E�;t f�1;t � ��;t

+� [(1� ��+1;t+1)G (��+1;t+1)� (1� �1;t+1)G (�1;t+1)]

+�

"Z G�1(��+1;t+1)

0

dG (�)�
Z G�1(�1;t+1)

0

dG (�)

#)
; � = 1; 2; :::(11)

2.3 Government

It is assumed that the government controls aggregate nominal demand, which is

proportionately distributed among islands, so that an island�s nominal demand, Mt,

is given by:

Mt = PtYt ;

where Pt, Yt are �nal good price and output on the island. Let �t denote the rate of

growth of the nominal demand, �t =
Mt

Mt�1
, and assume that ln�t follows an AR(1)

process

ln�t+1 = (1� ��) ln�+ �� ln�t + "�t+1

with mean ln� and i.i.d. errors "�t � N(0; �2�).

By assumption, islands�nominal demand growth rates are all equal to �t :

�t = �t
Yt
Yt�1

: (12)

2.4 Equilibrium

An equilibrium consists of sequences of �rms�probability distributions over their re-

spective information sets, prices fPt; P�;tg1t=0, allocations fYt; y�;tg
1
t=0, value functions

fV�;tg1t=0, and updating weights and probabilities f��;t; ��;tg
1
t=0 such that, given the

initial probability distributions for all cohorts in period 0, for all state histories,

(1) given island prices fPtg1t=0, allocations and individual prices fP�;tg
1
t=0 solve

the optimization problem of the �nal and intermediate good producers;

(2) value functions fV�;tg1t=0 satisfy equations (6);
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(3) updating weights and probabilities f��;t; ��;tg1t=0 satisfy cuto¤ equations (10)
and laws of motion (7)-(8);

(4) �rms�probability distributions are updated according to the Bayes law;

(5) �nal good producers collect zero pro�ts;

(6) all markets clear, island indexes Pt and Yt are de�ned by (1), (3).

It is shown by Hellwig and Veldkamp (2009) that price-setting problems with

discrete information choice based on public signals face multiple equilibria. Although

analyzing the uniqueness of equilibrium does not appear to be possible in this model,

I conjecture that equilibrium is indeed unique. The uniqueness follows from the

speci�cation that the stochastic �xed cost of updating is drawn from a continuous

distribution, which smoothes the otherwise discrete choice to update. In the next

section it is shown that this leads to staggered information decisions and smooth

dynamics for the distribution of �rms as a function of signal precision.14

3 Aggregation and Solution

This section provides a solution of the log-linearized version of the model introduced

in Section 2. Log-linearization is used for two reasons. First, in the linear model,

Bayesian updating implies that the laws of motion for conditional expectations of

the state are given by the Kalman �lter equations. Second, linearization allows for

aggregation of the individual decision rules. Both of these features make the model

tractable and suitable for numerical analysis.

3.1 Aggregation

Prices and quantities in the model are log-linearized around deterministic trend �t

such that all prices grow with the rate of nominal demand growth, �, and all real

14In the numeric simulations of the model, I experimented with various initial conditions and
degrees of computation accuracy, and found no other equilibria.
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variables are constant :

P� = P = �t ;

y� = Y =

�
� � 1
� 

�1=�
;

�� =

�
�

� � 1 
�� 1

� 1 + ��

(1 + �) �
:

Pricing equation (9) in log-linearized form is

P̂�;t =
�

1 + ��

�
Ŷt + ��̂t

�
+ P̂t +

1

1 + ��

h
E�;t

h
P̂t

i
� P̂t

i
; (13)

where hats denote log-linear deviations from trend. The �rst two terms in equation

(13) are standard for price adjustment under perfect information: the price of a

di¤erentiated good relative to the island price level depends on the island output

demand, as summarized by the �rst term. The constant �
1+��

is smaller then 1,

re�ecting the dampening of price changes in response to changes in marginal costs

due to strategic price complimentarity with the pricing decisions of other producers

on the island. The last term characterizes the e¤ect of imperfect information on the

�rm�s price: to the extent that forecasts of the island�s price level lag the actual level,

�rms dampen their price changes. Hence imperfect information is the only source of

propagation of nominal shocks in this model, and propagation is inversely related to

�rms�forecasting accuracy.15

Substituting P̂�;t into log-linearized equation for island price (3) yields equation

for island price level :

P̂t = ��̂t + �Ŷt +
X
�

��E�;t

h
P̂t

i
+
X
�

P�d��;t ; (14)

where d��;t denotes �rst-di¤erence deviations of ��;t from the steady state. The last

term represents the e¤ect of changes in the distribution of �rms on island price. Since

P� is equal for all � ,
P

� P�d��;t = 0, so in the linear model we only need to solve for

a stationary distribution of �rms, f��;tg.
The following proposition provides a closed-form system for the sequence of up-

15Section 4 discusses the extension with sticky prices as another potential source of propagation.
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dating probabilities f��g that can be used to �nd the stationary distribution of �rms
f��g.
Proposition 1. Let MSE�

