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Abstract

McCallum (1994a) proposes a monetary rule where policymakers have some tendency to resist

rapid changes in exchange rates to explain the forward premium puzzle. We estimate this

monetary policy reaction function within the framework of an affine term structure model to find

that, contrary to previous estimates of this rule, the monetary authorities in Canada, Germany and

the U.K. respond to nominal exchange rate movements. Our model is also able to replicate the

forward premium puzzle.

JEL classification: E43, F31, G12, G15
Bank classification: Exchange rates; Interest rates; Transmission of monetary policy

Résumé

En vue d’élucider l’énigme de la prime à terme, McCallum (1994a) propose une règle monétaire

où la banque centrale tend à s’opposer aux variations soudaines des taux de change. Dans la

présente étude, l’auteur estime cette fonction de réaction de la politique monétaire dans le cadre

d’un modèle affine de la structure des taux d’intérêt; il constate que, contrairement à ce

qu’indiquaient les estimations antérieures fondées sur cette règle, les autorités monétaires

canadienne, allemande et britannique réagissent aux mouvements des taux de change nominaux.

Le modèle de l’auteur permet aussi d’expliquer l’énigme de la prime à terme.

Classification JEL : E43, F31, G12, G15
Classification de la Banque : Taux de change; Taux d’intérêt; Transmission de la politique
monétaire



1 Introduction

During the last twenty-�ve years the majority of empirical studies of exchange rates

have rejected the hypothesis of uncovered interest parity. This hypothesis implies that

the (nominal) expected return to speculation in the forward foreign exchange market

conditional on available information should be zero. Many studies have regressed ex-post

rates of depreciation on a constant and the interest rate di¤erential, rejecting the null

hypothesis that the slope coe¢ cient is one. In fact, a robust result is that the slope

is negative. This phenomenon, known as the �forward premium puzzle�, implies that,

contrary to the theory, high domestic interest rates relative to those in the foreign country

predict a future appreciation of the home currency.

A particularly interesting explanation of this anomaly has been given by McCallum

(1994a). In an in�uential paper, he shows that models which augment the uncovered

interest parity hypothesis with a monetary rule where policymakers adjust interest rates

to keep exchange rates stable, are better able to capture the forward premium puzzle. In

fact, this policy behavior insight has been widely cited as one of the main explanations

for the rejection of uncovered interest parity (see, e.g., Taylor 1995, Engel 1996, Sarno

2005, and Burnside et al. 2006).1

Despite its theoretical appeal, the empirical support for this explanation appears ten-

uous. The estimates of this policy rule in both Mark and Wu (1996) and Christensen

(2000) imply that short-term interest rates do not react to exchange rate �uctuations.

However, both papers employ single-equation approaches to estimate this rule and do not

exploit the cross-sectional information contained in the yield curve.

In this paper, we estimate the McCallum (1994a) rule within the framework of an

a¢ ne term structure model with time varying risk premia. This approach, introduced

by Ang et al. (2007) in the context of the estimation of a Taylor (1993) rule, has the

advantage of exploiting the information contained in the whole yield curve as opposed

to the information contained only on short-term interest rates. In particular, long-term

interest rates are conditional expected values of future short-rates after adjusting for risk

premia, and these risk-adjusted expectations are formed based on a view of how the central

bank conducts monetary policy. Thus, the whole curve re�ects the monetary actions of

the central bank, and the entire term structure of interest rates can be used to estimate

a monetary policy rule.

1Several other explanations for this anomaly are the existence of a rational risk premium in the foreign
exchange rate market, �peso problems�, and violations of the rational expectations assumption. See Engel
(1996) for a review of this literature.
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The model that we consider in this paper is related to a growing literature on inter-

national term structure modeling. Papers in this literature include Saa-Requejo (1993),

Frachot (1996), Backus et al. (2001), Dewachter and Maes (2001), Leippold and Wu

(2003), Ahn (2004), Brennan and Xia (2006), Dong (2006), and Diez de los Rios (2008).

These authors exploit the fact that the same factors that determine the risk premium in

the term structure of interest rates in each country might also determine the risk premium

in exchange rate returns. To do so, one usually starts by specifying the law of motion for

the stochastic discount factor in each one of the countries to then use the law of one price

to �nd the process that the exchange rate follows. Using this approach, the exchange rate

is an endogenous variable that is fully determined by the state variables of the model.

In contrast, under a McCallum (1994a) rule, the monetary authority intervenes in the

short-term bond market to respond to exchange rate movements and, therefore, the rate

of depreciation in our model has to itself become a state variable. Thus, an important

contribution of this paper is to show how to restrict the parameters of the prices of risk

to guarantee that the model is consistent: the exchange rate that comes out of the model

is the same as the exchange rate we started with as a state variable. By guaranteeing this

consistency, this paper is the �rst to incorporate a feedback e¤ect from exchange rates to

the yield curve in an international a¢ ne term structure model.

We estimate a two-country a¢ ne term structure model using yield curve data over the

period January 1979 to December 2005 for Canada, Germany and the U.K, and taking

the U.S. as the foreign country in each case. In particular, the term structure model

that we estimate has three factors: the U.S. short-term interest rate, a domestic latent

term structure factor, and the rate of depreciation. By exploiting information from the

entire term structures in both countries, we are able to estimate the underlying structural

parameters in the policy reaction function more e¢ ciently as in Ang et al. (2007).

We �nd that, in contrast to the results in Mark andWu (1996) and Christensen (2000),

the monetary authority in these three countries responds to exchange rate movements.

In particular, the exchange rate stabilization coe¢ cient is signi�cant at the 5% level

for Canada and the U.K. and signi�cant at the 10% level for Germany. This indicates

that the monetary authority interprets a depreciating exchange rate as a signal of higher

expected future in�ation and, therefore, increases the short rate. More importantly, the

proposed a¢ ne term structure model replicates the forward premium puzzle, as it is able

to replicate a negative slope coe¢ cient on a regression of the ex-post rate of depreciation

on a constant and the interest rate di¤erential for all three datasets.
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Our approach also allows us to study the impact of the U.S. short-term interest rate,

the domestic latent factor, and exchange rate on the yield curve. We �nd that the U.S.

short-rate tends to be the main driver of the variability of the long-end of the yield curve

regardless the country of examination. For example, 95% of the ten-year ahead variance

of the Canadian ten-year yield, 65% of the variance of the German ten-year yield and

87% of the variance of the British ten-year yield can be attributed to U.S. shocks. Also,

the variability of the short-end of the yield curve is mainly explained by shocks to the

exchange rate. Over 56% of the one-month ahead variance of the Canadian one-month

yield, 87% of the variance of the German one-month yield, and 90% of the variance of

the British one-month yield is due to exchange rate movements. Finally, both bond and

foreign exchange risk premia and are explained by a combination of domestic and foreign

exchange shocks with the U.S. short-rate playing little or no role at all.

We also estimate the McCallum (1994b) yield-curve-smoothing rule, which was pro-

posed to explain the rejection of the expectations-hypothesis of the term structure, to pro-

vide a benchmark to compare our results with. To do so, we use the results in Gallmeyer

et al. (2005) who show how to rotate the space of state variables in an a¢ ne term struc-

ture model to relate the short rate to the term premium. Our �ndings indicate that both

McCallum rule models seem to provide a similar �t of the yield curve. If there is any

di¤erence, the McCallum (1994a) exchange-rate-stabilization rule seems to do slightly

better.

The rest of the paper is organized as follows. In section 2, we brie�y review the

forward premium puzzle and the McCallum (1994a) exchange rate stabilization policy rule.

Section 3 describes the a¢ ne term structure model and its estimation. Section 4 presents

the empirical results. In Section 5 we compare how both McCallum (1994a) exchange-rate-

stabilisation and McCallum (1994b) yield-curve-smoothing rules �t the term structure of

interest rates. Section 6 concludes.

2 The Forward Premium Puzzle and the McCallum
Rule

We begin with a review of the forward premium puzzle and the McCallum (1994a)

exchange-rate-stabilization policy rule. Denote the price at time t of a domestic default-

free pure-discount bond that pays 1 with certainty at date t+n as P (n)t . The continuously
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compounded yield on this bond, y(n)t , satis�es P
(n)
t � exp(�ny(n)t ). Therefore:

y
(n)
t = � 1

n
logP

(n)
t .

We refer to the short-term interest rate, or short rate, as the yield on the bond with

the shortest maturity under consideration, rt = y
(1)
t . We also de�ne P

(n)�
t and y(n)�t as

the price at time t of a foreign default-free pure-discount bond and its yield, respectively.

Similarly, the foreign short-term interest rate is r�t = y
(1)�
t . Finally, St is the spot exchange

rate expressed as the price, in domestic monetary units, of a unit of foreign exchange.

Uncovered interest parity relates the expected rate of depreciation of a currency to the

interest rate di¤erential between the countries. It recognizes that portfolio investors at

any time t have the choice of holding either (i) bonds denominated in domestic currency,

or (ii) holding foreign bonds with the same characteristics. Thus, an investor starting

with one unit of domestic currency compares two options. One is to invest in a domestic

n-period bond to accumulate 1=P (n)t = exp(ny
(n)
t ) units of domestic currency. Another

option is to convert his unit of domestic currency at the spot exchange rate into 1=St units

of foreign currency, invest into foreign bonds to accumulate 1=(StP
(n)�
t ) = exp(ny

(n)�
t )=St,

and then reconvert these pro�ts into domestic currency at the prevailing spot exchange

rate at t+ n. If agents are risk neutral, we get the condition of uncovered interest parity

exp(ny
(n)
t ) = Et

�
St+n
St

exp(ny
(n)�
t )

�
: (1)

If we further assume that the spot exchange rate is conditionally log-normal, we can

express the uncovered interest parity hypothesis as:

Et (st+n � st) = �
1

2
V art (st+n � st) + n(y

(n)
t � y

(n)�
t ); (2)

where �1
2
V art (st+n � st) is the Jensen�s inequality term and st denotes the log of the

spot exchange rate.

This theory can be validated empirically by regressing the ex post rate of depreciation

on a constant and the interest rate di¤erential to, �nally, test if the slope coe¢ cient is equal

to one. However, such a test reveals that this theory is strongly rejected in the data. In

fact, a robust result in many studies is that the estimated slope is negative and statistically

di¤erent from zero (see Engel, 1996, for a review of the literature). This empirical rejection

is known as the forward premium puzzle and it implies that high domestic interest rates

relative to those in the foreign country predict a future appreciation of the home currency.

Since this puzzle is usually related to the existence of a rational risk premium in the

foreign exchange rate market, the uncovered interest parity is modi�ed as follows:

Et (st+n � st) = n(y
(n)
t � y

(n)�
t ) + �

(n)
t ; (3)
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where we have ignored the Jensen�s inequality term and we have included a risk premium,

�
(n)
t .

McCallum (1994a) proposes a model which augment uncovered interest parity with a

monetary rule where policymakers have some tendency to resist rapid changes in exchange

rates. By modeling monetary policy this way, the resulting equilibrium exchange rate

process is better able to capture the forward premium puzzle. We refer to this rule as the

McCallum exchange-rate-stabilization policy which takes the form:

rt � r�t =  1�st +  2(rt�1 � r�t�1) + et; (4)

where et is the monetary policy shock that summarizes the other exogenous determinants

of monetary policy. This monetary policy rule implies that the central bank intervenes in

the short-term bond market to try to achieve two (perhaps con�icting) goals: �exchange

rate stabilisation� governed by the parameter  1 > 0, and �interest rate di¤erential

smoothing�governed by the parameter j 2j < 1. Note that in this model a depreciat-

ing exchange rate signals higher expected future in�ation, and therefore the monetary

authority increases the short rate.

Combining equations (3) and (4) for n = 1 with a �rst order autoregressive process

for the risk premium such as

�t = ��t�1 + e�t ;

where e�t is exogenous white noise, and j�j < 1, McCallum (1994a) obtains the following

reduced form equation for the exchange rates:

st+1 � st =
 2 � �

 1
(rt � r�t )�

1

 1
�t+1 +

1

 1 +  2 � �
e�t (5)

On this basis McCallum concludes that if  2 is close to 1,  1 is close to 0.2 and � � 1,

then a negative slope coe¢ cient on the forward premium regression may be consistent

with the uncovered interest parity theory.

Note, however, that a limitation of this analysis is the exogeneity of the risk premium:

this theory does not explain how factors driving the risk premium in foreign exchange

markets might be related to factors that a¤ect interest rates. For this reason, we follow

Gallmeyer et al. (2005) to re-interpret McCallum�s �ndings in the context of an a¢ ne

term structure model.
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3 The Model

3.1 General Setup

The McCallum rule (1994a) exchange-rate-stabilization policy rule captures the notion

that central banks tend to resist rapid changes in exchange rates, i.e., central banks

set short-term interest rates in such a way that the interest rate di¤erential depends on

the current rate of depreciation and past values of the interest rate di¤erentials. But,

since long-term interest rates are conditional expected values of future short rates (after

adjusting for risk premia), the entire yield curve will respond to movements in the foreign

interest rate and the rate of depreciation. Hence, both the short-term foreign interest rate

and the exchange rate become themselves state variables in the term structure model.