�
P̂t

�
be the mean squared error of island price level

for type � producer in period t, MSE�

�
P̂t

�
= E

h
P̂t � E�;tP̂t

i2
. Then up to a second

order of magnitude,

EE�;t [�1;t � ��;t] = �
(1 + �) � (� � 1)
(1 + ��)2

h
MSE�

�
P̂t

�
�MSE1

�
P̂t

�i
; (15)

and mean updating probabilities up to a �rst order of magnitude are given by

G (�� ) = EE�;t [�1;t � ��;t]

+� [(1� ��+1)G (��+1)� (1� �1)G (�1)]

+�

"Z G�1(��+1)

0

dG (�)�
Z G�1(�1)

0

dG (�)

#)
; � = 1; 2; ::: (16)

Proof. See Appendix B. �
Proposition 1 is key to understanding the interaction between learning and up-

dating highlighted in this paper. Equation (15) relates forecasting accuracy to �rms�

payo¤s: the average expected gain in current pro�ts after updating is proportional to

the improvement in the mean squared error of island price level, up to a second or-

der. Equation (16), in turn, links expected pro�t gains to the probability of updating:

smaller predicted pro�t gains imply smaller updating probabilities.

There are two caveats stemming from Proposition 1. First, better forecasting

accuracy decreases the incentive to update information sets. For example, more in-

formative market signals decrease the number of �rms willing to pay �xed costs to

update their information. This is simply an implication of substitutatibility between

two technologies for acquiring information. Second, endogenous updating determines

the distribution of �rms f��g over information sets I�;t, with less frequent updating
implying greater weights on more outdated information sets. Such information sets

mostly contain public information, so corresponding prices are more synchronized.

Since market signals are determined by the distribution of prices, they convey more

information when prices are less dispersed. Hence, the interaction between learning

from market signals and the endogenous frequency of updating implies an informa-
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tion externality: information conveyed by market signals determines the frequency

of updating information by price-setting �rms, which in turn a¤ects the informa-

tion contained in the market signals. Next section studies the implications of this

information externatity for monetary nonneutrality.

The linearized equilibrium system is closed by the aggregate demand equation

(12) in log-linearized form:

P̂t � P̂t�1 = b�t � Ŷt + Ŷt�1 : (17)

The resulting system has four linear equations (14), (15), (16) and (17) cast in

terms of current period price and output levels, their average expectations and fun-

damental disturbances.

3.2 Solution

In the problem above �rms draw inferences about the entire history of past shock

realizations. Townsend (1983) showed that this type of problem does not have a �nite-

dimensional recursive representation and in general cannot be solved analytically.

To solve this system numerically, I use a method of undetermined coe¢ cients for a

truncated state space.16 The state history is approximated by a truncated vector

Zt =
h
z
0

t; z
0

t�1; :::; z
0

t�T

i0
:

This expanded state vector evolves according to

Zt = AZt�1 +B"t

where "t = ["�t; "�t]
0 ; A =

"
� 02;2(T�1)

I2(T�1) 02(T�1);2

#
; B =

"
I2

02(T�1);2

#
; � =

"
�� 0

0 ��

#
,

and IN is an N �N matrix with ones on the diagonal and zeros otherwise. Each �rm

on an island, before setting its price, observes the signal st = Ŷt+ ��̂t+ �P̂t. Assume

16See Hellwig (2002), Lorenzoni (2009).
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that the signal st is a linear function of the state history:

st = HZt ; (18)

where H is a 1� 2T matrix of unknown coe¢ cients. After observing the signal and
setting prices, �rms update their expectations according to Kalman �lter equations17:

E�+1;t+1Zt+1 = AE�;tZt + AK�H[Zt � E�;tZt]; � = 1; :::; T � 1 ; (19)

E1;tZt+1 = AZt ; (20)

where K� is the matrix of Kalman gains, and E�;tZt denotes expected mean of the

state vector Zt conditional of prior distribution for the �rm with information set

I�;t = fzt�� ; stg. Write this conditional expectation as a linear function of the state
vector:

E�;tZt = 	�Zt�1 ; (21)

where 	� is a 2T � 2T matrix of unknowns. Equations (14)-(20) yield a system of

equations for unknown matrices H, f	�g and average adjustment probabilities f��g
that together characterize a linear equilibrium. Appendix C provides details of the

numeric solution method.

4 Simulation of equilibrium dynamics

This section presents the results of model solution and simulation. It �rst describes the

main mechanism behind the dissemination of information in the economy, namely the

interaction between updating and learning. Then it discusses the implications of this

interaction for equilibrium dynamics and for the monetary transmission mechanism.