We start by assuming that there are three state variables:

xt =
�
r�t ft �st

�0
;

where: r�t is the foreign (i.e. U.S.) short-term interest rate which we treat as a latent

factor; ft is a domestic latent term structure factor; and, �st = st�st�1 is the one-period
rate of depreciation. We also assume that these state variables follow a VAR(1) process:

xt+1 = � +�xt + ut+1; (6)

where ut = �1=2"t and "t � iid N(0; I). In particular, we assume that �1=2 has the

following form:

�1=2 =

0@ �11 0 0
0 �22 0
�31 �32 �33

1A ;

so that shocks to the foreign short rate and the domestic factor are orthogonal. The

assumption �21 = 0 guarantees that the model is identi�ed when both r�t and ft are latent

factors. Furthermore, the rate of depreciation is a¤ected by both shocks to the foreign

short-rate and the domestic factor, as well as by a third orthogonal.

The short rate is related to the set of state variables through an a¢ ne relation:

rt = �0 + �
0
1xt; (7)

where �0 is a scalar and �1 is a 3� 1 vector.
Finally, the model is completed by specifying the stochastic discount factor (SDF) to

take the following form (see Ang and Piazzesi, 2003 and Ang et al., 2007):

mt+1 = exp

�
�rt �

1

2
�0t�t � �0t"t+1

�
; (8)
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with prices of risk given by:

�t = �0 + �1xt; (9)

where �0 is 3� 1 vector and �1 is a 3� 3 matrix.
This (strictly positive) SDF, mt+1, prices any traded asset denominated in dollars

through the following relationship:

Pt = Et [mt+1Xt+1] ; (10)

where Pt is the value of a claim to a stochastic cash �ow of Xt+1 dollars one period later.

Using this model to price zero coupon bonds, we obtain the following recursive relation:

P
(n)
t = Et

h
mt+1P

(n�1)
t+1

i
; (11)

where P (n)t is the price of a zero-coupon bond of maturity n periods at time t.

Equivalently, equation (11) can be solved to obtain the price of a zero-coupon bond:

P
(n)
t = EQt

"
exp

 
�
n�1X
i=0

rt+i

!#

whereEQt denotes the expectation under the risk-neutral probability measure, under which

the dynamics of the state vector xt are also characterized by a VAR(1):

xt = �
Q +�Qxt�1 + ut; (12)

with

�Q = � ��1=2�0;

�Q = ���1=2�1:

That is, one can price a zero-coupon bond as if agents were risk-neutral by using the

(local) expectations hypothesis (once the law of motion of the state variables has been

modi�ed to account for the fact that agents are not risk neutral).

Under risk neutrality, the nominal expected return to speculation in the forward foreign

exchange market conditional on the available information must be equal to zero; i.e.,

uncovered interest parity must be satis�ed under the risk-neutral measure. This implies

that the parameters under Q must satisfy an equivalent version of equation (2):

EQt �st+1 = �
1

2
e03�e3 + (rt � r�t ); (13)
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where �1
2
e03�e3 is the Jensen�s inequality term and ei is a 3� 1 vector of zeros with a one

in the ith position. Substituting (7) into (13) and using (12) to compute the expected

rate of depreciation under the risk neutral probability measure, we get that

e03
�
�Q +�Qxt

�
= �1

2
e03�e3 + (�0 + �

0
1xt)� e01xt;

so the following two restrictions apply:

e03�
Q = �01 � e01; (14)

e03�
Q = �1

2
e03�e3 + �0: (15)

Finally, Ang and Piazzesi (2003) show that the model (6)-(9) implies that the price of

a n-period zero coupon bond satis�es:

P
(n)
t = exp (An +B

0
nxt) ;

where An and Bn satisfy the recursive relations:

An+1 = An +B
0
n�

Q +
1

2
B0n�Bn � �0;

B0n+1 = B
0
n�

Q � �01; (16)

with A1 = ��0 and B1 = ��1.
The continuously compounded yield on an n-period zero coupon bond at time t, y(n)t ,

is given by

y
(n)
t = an + b

0
nxt; (17)

where an = �An=n and bn = �Bn=n: Moreover, note that the one-period yield y(1)t is the

same as the short rate rt in equation (7).

3.2 Stochastic Discount Factors and the Exchange Rates

The law of one price tells us that of the three random variables� the domestic SDF, the

foreign SDF and the rate of depreciation� one is e¤ectively redundant and can be con-

structed from the other two. In particular, Backus et al. (2001) show that, under complete

markets, the rate of depreciation and the domestic and foreign stochastic discount factors

satisfy:

�st+1 = logm
�
t+1 � logmt+1: (18)

By specifying the domestic SDF and the rate of depreciation, we are implictly assuming

a process for the foreign SDF. This is clear once we substitute the law of motion for the
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rate of depreciation in (6) and the domestic SDF in (8) into this last equation and solve

for the foreign SDF to obtain

logm�
t+1 = e03(� +�xt)� rt �

1

2
�0t�t �

�
(�t � (�1=2)0e3

�0
"t+1:

If we now de�ne ��t = �t � (�1=2)0e3 and substitute �t in this equation, we get:

logm�
t+1 = e03(�

Q +�Qxt) +
1

2
e03�e3 � rt �

1

2
(��t )

0(��t )� (��t )0"t+1:

But notice that EQt �st+1 = e03(�
Q+�Qxt) = �1

2
e03�e3+ (rt� r�t ) because the uncovered

interest parity hypothesis holds under the risk-neutral measure. Therefore, the foreign

SDF has the same form as (8):

m�
t+1 = exp

�
�r�t �

1

2
(��t )

0(��t )� (��t )0"t+1:
�
;

where the foreign price of risk, ��t , is also a¢ ne in xt:

��t = �t � (�1=2)0e3;

��t = ��0 + �
�
1xt;

with ��0 = �0 � (�1=2)0e3 and �
�
1 = �1.