17Hamilton (1994), Chapter 13.
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4.1 Two channels of information acquisition: updating and

learning

Information about the fundamental disturbances in the economy disseminates via two

distinct channels: every period a fraction of agents updates to full information, and

the remaining �rms learn from observing island demand. To illustrate these channels,

Figure 1 shows impulse responses of �rms�expectations of the (detrended) quantity

of money at the time of their price decisions. The top panel gives the responses in the

model with learning. The most informed cohort 1 fully updates at the beginning of

the second period, so its expectations jump to the actual level of money stock. The

behavior of the higher cohorts is similar: expectations imperfectly track the increase

in the quantity of money as they learn from the market signals, until they eventually

update their information sets, at which point their expectations also jump to the

actual level of money. In the model without learning (bottom panel), cohorts that

do not update information, entirely miss the shock, and instead forecast that the

quantity of money will stay at the pre-shock level. Hence, observing market signals

allows �rms to imperfectly infer the underlying shocks at times when paying for full

information is too costly.

The interaction between updating and learning a¤ects the transmission mechanism

in this paper, and in particular, has implications for the extent of real persistence after

monetary shocks. To build intuition behind these implications, consider a stylized

example involving the output response following a +1% i.i.d. innovation in money

growth.18 Equations (14) and (17) imply that the output response is given by

Y0 =
1

� + 1

Yj =

�
1�

Pj
l=1 �l

�
FEj

� +
�
1�

Pj
l=1 �l

�
FEj

; j = 1; 2; :::

where subscript j denotes the number of periods (say, quarters) after the impulse,

and FEj = 1�
P1

l=j+1
�l

1�
Pj
l=1 �l

El;t+j�1Pt+j
Pt+j

is the average forecast error of the island

price level in jth quarter after the shock among �rms that have not updated their

18Recall that conditional on a given money shock, the island-speci�c and aggregate reponses are
identical.

16



information sets. The error is expressed as a fraction of the island price level in

quarter j. Assume, for simplicity, both a constant rate of updating �j = �, and a

constant forecast error FEj = x. De�ne the half-life of the output response as the

time J that it takes for output impulse response to decrease by half relative to its

response in quarter 0. Then the fraction of updating can be written as a decreasing

function �(J) of the half-life of the output response:

�(J) = 1�
�
�x�1

2� + 1

�1=J
: (22)

Figure 2 compares �(J) for two cases: x = 1 (no learning), and x = 1=2 (�rms

can predict half of the �uctuations in price level). Consider the economy with no

learning and with updating once a year (point A). The corresponding half-life of the

output response is around 7 quarters. With learning, ceteris paribus, forecast er-

rors decrease by 1 � x, i.e. by 50% (point B). From (15) and (16), we know that

smaller forecast errors weaken the incentive to updating so the frequency of updating

decreases and, ceteris paribus, the persistence of the output response increases some-

what (point C). A reduced-form (22), however, ignores the e¤ect of the decrease in

the frequency of updating on the dynamics of output and the price level, and thus

also on the informativeness of the market signal. In Section 4 it is shown that less

frequent updating, through greater synchronization of price changes, tends to improve

information conveyed by market signals, leading to more accurate price decisions and

reduced persistence of the output response (point D).

Before beginning a quantitative investigation into the implications of learning

and updating for aggregate persistence, the model is calibrated to some salient facts

concerning U.S. in�ation.

4.2 Calibration

The benchmark model is calibrated to match key characteristics of quarterly U.S.

time series. Calibrated parameters are given in Table 1. The discount factor � is

0.971=4 implying that the interest rate is 3%. The scale parameter  is set to �
��1 ,

normalizing steady state output to 1. The degree of decreasing returns to labor, �,
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is 0.18 implying returns to scale of 0.85. Since labor is the only productive input in

the model, this value represents a compromise between more conventional constant

returns and a labor share of 0.7. The elasticity of substitution between intermediate

goods, �, is 5, which is consistent with values in the IO literature - between 2 and

5 - and in the macro literature - between 5 and 10.19 To calibrate aggregate and

island demand shocks, I use the BLS data for consumer prices in 111 commodity

categories in the U.S. over the period 1978:1-1997:4. The sample accounts for 49% of

1997 consumption expenditures.20 The standard deviation and serial correlation of

the island demand shock process are chosen to match the weighted average standard

deviation and serial correlation of (detrended) in�ation across the goods categories,

respectively 1.97% and -0.05.

Parameters of the aggregate demand (money growth) process, are picked to match

standard deviation and serial correlation of CPI in�ation excluding food and energy

for the period 1957:1-2008:4, respectively 0.68% and 0.81.21 This method for cali-

brating the aggregate demand is preferred to estimating it directly from the data on

money supply for two reasons. First, in the model, the money growth shock is meant

to capture a variety of nominal disturbances impacting the aggregate rate of in�ation

(e.g., shocks to the velocity of money). Second, due to di¤erences in information

�ltering between the models with and without learning, assuming a common money

shock process for both cases would result in di¤erent moments of aggregate in�ation.

Hence, for each model, the shock parameters are calibrated to match the same target

moments for in�ation.