Thus, it is straightforward to show that the price of a foreign n-period zero coupon

bond is:

P
(n)�
t = exp (A�n +B

�0
nxt) ;

where the scalar A�n and vector B
�
n satisfy a set of recursive relations similar to those

in (16).2 Furthermore, the continuously compounded yield on a foreign n-period zero

coupon bond at time t will be y(n)t = a�n + b
�0
nxt; where a

�
n = �A�n=n and b�n = �B�n=n:

Finally, we further assume that the foreign (i.e. U.S.) short-rate, r�t , is a �rst-order

autoregressive process under the risk neutral measure: �Q12 = �Q13 = 0. Such an assumption

guarantees that the foreign yield curve is not a¤ected by domestic factors. This is clearer

if we further assume that
����Q11��� < 1 (the short rate is stationary under the risk neutral

measure) because it is possible to solve for b�n to obtain that:

b�n =

"
1� (�Q11)n

n(1� �Q11)
; 0; 0

#0
:

That is, the foreign factor loadings on the domestic latent factor and the rate of depreci-

ation are both zero.
2Note that, in this case, r�t = e

0
1xt. Thus �

�
0 = 0 and �

� = e1:
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3.3 Expected Returns

Following Ang et al. (2007), we also analyze expected holding period returns on bonds.

Those are de�ned as:

rx
(n)
t+1 � log

 
P
(n�1)
t+1

P
(n)
t

!
� rt;

= ny
(n)
t � (n� 1)y(n�1)t+1 � rt:

Given that we assume that expectations are rational, the expected value of this variable

is the bond risk premium. In particular, Ang et al. (2007) show that expected excess

holding period returns on bonds are also a¢ ne in xt:

Etrx
(n)
t+1 = Axn +B

x0
n xt

with the scalarAxn = �1
2
B0n�1�Bn�1+B

0
n�1�

1=2�0 and the 3�1 vectorBx0n = B0n�1�1=2�1.

Note that the expected excess return has three terms: (i) a Jensen�s inequality term; (ii)

a constant risk premium; and, (iii) a time-varying risk premium where time variation is

governed by the parameters in matrix �1.

Similarly, we can also compute the foreign exchange risk premium as the expected

excess rate of return to a domestic investor on buying a one-period foreign zero-coupon

bond:

sxt+1 � log

�
St+1
St

�
+ y

(1)�
t � y

(1)
t

= �st+1 + r�t � rt;

and it is possible to show that the value of this expectation is also a¢ ne in xt:

Etsxt+1 = As +B
0
sxt

with the scalar As = �1
2
e03�e3 + e03�

1=2�0 and the 3� 1 vector B0s = e03�
1=2�1.3 Similar

to the expression of the bond risk premium, this expected excess return has again three

terms: (i) a Jensen�s inequality term, (ii) a constant risk premium, and (iii) a time-varying

risk premium governed by the matrix �1.

3.4 From A¢ ne to McCallum

In this section, we follow the techniques developed in Ang et al. (2007), to modify the

short rate equation to take the same form as the McCallum exchange-rate stabilization

3We have used equation (18) to get that Et�st+1 = 1
2 (�

0
0�0 ���00 ��0) + (�0 ���0)0�1xt. Substituting

��0 = �0 � (�1=2)0e3 in this expression gives the equation in the text.
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policy rule. We start by rewriting equation (7) as:

rt = �11r
�
t + ft + �13�st; (19)

where (to ensure that the model is identi�ed) we have set �0 = 0 (to free up the mean

of the latent factor ft) and �12 = 1 (to leave the volatility of the unobserved factor

unconstrained). Equation (6) implies that

ft = �2 + �21r
�
t�1 + �22ft�1 + �23�st�1 + u2t: (20)

Substituting (20) in (19) gives:

rt = �11r
�
t + �13�st + �2

+�21r
�
t�1 + �22ft�1 + �23�st�1 + u2t;

and substituting again for ft�1 in this last expression and rearranging, we obtain:

rt = �2 + �11r
�
t + �13�st (21)

+(�21 � �22�1;r�)r
�
t�1 + (�23 � �22�1;�s)�st�1

+�22rt�1 + u2t:

Under the unrestricted set-up, the short rate depends on current and lagged values of

the foreign short rate and the rate of depreciation, the lagged short rate and a monetary

policy shock. Thus, equating the coe¢ cients in equations (4) and (21) allows us to obtain:

�11 = 1; �13 =  1; �21 = 0; �22 =  2; �23 =  1 2 (22)

and �2 =  0 if a constant in (4) is included, or �2 = 0 otherwise; and u2t = et is the

monetary policy shock. Note that these restrictions imply that a one percent increase in

the foreign short-term rate translates one-for-one into the domestic short-rate, and that a

one percent increase in the one-period rate of depreciation leads to a  1 percent increase

in the short-rate.

3.5 Estimation Method

We estimate our term structure model using the Kalman �lter (e.g., de Jong 2000) with

both domestic and foreign yield data. We also follow Ang et al. (2007) in assuming that

all (both domestic and foreign) yields are observed with error, so that the equation for

each yield is:
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by(n)t = y
(n)
t + �

(n)
t

where y(n)t is the model-implied yield from equation (17) and �(n)t is a zero-mean observa-

tion error that is i.i.d. across time and yields. We specify �(n)t to be normally distributed

and denote the standard deviation of the error term as �(n)� . However, to reduce the

number of parameters to be estimated, we assume the standard deviation of the yield

measurement errors to be of the form: �(n)� = �� where �� is a single parameter to be

estimated. Additional details on the estimation method can be found in Appendix A.

We could also have followed the usual convention in the literature (Dai and Singleton

2002; Du¤ee 2002) and assume that as many yields as unobservable factors are measured

without measurement error. In particular, we could have assumed that the domestic and

foreign one-month yields were observed without measurement error, while the yields on

the remaining maturities were assumed to be measured with serially uncorrelated, zero-

mean errors. However, such a choice of bonds to use in the estimation would be arbitrary,

and would not guarantee that the estimates will be consistent with the yields of other

bonds. More importantly, Ang et al. (2007) point out that by not assigning one arbitrary

yield to have zero measurement error, one does not bias the estimated monetary policy

shocks to have undue in�uence from only one particular yield.

4 Results

Our data set is compressed of monthly observations over the period January 1979 to

December 2005 of the rates of depreciation of the U.S. dollar bilateral exchange rates

against Canadian dollar, the German DM/Euro, and the British pound, along with the

appropriate continuously compounded yields of maturities 1, 12, 24, 60 and 120 months

for these countries. We use one-month Eurocurrency interest rates as our one-month

yields. Data on the rest of the yield curve has been obtained from the Bank of Canada.

In our empirical application, we take the U.S. as the foreign country.

Summary statistics for the variables are presented in Table 1. Following Bekaert and

Hodrick (2001), all variables are measured in percentage points per year, and the monthly

rates of depreciation are annualized by multiplying by 1,200. We �nd that summary

statistics of these variables are consistent with those found in previous studies such as,

e.g., Backus et al. (2001) and Bekaert and Hodrick (2001). For example, we �nd that the

rates of depreciation have lower means (in absolute value) than the ones corresponding

to the interest rates, but, on the contrary, exchange rates are more volatile. In addition,
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bond yields display a high level of autocorrelation, while the rates of depreciation do not.

The rate of depreciation of the U.S. dollar against the Canadian dollar is less volatile than

the rates of depreciation of the U.S. dollar against the other two currencies. The United

Kingdom ranks �rst in terms of the highest (average) level of interest rates during the

sample period, followed by Canada, the United States, and Germany.

4.1 Parameter Estimates

Tables 2, 3, and 4 present parameter estimates of the a¢ ne term structure model for

Canada, Germany and the U.K., respectively. These three tables are organized in the

same way: Panel a reports the estimates of the McCallum rule; Panel b presents the

estimates of the parameters of the model under the physical measure; while Panel c

reports the parameters of the model under the risk neutral measure. In Panel d, we test

if the coe¢ cients under both the physical and risk neutral measure are the same.

Notice that the estimated coe¢ cients of the exchange-rate stabilisation parameter,  1,

in Panel a of Tables 2�4 are positive for all three countries. This indicates that the mone-

tary authority interprets a depreciating exchange rate as a signal of higher expected future

in�ation and, therefore, it increases the short rate. Also, this coe¢ cient is signi�cant at

the 5% level for Canada and the U.K. and signi�cant at the 10% level for Germany. How-

ever notice that, while it is positive and signi�cant, the coe¢ cient  1 is well below the

hypothesized value of 0.2 in McCallum (1994a). In particular, these estimates imply that

a one standard deviation shock to the monthly rate of depreciation leads to an increase

of 2.62 basis point (bp) per month in the Canadian short rate, 10.76 bp increase in the

German short rate, and 9.53 bp increase in the British short rate.

On the other hand, the interest-rate-smoothing parameter,  2, is close to one for

Canada, and bigger than one for Germany and the U.K. While this result is counter-

appealing (McCallum assumes that j 2j < 1), it is reassuring to note that the eigenvalues
of the matrix � of the VAR in equation (6) are all less than one in absolute value.

Therefore, none of the state variables in our model presents an explosive behavior despite

having  2 > 1 for these two countries.

Comparing coe¢ cients in Panel b of Tables 2�4, we can see that both the U.S. short-

term interest rate and the latent factor are very persistent. This is explained by the fact

that the estimated U.S. short-term rate is highly correlated with the level of the U.S. yield

curve, while the domestic latent factor is higly correlated with the interest rate di¤erential

between the two countries. As widely known in the literature, both variables are highly
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autocorrelated.

Note in Panel b of Table 2 that both the U.S. short-rate and the Canadian latent

factor signi�cantly Granger-cause the current rate of depreciation. As for the estimates

for Germany in Table 3, we �nd that only the domestic latent factor signi�cantly Granger-

causes changes in the exchange rate. We �nd in Table 4 that both the British domestic

latent factor and the past rate of depreciation Granger-cause the current change in the

exchange rate. Also note in these three tables that the impact of the domestic latent factor

on the rate of depreciation is negative for all three countries. This �nding is consistent

with the forward premium puzzle because the latent factor is highly correlated with the

interest rate di¤erential. Finally the estimated matrix �1=2 shows that both shocks to

the U.S. short-term rate and the domestic factors are negatively correlated with the rate

of depreciation. In addition, shocks to the domestic factor seem to be more volatile than

shocks to the U.S. short-rate.

The coe¢ cients of the process that the state variables follow under the risk-neutral

measure are reported in Panel c of Tables 2�4. The analysis of these coe¢ cients reveals

that the U.S. short-term interest rate and the latent factors are also very persistent under

the risk-neutral measure for all three countries. More importantly, we �nd in Panel d

of Tables 2�4 that the parameters under both the physical and risk neutral measure are

statistically di¤erent. This indicates that there is a signi�cant constant and time-varying

price of risk in our model. Hence, the U.S. short rate, the latent factor and the rate of

depreciation will play important roles in driving time-varying expected excess returns, as

we show below in the variance decomposition.

4.2 Back to the Forward Premium Puzzle

While we have found that the monetary authority in Canada, Germany and the U.K.

responds to exchange rate movements, the motivation of a McCallum�s (1994a) monetary

policy reaction function is to explain the forward premium puzzle. Therefore, we now

check if our model is able to replicate a negative slope coe¢ cient on a regression of the

ex post rate of depreciation on a constant and the interest rate di¤erential.

In the spirit of Hodrick (1992) and Bekaert (1995), we obtain an implied beta from the

a¢ ne model that is analogous to the OLS regression slope tested in the simple regression

approach. To do so, we can collect the foreign n-period yield, the domestic n-period yield,

and the rate of depreciation in eyt = �y(n)�t ; y
(n)
t ;�st

�0
to notice that the model in section

14



3 implies the following state-space representation for eyt:
eyt = A+Bxt + �t;
xt = � +�xt�1 + ut;�

"t
ut

����� � yt�1
�t�1

�
;

�
yt�2
�t�2

�
; : : : � N

��
0
0

�
;

�

 0
0 �

��
;

where, again, xt = (r�t ; ft;�st)
0 and

A =

0@ a(n)�

a(n)

0

1A B =

0@ b(n)�0

b(n)0

e03

1A ;

and


 =

�
�2�I2 0
0 0

�
;

where I2 is the 2� 2 identity matrix.
Given that the regression coe¢ cient is simply the ratio of the model implied covariance

between the expected future rate of depreciation and the interest rate di¤erential to the

model implied variance of the interest rate di¤erential, the implied slope in the a¢ ne term

structure model is:

�(n) =
1

n
� e03B�(I��)

�1(I��n)	B0(e2 � e1)

(e2 � e1)0(B	B
0 +
)(e2 � e1)

; (23)

where 	 is the unconditional covariance matrix of xt, which can be obtained from the

equation vec(	) = (I��
�)�1vec(�).
Table 5 presents the term structure of implied uncovered interest parity slopes implied

by the a¢ ne model. These are computed using equation (23) and taking the parameter

estimates in Tables 2-4 as the true values of the model. We �nd that the implied betas

are all negative, as predicted by the forward premium puzzle. Moreover, they become less

negative as we increase the maturity of the contracts under consideration. For example,

the implied beta for Canada at the one-month horizon is -1.770, while it is -0.104 at the

ten-year horizon. Similar patterns can be found for Germany and the U.K.