Table 1 shows that calibrated money growth shocks in the model without learning

are much less persistent than in the benchmark model. In the model without learning,

low covariance of price levels across �rms reinforces slow adjustment of prices due to

19The degree of strategic complementarity in pricing, given by �
1+�� , equals to 0.095, which is

close to the range of 0.10 to 0.15 given by Woodford (2003). Changing � and � to better accord with
Woodford�s estimates does not a¤ect main results.
20By restricting the sample is to a shorter time period, 1990:1-1997:4, the number of sectors can

be expanded to 159, covering 93% of expenditures. Since the focus in the paper is on time series
moments, I prefer a narrower but longer sample.
21In�ation moments from CPI less food and energy are between moments obtained using the GDP

de�ator and total CPI. For GDP de�ator standard deviation and serial correlation are 0.59% and
0.86, and they are respectively 0.78% and 0.67 for total CPI. Hence, out of three most commonly
used aggregate price indeces, CPI less food and energy is the most representative of U.S. in�ation
in the postwar data.
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outdated information. This implies strong persistence of in�ation. In fact, models

with infrequent information updating tend to predict too much in�ation peristence.22

To o¤set this feature, calibrated money growth shocks in the model without learning

have almost zero serial correlation. In the benchmark model, access to public signals

implies that in�ation is more volatile but less persistent. Hence, in order to match

the same calibration targets, the serial correlation of money shocks in the benchmark

model is greater but the innovations to money shocks are on average smaller, relative

to the model without learning.

Finally, we assume that the distribution of the �xed cost of updating is uniform.

This impiles that we only have to calibrate one parameter: the maximal �xed cost,

�max. This parameter is chosen so that, without learning, information is updated once

a year.23 This frequency of updating is consistent with empirical studies by Carroll

(2003), Mankiw, Reis, and Wolfers (2003), and Khan and Zhu (2006). The implied

average �xed cost of updating is 1.5% of the �rm�s quarterly revenue, in line with

micro evidence in Zbaracki, Ritson, Levy, Dutta, and Bergen (2004). They docu-

ment that the managerial cost of price adjustment, including the costs of information

gathering and analysis, totals about 1% of quarterly revenue.

4.3 Aggregate implications of imperfect information

This subsection explores the implications of the interaction of costly updating and

costless learning for the degree of persistence of output and in�ation. I consider the

dynamics of aggregate output and in�ation after an unexpected increase in nominal

expenditures, and focus particularly on the degree of persistence of impulse responses.

Chari, Kehoe, and McGrattan (2000) argue that the empirically plausible half-life

of the output impulse to a monetary impulse is around 10 quarters. This number

is consistent with Christiano, Eichenbaum, and Evans (2000), who conduct VAR

analysis of the U.S. postwar economy.

Figure 3 illustrates the responses of aggregate output and the price levels following

a +1 standard deviation innovation in money growth in both the benchmark model

22See, e.g., Mankiw and Reis (2002), Reis (2006).
23For the model with learning, results are not very sensitive to calibration of the �xed cost distri-

bution.
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and the model without learning.24 The top panel shows the responses of aggregate

output. In both model economies, output response is hump-shaped, peaking after

1 quarter. The magnitude of the response in the model without learning is about

twice as large as in the benchmark model, due to a larger size of the shock. The

biggest di¤erence between the two responses is their persistence. In the model without

learning, the time after shock that it takes for output response to fall to half its

maximuml, i.e., its "half-life", is 6.7 quarters. Since calibrated money growth shocks

in the model without learning are not persistent, this half-life should be interepreted

as a lower bound on persistence in models where �rms acquire information only by

updating. Nevertheless, even this lower bound is more than twice as large as the

half-life in the benchmark model, which is comes in around 2.6 quarters.25

The bottom panel of Figure 3 shows the reponses of price levels in two models.

A money growth impulse implies a permanent increase in the aggregate price level

in each model. The increase is larger in the model without learning. In line with

output responses, it takes only half a year after the shock for the price level to halve

the distance to its new level in the benchmark model, whereas it takes 3 times longer

in the model without learning. Thus the model with learning implies much faster

adjustment than the model without learning.

It is important to note that the model with learning, despite featuring less ag-

gregate persistence, is validated empirically. Table 2 shows that it matches several

auxiliary moments from the BLS data as well as the model without learning. Specif-

ically, the correlation of money growth with aggregate and sector-speci�c in�ation

rates is 0.39 and 0.14 in the model, fairly close to 0.30 and 0.28 in the data. Both

models match closely the across-time volatility of the interquartile range: 0.26% and

0.28% in the benchmark and in the no-learning model respectively (0.29% in the

data). Both models exaggerate somewhat the dispersion of in�ation rates across sec-

tors: the weighted interquartile range of in�ation rates for an average quarter in the

benchmark model is 2.52 % points, as compared against 1.76 % points in the BLS

24Thus the shock is representative for each model. In the benchmark model, the shock is smaller
but more persistent.
25In the model without learning, the half-life of 10 quarters can be obtained by increasing the

average �xed cost of updating to 4.5% of revenue. The average time between updating then increases
from 1 to 1.5 years. In the model with learning, however, half-life is virtually una¤ected by increases
in the �xed cost.
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data.

The model is also consistent with some regularities concerning in�ation expec-

tations that have been highlighted in the empirical literature. Mankiw, Reis, and

Wolfers (2003) �nd that the interquartile range of expectations of annual aggregate

in�ation for 2003 is between 1.5% and 2.5% for economists, and 0% to 5% for house-

holds. The benchmark model places the disagreement in in�ation expectations at

1.11%, whereas in the model without learning the disagreement is smaller, 0.52%.

Forecast errors for annual in�ation in expectations surveys ranged between 1.07% to

1.29% for the period from September 1982 to March 2002. Both models fall short

of this range, with the benchmark model performing slightly better, placing forecast

errors at 0.35%.26

Finally, in the model with learning, forecast errors conditional on the monetary

shock converge at similar rates across �rms due to the synchronizing e¤ect of mar-

ket signals. In contrast, in the model without learning, forecast errors of updating

�rms converge faster than those of uninformed �rms. Moreover, dispersion of price

expectations is virtually una¤ected by the shock in the benchmark model, whereas it

increases in the model without learning. Both predictions are documented in Coibon

and Gorodnichenko (2008), who study responses to structural shocks in empirical

expectations data.

4.4 The role of updating and learning in aggregate persis-

tence

I start by characterizing the extent of updating and learning in the two model

economies, then study implications for aggregate persistence.

Figure 4 provides measures of �rms�learning e¢ ciency and updating frequency as

a function of the number of quarters since the last updated. The top panel provides

forecast errors for the island-speci�c price level. In the model without learning, fore-

cast errors steadily increase with time since last updating, rising from 1.7% points
26In the data, expected in�ation rates and forecast errors are reported at an annual horizon.

To convert from quarterly to annual frequency in the model, quarterly rates are multiplied by
1 + � + �2 + �3, where � is the corresponding serial correlation; namely, 0.81 for the aggregate
quarterly rate of in�ation, 0.21 (-0.05) for the average island-speci�c forecast error in the benchmark
(no learning) model.
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for the most informed cohort to more than 5% for cohorts that have not updated

for more than 2 years. The average forecast error is 2.5% points. In the benchmark

model, forecast errors are virtually �at: 1.3% points for cohort 1 and 1.4% points

for all cohorts that have not updated for more than a year. This is a consequence of

learning from a sequence of commonly observed market signals: it takes about a year

to infer from market signals the e¤ect of fundamental shocks on aggregate price level.

Hence, in the model with learning, agents�beliefs are "synchronized" in the sense

that an agent who has not updated for many years on average forecasts in�ation just

as well as the agent who updated one year ago.

According to the cuto¤ equation (16), forecast errors for island-speci�c in�ation

determine the average probability of updating conditional on the time past since last

updating (i.e., hazard rates). In particular, hazard rates are increasing for the model

economy without learning, and they are �at for the benchmark model.27 Even more

remarkable is that updating in the benchmark model is extremely infrequent, namely

once every 25 years, in contrast to the model without learning, which features an-

nual average frequency of updating. In the benchmark model, less frequent updating

synchronizes information sets across �rms, leading to smaller forecast errors. As a

result, incentives to pay for updating are very weak, reinforcing the low frequency of

updating.28 Hence, very low frequency of updating information sets is due to an exter-

nality whereby the number of �rms updating information a¤ects the informativeness

of market signals.

At the aggregate level, high forecasting accuracy by price-setting �rms implies

that their price changes are better aligned with �uctuations in nominal demand, re-

ducing the potential for monetary nonneutrality. Figure 5 plots a general equilibrium

version of Figure 1 � that is, it gives the half-life of the output response to a +1

standard deviation monetary impulse as a function of equilibrium frequency of up-

dating. Speci�cally, for each of two models, with and without learning, I conduct a

number of simulations, each time changing the cost of updating, to obtain a range

27It is insightful to parallel �at hazard rates of information updating in this paper with �at hazard
rates of price adjustment in micro data, reported in Klenow and Kryvtsov (2008). If information
updating is important under infrequent price adjustment, the mechanism in this paper can aid in
explaining �at or declining hazard rates in the micro data.
28This implication of the model is reminiscent of Grossman and Stiglitz (1980), where costly

information updating and homogeneity of beliefs can lead to thin markets for acquiring information.
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of average frequencies of updating. In the model without learning, the half-life of

output responses quickly increases as the average frequency of updating decreases.

In contrast, for model economies with learning, the half-life increases only modestly,

from 0.5 quarters for average frequency 99% to 2.6 quarters for the frequency 1%.

The conclusion from this quantitative exercise is that, in the model with learning,

the greatest degree of monetary nonneutrality is achieved when only a few �rms �nd

it optimal to update to full information, so that most �rms opt instead to acquire

information from market signals.