We also compute sample estimates of these regression slopes using the coe¢ cients of

a VAR(1) model on the rate of depreciation and the set of interest rate di¤erentials. This

model is akin to the vector-error-correction model in Clarida and Taylor (1997).4 By

4In practice, we would like to compare the implied betas from the a¢ ne model to those computed
traditional OLS methods. However, such an approach has the inconvenience of largely reducing the
number of e¤ective observations when the maturity of the contract under consideration, n, is large. For
example, if we were to compute an OLS slope using one-month yields, we would lose one observation.
However, if we were to use ten-year yields we would e¤ectively lose half of the sample when computing
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comparing the implied slopes from the a¢ ne model to these new estimates, we �nd that

both implied slopes are very close. That is, our model is able to replicate a negative

uncovered interest parity regression slope as predicted by the forward premium puzzle,

but that is also close to what we would have found using a more traditional estimation

method.

4.3 Latent Factor Dynamics

Figure 1 plots the estimate of the latent U.S. short-term rate together with the monthly

yield on the U.S two-year bond. We plot the time series of the estimate of r�t conditional

on information up to time t: r�tjt = Et (r
�
t j It) where It is the information set at time t.

These are obtained using the Kalman �lter algorithm.5 This �gure highlights the strong

relationship between the estimated short-term rate and the level of the yield curve. Notice

that, despite the estimated U.S. short rate being slightly above the monthly yield on the

U.S two-year bond, both variables follow each other. In e¤ect, we �nd that the correlation

between our estimated factor and the yield curve ranges from 0.941 (one-month bond

yield) to 0.977 (two-year bond yield).

Figure 2 plots the estimate of the Canadian latent factor together with the di¤erence

between the Canadian and U.S. two-year bond yields, and the rate of depreciation. Figures

3 and 4 plot the same variables for Germany and the U.K., repectively. Again, we plot the

time series of the estimate of ft conditional on information up to time t: ftjt = Et (ftj It).
Note in these graphs that the domestic latent factor are strongly correlated with the term

structure of bond yield di¤erences. For example the correlation with the two-year bond

yield di¤erence is 0.903, while it is 0.904 for Germany and 0.863 for the U.K. Moreover,

both the German and British factors seem to have inherited some volatility from the

exchange rate. In fact, the correlation of the domestic factor with the rate of depreciation

is -0.492 for Germany and -0.564 for the U.K., while it is only -0.207 for Canada.

the ten-year rate of depreciation. This way, it would be hard to compare betas across di¤erent maturities
because they are computed using di¤erent e¤ective samples. The same problem applies when comparing
OLS betas and those computed from the a¢ ne model because the term structure model parameter
estimates are computed using the whole sample. Since a VAR is estimated using the whole sample,
computing implied betas from a VAR do not su¤er from this problem making the comparison of implied
and sample betas consistent. In any case, it is reassuring to �nd that OLS and VAR estimates of the
slope coe¢ cient are basically the same when the contract period is n = 1 (both are computed using the
same number of e¤ective observations).

5Note that we have three di¤erent estimates of r�t depending on the country we focus on. Still, these
are highly correlated with each other, and the correlation among the three U.S. short rate estimates
ranges from 0.999 to 1. Consequently and for simplicity, we plot the estimate obtained from the U.K.
model.

16



4.4 Variance Decompositions

Tables 6, 7 and 8 present variance decompositions from the model and the data for Canada,

Germany and U.K., respectively. These show the proportion of the forecast variance that

is attributed to each factor. Panel a reports variance decompositions of (i) yield levels,

y
(n)
t ; (ii) expected bond excess returns, Etrx

(n)
t+1; and (iii) yield spreads, y

(n)
t �y(1)t . Panel b

reports variance decompostions of (i) the rate of depreciation, �st+1; and (ii) the foreign

exchange rate risk premium, Etsx
(n)
t+1.

Canada. We �rst focus on the results for Canada in Panel a of Table 6. One interprets

the top row of Table 6 as follows: 1.61% of the one-month ahead forecast variance of the

one-month yield is explained by the U.S. short-term rate, 41.52% by the domestic latent

factor and 56.87% by the rate of depreciation.

Notice that when we look to the one-month ahead variability of bond yields, we �nd

that the proportion of variability accounted by the U.S. short-term yield increases with

the maturity of the bond. This ranges from 1.61% for the one-month yield to 67.31%

for the ten-year yield. Second, we �nd that the proportion of forecast variance explained

by the domestic factor has a hump-shaped patter. It explains 41.52% of the one-month

ahead forecast variance of the short-rate, the 75.06% of the variability in one-year bond

yields, but it explains only the 30.88% of the forecast variance of the long-end of the yield

curve. Last, shocks to the exchange rate do not explain the one-month ahead variability of

the yield curve with the exception of the variance of the one-month yield (56.87%). This

picture changes when we increase the forecasting horizon. For example, once we focus

on the one-year ahead horizon, we can �nd that shocks to the exchange rate accounts

for almost 45% of the variability of the one-year yield (versus 6.65% when looking to

one-month ahead variance decompositions). Yet, this e¤ect decreases as we increase the

maturity, and exchange rate shocks only explain around 20% of the variability at the

long-end of the yield curve. Finally, the U.S. short-rate has the most explanatory power

for ten-year ahead forecast variances at all points of the yield curve.

Turning to the variance decomposition of the bond risk premium, we �nd that shocks

to the exchange rate are by far the main driving force of expected excess bond returns.

In e¤ect, the rate of depreciation has more explanatory power than the U.S. short-rate

and the domestic factor at all points of the yield curve and for all forecast horizons.

Similarly, the last three columns in Panel a of Table 6 document that shocks to the

exchange rate tend to be the main driving force of yield spreads. However, as we increase

the maturity of the bond under consideration, we also �nd that the e¤ect of the domestic
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factor in explaining yield spreads become non-negligible and accounts for around 30% of

this variability. If we further increase the forecast horizon to ten-year, we notice that

shocks to the U.S. short-rate explains around 30% the variability of the long-end of the

yield curve.

Panel b of Table 6 presents the variance decomposition for the rate of depreciation and

the foreign exchange risk premium, and it is not surprising to �nd that the main driver of

exchange rate variability is the shock to the rate of depreciation. In particular, it explains

around 90% of the variability of the depreciation rate for all forecast horizons. Also, we

�nd that both the domestic latent factor and the rate of depreciation have explanatory

power over the foreign exchange risk premia. In particular, they account for around 40%

and 50% of its variability, respectively. Finally, the U.S. short-rate has little in�uence on

both the exchange rate and its risk premium.