This conclusion warrants three caveats. First, when updating is very infrequent,

information �ltering problem is no longer exacerbated by the need to forecast com-

petitors�price changes, as those are highly synchronized with the signal. In this case,

persistence depends only on the relative volatility and persistence of the shocks, given

the signal that is a linear combination of the shocks.29 In the data, the in�ation rate

for a typical sector is more volatile but much less persistent than the aggregate in�a-

tion rate. This implies that in the calibrated model it should be easy to disentangle

shocks to island-speci�c in�ation from monetary shocks.

Second, the frequency with which the signal is observed determines how quickly the

shocks can be identi�ed. In the benchmark model, despite very infrequent sampling

of market signals (only once a quarter) the underlying shocks are identi�ed within

roughly 3 quarters. With more frequent signal observations, the model would predict

even less monetary nonneutrality.

Finally, in the model, market signals, although very informative, do not reveal

full information. This implies that the private value of updating is always positive,

so �rms that draw very small �xed cost choose to update. This setting with a range

of �xed costs of updating information thus avoids the "fundamental con�ict between

the e¢ ciency with which markets spread information and the incentives to acquire

information" highlighted by Grossman and Stiglitz (1980). In addition, by ruling out

an equilibrium with prices fully revealing information, this setting prevents multiple

equilibria of the sort discussed in Hellwig and Veldkamp (2009).

29This also means that the exact source of the signal is almost irrelevant for persistence. For
example, a signal st = aŶt + b�̂t + cP̂t, where a; b; c are real numbers, would result in almost the
same degree of persistence as in the benchmark model.
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I conclude that the benchmark model provides a reasonable upper bound - less

than 3 quarters - on the persistence with which agents respond to monetary shocks

in models with imperfect information. The upper bound is given by the time that

it takes uninformed �rms to infer underlying nominal and real disturbances from

market signals. Information externalities of the sort described in this paper weaken

private incentives to update and thus enhance the informativeness of market prices

and quantities. An important corollary is that business cycles driven by purely nom-

inal disturbances lack the persistence that is typical in the data.

4.5 Robustness

Here I establish robustness of my main results with respect to some assumptions

about the precision of the market signals, the shape of the �xed cost distribution,

and price duration.

First, I relax the assumption that market signals are accurately observed. In-

stead, I now assume that the market signal st is observed with a measurement error

"st, where "st is a zero-mean i.i.d. draw from a normal distribution. For my solution

method to work, I assume that measurement errors are common for all �rms on an

island, e.g., inaccurate information about market prices and quantities is published

in an island newspaper. This extension then does not increase the heterogeneity of

information sets among �rms on an island, but rather reduces the informativeness of

public signals vis-à-vis fundamental disturbances. I �nd that in order to increase the

half-life to 6.8 quarters, as in the model without learning, the standard deviation of

measurement errors has to be 7 times the standard deviation of money growth, or

10 times the standard deviation of the island-speci�c demand shock. Hence, mea-

surement errors would need to be implausibly large if they are to ensure considerable

monetary nonneutrality in the benchmark model.

Second, I experiment with the shape of the continuous distribution from which

�rms draw their �xed costs of information updating. The uniform distribution as-

sumed in the benchmark model assigns equal weights to each realization of the �xed

cost from 0 to �max. This distribution was disturbed in both directions, i.e., the

model was simulated given the distribution that puts more (less) weight on extreme
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�xed cost realizations.30 It was found that, for both models �i.e., with and without

learning � the size of monetary nonneutrality is not sensitive to the shape of the

�xed cost distribution, conditional on the average �xed cost remaining. This, to even

larger extent, concerns the benchmark model, because the level of the probability of

updating is small regardless of the underlying �xed cost distribution.

Finally, I relax the assumption that prices freely adjust every quarter. Price

duration as found in the micro data ranges from 4 to 11 months.31 Now I allow

intermediate good producing �rms to adjust their prices only every other quarter.

In particular, half adjusts in even quarters and the other half in odd quarters. The

implied duration of �xed prices is 6 months, in line with empirical evidence. To

maintain tractability, I also assume that a �rm cannot update its information set

unless it also adjusts its price. This assumption does not crucially a¤ect the average

incentive to update: although the incentives for a given �rm double because the �rm

is presented with an opportunity to update less frequently, only half of all �rms are

eligible for updating at any quarter. It is found that main results are not a¤ected.

Even though the persistence of the output response following a monetary shocks

increases due to sticky prices, the half-life remains less than a year in the model with

learning, and lasts a bit more than two years in the model without learning. In this

sense, sticky prices do not induce any endogenous persistence in real responses, but

rather delay the response in the price level. Given that empirically plausible price

stickiness is relatively modest, adding sticky prices to the benchmark model thus does

not help in confronting the persistence problem.

5 Conclusion

The biggest challenge for monetary models is to generate persistent business cycles.