Germany. Focusing on Panel a of Table 7, which presents variance decompositions

from the model and German data, we notice that the rate of depreciation has more

explanatory power than the U.S. short rate and the domestic factor at all points of the

yield curve for the one-month and one-year forecast horizons. Still, the e¤ect of exchange

rate shocks decreases with the bond�s maturity. It explains the 87.68% of the one-month

ahead variability of the short-end of the curve, while it explains 61.08% of the variability of

its long-end. Equally important, the e¤ect of the U.S. short-rate grows with the maturity

of the bond under consideration for all forecast horizons. In fact, this state variable

becomes the main driver of the ten-year ahead forecast variance of the long-end of the

German yield curve. Over 65% of the ten-year ahead variability of the ten-year bond

yield is due to the U.S. short-rate.

As a di¤erence with the results for Canada, note in columns 4�6 that the domestic

latent factor is now the main driving force of expected excess bond returns. It explains

over 90% of the variability of bond risk premia at all maturities and for all forecast

horizons. The rate of depreciation, which accounts for almost 90% of the variation of

Canadian bond risk premia, now explains only 5% of the forecast variance of German

excess bond returns. We also �nd in the last three columns of Panel a, that very little

of the forecast variance of bond premia nor yield spreads can be attributed to the U.S.

short-term rate. In e¤ect, over 85% of the one-month ahead variability of the one-year

spread. Yet, the explanatory power of this variable decreases with bond�s maturity, and

the domestic latent factor is able to explain only 25% of the ten-year spread. Finally, the

e¤ect of the rate of depreciation tends to increase with both the bond�s maturity and the
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forecast horizon.

We also notice another di¤erence with the Canadian dataset when looking to the

variance decomposition of the rate of depreciation in Panel b of Table 7: the main driver

of exchange rate variability is the domestic latent factor. It explains around 95% of the

variability of the depreciation rate for all forecast horizons. When looking to the exchange

rate risk premium, we �nd that its variability at the short horizon can be attributed to

both the latent factor and the rate of depreciation. Each one of these two variables explains

almost 45% of the one-month ahead forecast variance of the exchange rate risk premia.

Besides, the proportion explained of the risk premium component due to exchange rate

shocks increases to almost 70% and 75% for the one-year and ten-year ahead horizons,

respectively. Finally, the in�uence of the U.S. short-rate on the exchange rate is almost

zero, while it accounts for almost 10% of the one-month ahead forecast variance of the

exchange risk premium and almost 17% of its ten-year ahead variability.

U.K. Last, we focus on the results for the U.K. in Panel a of Table 8. At short

maturities, very little of the one-month and one-year ahead forecast variance can be

attributed to the U.S. short-term rate. In fact, this variability is mostly explained by

shocks to the exchange rate of depreciation. Here, exchange rate movements explain

around 95% of the one-year ahead forecast variance of the one-year yield. However, as we

increase the maturity of the bond under consideration, the U.S. short-rate becomes the

main driver of the long-end of the yield curve, and almost half of the variability of the

ten-year bond over one-month is due to U.S. shocks. These results are similar to those

for the German variance decomposition.

Also, the domestic latent factor is by far the main driving force of expected excess bond

returns and explains around 87% of the variability of bond risk premia at all maturities

and for all forecast horizons. Likewise, the rate of depreciation accounts for 10% of the

forecast variance of the U.K. risk premium, while the e¤ect of U.S. shocks are almost

zero. When looking to the variance decomposition of British bond spreads, we �nd again

that very little of the forecast variance of yield spreads can be attributed to U.S. shocks.

In fact, the domestic latent factor tend to explain most of the variability of the one-year

spread, while the rate of depreciation explains the forecast variance of �ve and ten-year

yields. That is, the e¤ect of the domestic factor tends to decrease, while the e¤ect of

exchange rates tend to increase.

Panel b of Table 8 reveals that the the variance decomposition of the rate of depreci-

ation in the U.K. is similar to that of Germany: the main driver of exchange rates is the
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domestic latent factor which explains around 95% of the variability of the rate of depreci-

ation at all forecast horizons. Turning to the exchange rate risk premium, we �nd that its

variability at the short horizon is explained by both latent factor and rate of depreciation

shocks. For example, the domestic latent factor explains 67.24% of the variance of the

foreign exchange risk premia at the one-month horizon. Once we increase the forecast

horizon to one year, we �nd that both the latent factor and the exchange rate have signif-

icant explanatory power over the risk premia: 42.74% and 49.49%, respectively. Finally,

over 62% of the ten-year ahead forecast variance of the risk premium can be attributed

to exchange rate shocks.

Overall comments. There are several messages that emerge from these tables. First,

the U.S. short rate tends to be the main driver of the variability of the long-end of the

yield curve regardless of the country being examined or the forecast horizon. Second,

the forecast variance of the short-end of the yield curve is mainly explained by shocks

to the exchange rate. Finally, U.S. shocks do not explain expected excess returns (risk

premium). This is true for both bond and foreign exchange risk premia and these are

explained by a combination of domestic and foreign exchange shocks.

4.5 Pricing Errors

Table 9 reports mean pricing errors (MPEs) and mean absolute pricing errors (MAPEs)

obtained from the a¢ ne term structure model. These are computed as �(n)t = y
(n)
t �

an � b0nxtjt where xtjt is the estimate of the vector of state variables xt conditional on
information up to time t: xtjt = Et (xtj It).
Note that, overall, MPEs tend to be small. In fact, they are less than one bp per month

(in absolute value) for all countries and maturities with the exception of the one-month

and one-year yield in the U.K. These are still close to one bp per month: 1.1 bp and -1.2

bp, respectively. It is also interesting to highlight that MAPEs of bonds at the middle

of the yield curve are smaller than those at the long-end of the yield curve. Nonetheless,

they tend to be fairly large. For example, the MAPE of the Canadian one-month yield

(ten-year yield) is 5.21bp (5.87 bp) per month, it is 2.92 bp (3.94 bp) for Germany, and

4.59 bp (5.79 bp) for the U.K. As in the case of Ang et al. (2007), we do not �nd these

results surprising because our system only has one latent factor. Additionally, we will

argue in section 5 that the magnitudes of these pricing errors are similar to those that

we would have obtained by estimating a two-factor arbitrage-free Nelson-Siegel model.

Finally, note that short-rates tend to have larger MAPEs than the rest of the yields.
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Therefore, constraining these yields to have zero measurement errors in order to recover

latent factors from data on selected yields might lead to misspeci�cation.