Recent research claims that the persistence problem can be solved using assumptions

30For instance, two extreme cases of �xed cost distributions are: bi-modal distribution density,
which splits the unit weight between very small and very large costs, implying Calvo-like adjustment,
and uni-modal density that puts most of the weight on one value of �xed costs, implying purely state-
dependent adjustment.
31For example, in U.S. data on consumer prices, this range is 4 to 7 months in Klenow and

Kryvtsov (2008), and 8 to 11 months in Nakamura and Steinsson (2008).
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that lead to dramatic but exogenous dispersion of information about fundamental

shocks. This research predominantly abstracts from the role of prices and quantities

in conveying information. In this paper, �rms are free to observe and learn from

market signals, and heterogeneity of information across price-setters is instead an en-

dogenous outcome of the decision to eschew these signals in favour of updating. It is

found that this decision creates an externality by shifting the weight in the price dis-

tribution towards those prices that have been informed by market signals. As market

signals coordinate �rms�price decisions, the costly updating of information becomes

less frequent and the accuracy of forecasting competitors�prices improves. Better

forecasting accuracy in turn leads to short-lived real e¤ects for monetary shocks. I

conclude that imperfect information alone cannot explain the substantial degree of

monetary nonneutrality found in the data.
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Appendix A. Value functions and adjustment prob-

abilities

Denote the optimal payo¤ of the � cohort in period t by ��;t,

��;t =
P�;ty�;t
Pt

�  y1+�� ;t =(1 + �) ;

where P�;t and y�;t are respectively the prices and output chosen by cohort � in period

t.

Then equation (6), after using equation (10) for E�;tV1;t, becomes

V�;t = E�;t

(
��;t + �V�+1;t+1 + �

"
��+1;t+1G (��+1;t+1)�

Z G�1(��+1;t+1)

0

dG (�)

#)
:

Denote � (��+1;t+1) �
R G�1(��+1;t+1)
0

dG (�). Taking expectations E�;t of equation

above for � = 1 and subtracting the equation for � , we obtain

E�;tV1;t � V�;t = E�;t f�1;t � ��;t

+� [V1;t+1 � V�+1;t+1 � E1;t+1V1;t+1 + E�+1;t+1V1;t+1]

+�

"
�1;t+1G (�1;t+1)�

Z G�1(�1;t+1)

0

dG (�)

#

��
"
��+1;t+1G (��+1;t+1)�

Z G�1(��+1;t+1)

0

dG (�)

#)
;

where by the law of iterated expectations, E�;tE�+1;t+1V1;t+1 = E�;tE1;t+1V1;t+1. Notice

that the law of iterated expectations applies because the information structure in the

model implies that information sets of less informed �rms are �ner subsets of those

of more informed �rms.

Using (10) once again yields (11):

G (��;t) = E�;t f�1;t � ��;t

+� [(1� ��+1;t+1)G (��+1;t+1)� (1� �1;t+1)G (�1;t+1)]

+�

"Z G�1(��+1;t+1)

0

dG (�)�
Z G�1(�1;t+1)

0

dG (�)

#)
:
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For the case, when the �xed cost of updating is uniformly distributed, this equation

becomes:

��;t = ��1max [E�;t�1;t � ��;t] +
�

2

�
(�1;t+1 � 1)2 � (��+1;t+1 � 1)2

�
; � = 1; 2; :::

Appendix B. Proof of Proposition 1

Cohort ��s pro�ts are

��;t =

�
�

� � 1 
� 1��

1+�� �
Yt�

�
tP

�
t

� 1+�
1+�� P

� �(1+�)
1+��

t

"
1

PtE�;t
�
P�1t

�# 1��
1+��

�  

1 + �

�
�

� � 1 
���(1+�)

1+�� �
Yt�

�
tP

�
t

� 1+�
1+�� P

��(1+�)
1+��

t

"
1

PtE�;t
�
P�1t

�#��(1+�)
1+��

:

Up to a second order of magnitude these payo¤s are

��;t = �

�
1 +

1 + �

1 + ��

�
Ŷt + ��̂t + �P̂t

�
+
1

2

�
1 + �

1 + ��

�2 �
Ŷ 2
t + �2�̂

2

t + �2P̂ 2t + 2�Ŷt�̂t + 2�ŶtP̂t + 2�
2P̂t�̂t

�
+
1

2

�
1 + �

1 + ��

�2 �
Ŷ 2
t + �2�̂

2

t + �2P̂ 2t + 2�Ŷt�̂t + 2�ŶtP̂t + 2�
2P̂t�̂t

�
+
1

2

�
�(1 + �)

1 + ��

�2
P̂ 2t �

1 + �

1 + ��

�
Ŷt + ��̂t + �P̂t

� �(1 + �)
1 + ��

P̂t

�1
2

(1 + �) � (� � 1)
(1 + ��)2

�h
P̂t � E�;tP̂t

i2
+ E�;t�1

h
P̂t � E�;tP̂t

i2��
;

so that

�1;t � ��;t = �
1

2

(1 + �) � (� � 1)
(1 + ��)2

�h
P̂t � E�;tP̂t

i2
+ E�;t�1

h
P̂t � E�;tP̂t

i2
�
h
P̂t � E1;tP̂t

i2
� E1;t�1

h
P̂t � E1;tP̂t

i2�
:
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Noting that

E

�h
P̂t � E�;tP̂t

i2
+ E�;t�1

h
P̂t � E�;tP̂t

i2�
= 2MSE�

�
P̂t

�
;

we obtain:

EE�;t�1 [�1;t � ��;t] = �
(1 + �) � (� � 1)
(1 + ��)2

h
MSE�

�
P̂t

�
�MSE1

�
P̂t

�i
:

Taking unconditional mean of both sides of (11) we obtain

EG (��;t) = EE�;t f�1;t � ��;t

+� [(1� ��+1;t+1)G (��+1;t+1)� (1� �1;t+1)G (�1;t+1)]

+�

"Z G�1(��+1;t+1)

0

dG (�)�
Z G�1(�1;t+1)

0

dG (�)

#)
; � = 1; 2; :::

Up to �rst order of magnitude this becomes

G (�� ) = EE�;t [�1;t � ��;t]

+� [(1� ��+1)G (��+1)� (1� �1)G (�1)]

+�

"Z G�1(��+1)

0

dG (�)�
Z G�1(�1)

0

dG (�)

#)
; � = 1; 2; :::

Appendix C. Numeric solution method

Kalman gains matrix K� and the mean squared error matrix ��+1j� satisfy

K� = �
0
� j��1H

0(H�0� j��1H
0)�1 ;

��+1j� = A[�� j��1 � �0� j��1H 0(H�0� j��1H
0)�1H�� j��1]A

0 +Q ;

vec(�1j0) = [I � (A
 A)]�1 � vec(Q) ;

and Q = B

"
�2� 0

0 �2�

#
B0.

Let

E�;tZt = 	�Zt�1 :
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Since the state variable is truncated, we use approximation:

Zt�1 = UZt ;

where U =

"
02T�2;2 I2T�2

02;2 02;2T�2

#
.

Then the system (19)-(20) yields the equations that can be solved iteratively for

matrices 	� :

	�+1 = A	�U + AK�H [I �	�U ] ; � � 1 ;

	1 = A :

Let Ŷt = HYZt. The equilibrium equation (14)

� (1 + �) Ŷt = ��̂t � �̂t�1 � :::� �̂t +
X
��1

��E�;t

h
�Ŷt + �̂t + �̂t�1 + :::

i
in turn, yields equation for HY :

HY f(1 + �) I �	Ug = [1; 0; 1; 0; :::] (I �	U) + [0; 1; 0; 0; :::] ;

where 	 =
P

��1 ��	� .
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Parameter Benchmark No learning

Discount factor β
Demand elasticity for intermediate goods θ
Returns to scale in intermediate good production (1+ξ) -1

Average fixed cost of updating, % revenue E(ζ)
Serial correlation of money growth ρ µ 0.365 0.064
St. dev. of innovations to money growth, % σ µ 0.98 2.12
Serial correlation of island demand ρ φ 0.245 0.57
St. dev. of innovations to island demand, % σ φ 1.49 1.98

1.5

Table 1. Model parameters

0.971/4

5
0.85



Moment Data Benchmark No learning

Used in calibration
Ser. corr. of aggregate inflation 0.81 0.81 0.81
St. dev. of aggregate inflation, % 0.68 0.68 0.68
Ser. corr. of island inflation -0.05 -0.05 -0.05
St. dev. of island inflation, % 1.97 1.97 1.97

Additional moments:
Corr. of agg inflation with money growth 0.30 0.39 0.46
Corr. of island inflation with money growth 0.28 0.14 0.17
Dispersion of island inflation rates, % points 1.76 2.52 2.45
St. dev. of dispersion of island inflation, % 0.29 0.26 0.28

Dispersion of expectations of aggregate annual 
inflation rate, % points 1.5 to 2.5 1.11 0.52

Forecast errors of aggregate annual inflation, % 
points 1.07 to 1.29 0.35 0.28

Frequency of updating, % 1.0 17.5
Duration between updating, quarters 100 4.0
Aggregate output persistence, quarters 2.6 6.7

Note: Sectoral inflation moments are from the BLS data for inflation in 111 commodity categories in the U.S. in 
1978:1-1997:4. Aggregate inflation moments are for CPI less food and energy in 1957:1-2008:4. Inflation 
expectations moments are from Mankiw, Reis and Wolfers (2003). Dispersion in a quarter is measured by the 
weighted interquartile range. Forecast errors are root mean squared errors averaged across cohorts and time. 
Aggregate output persistence is measured by half-life of aggregate output response to +1 st. dev. of money 
growth impulse.

Table 2. Moments in calibrated models with and without learning



Figure 1. Responses of actual and expected money stock         
to +1% i.i.d. money growth impulse
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Figure 3. Responses of aggregate output and price levels to +1 
st.dev. of money growth impulse
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Figure 4. Forecast errors and updating probabilities

hazard rates
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