4.6 Comparison with Other Estimation Methods

We now compare our estimates of the McCallum (1994a) exchange-rate-stabilisation rule

to those obtained in previous attempts of estimating this rule. Following Christensen

(2000), Panel a of Table 10 reports ordinary least squares estimates of this rule, while

Panel b reports exponential GARCH estimates of these parameters. Note that, under

these two approaches, the exchange-rate-stabilisation parameter,  1, is small and positive

for Canada and negative for Germany and the U.K. However and as a di¤erence with our

no-arbitrage estimates, it is not possible to reject that this coe¢ cient is equal to zero at

the conventional con�dence levels.

We also follow Mark and Wu (1996) to estimate the policy rule using instrument

variables.6 The reason is that the monetary policy shock in the McCallum rule (4) can

be correlated with the rate of depreciation. The results can be found in Panel c. We

now �nd that  1 is negative for Canada and Germany, while it is positive for the U.K.

Again, it is not possible to reject that this coe¢ cient is equal to zero for any of the three

countries in our study.

Finally and for the sake of comparison, we provide again the estimates of the McCallum

rule obtained using an a¢ ne term structure model. As a main di¤erence with the previous

methods, we �nd that the exchange rate stabilisation coe¢ cient is positive and signi�cant

at the 5% level for Canada and the U.K., and it is positive and signi�cant at the 10% level

for Germany. Therefore, by exploiting information from the entire term structure, we are

able to estimate the underlying structural parameters in the policy reaction function more

e¢ ciently.

5 Which McCallum Rule?

Monetary policy behavior is not only a solution to the forward premium puzzle but also a

solution to another major puzzle in �nancial economics: the drastic inconsistency of data

with the expectation hypothesis of the term structure of interest rates highlighted in, e.g.,

Fama and Bliss (1987). In particular, McCallum (1994b) shows that by augmenting the

expectations-hypothesis model with a monetary policy rule that uses a short-term interest

rate instrument and that is sensitive to the slope of the yield curve one can reconcile data

6In particular, we use the instrument set given by (1;�st�1;�st�2; rt�1 � r�t�1; rt�2 � r�t�2):
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and theory. We refer to this rule as the McCallum yield-curve-smoothing policy rule and

it takes the form:

rt = '0 + '1(y
(n)
t � rt) + '2rt�1 + vt (24)

where vt is the monetary policy shock. This policy rule is similar in spirit to that in (4) and

it implies that the monetary authority intervenes to try to achieve two goals. The �rst one

is �yield-curve smoothing�governed by the parameter '1 > 0. That is, the central bank

increases the short rate when a widening spread signals higher expected future in�ation.

The second objective is �interest-rate smoothing�governed by the parameter j'2j < 1.
Therefore, we have two competing monetary policy rules trying to explain two di¤erent

puzzles in �nancial economics. In this section, we compare the results in the previous

section to those that we would have obtained by embedding the McCallum (1994b) yield-

curve-smoothing policy rule into an a¢ ne term structure. Yet, this is a much easier

task than the estimation of the exchange-rate-stabilization rule because Gallmeyer et al.

(2005) show that one can rotate the space of state variables in an a¢ ne term structure

model to relate the short rate to the term premium as in equation (24). In particular, they

show that a given m factor a¢ ne term structure model can be rotated into a new set of

state variables that includes the short rate and the yield spread on m� 1 bonds of longer
maturity. This way, one can express the coe¢ cients in McCallum (1994b) rule as non-

linear functions of the parameters of the term structure model. Hence, estimating this rule

using a no-arbitrage model amounts to (i) estimating a two-factor a¢ ne term structure

model, (ii) rotating the space of state variables, and (iii) recovering the coe¢ cients '0; '1
and '2 as functions of the parameters of the original term structure model.

5.1 A no-arbitrage discrete-time Nelson-Siegel model

As previously mentioned, the estimation of a McCallum (1994b) rule requires as a �rst

step the estimation of a two-factor a¢ ne term structure model. In particular, we choose

to estimate a discrete-time version of the arbitrage-free Nelson-Siegel model presented in

Christensen et al. (2007) and introduced in Diebold et al. (2005). This model has several

advantages. For one, it is parsimonious and provides a good �t of the yield curve with

only a few parameters. Second, it is quite easy to estimate. Third, it is constructed under

the no-arbitrage hypothesis and thus it imposes the desirable theoretical restrictions that

rule out opportunities for riskless arbitrage. Last, the two latent factors in this model can

be interpreted as the level and slope of the yield curve.
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In this model, the short rate is just the sum of two latent factors:

rt = z1t + z2t; (25)

which, under the physical measure, follow independent AR(1) processes with Gaussian

errors: �
z1t+1
z2t+1

�
=

�
�1
�2

�
+

�
�1 0
0 �2

��
z1t
z2t

�
+

�
�1 0
0 �2

��
�1t
�2t

�
; (26)

where j�ij < 1 for i = 1; 2.
The model is completed by specifying the process that zt = (z1t; z2t)

0 follows under

the risk-neutral measure.7 Here we assume again that each latent factor follows an inde-

pendent AR(1) processes with Gaussian errors:�
z1t+1
z2t+1

�
=

�
1 0
0 �

��
z1t
z2t

�
+

�
�1 0
0 �2

��
�1t
�2t

�
: (27)

The di¤erence is that z1t has now a unit root under the risk neutral measure, while we

assume j�j < 1 to guarantee that z2t is stationary.
Notice that this model falls under the general framework of an a¢ ne term structure

model. In particular, we can use a set of recursions similar to those in (16) to price bonds

in this economy and obtain that

y
(n)
t = aNSn + (bNSn )0zt;

with the factor loadings being

bNSn =

�
1;
1� �n

n(1� �)

�0
:

These two coe¢ cients in bNSn share the same properties of the �rst two loadings of yields

on the factors in the Nelson-Siegel model in Diebold and Li (2006). The �rst factor loading

is unity and this implies that the �rst latent factor, z1t, a¤ects yields of all maturities

one-for-one. Thus, it can be viewed as a long-term/level factor. On the other hand,

the second factor starts at one for n = 1, and goes to zero as the maturity increases

(n ! 1). This way, it a¤ects mainly short maturities, and it can be viewed as a short-
term/slope factor. The yield-adjustment term, aNSn , is similar to that in the arbitrage-free

Nelson-Siegel model presented in Christensen et al. (2007).

7One can specify the set of restrictions that guarantee that the prices of risk deliver such a process
under the risk neutral measure.
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Finally, we rotate the set of latent factors as shown in Gallmeyer et al. (2005) to relate

the short rate to the yield spread on the n-period bond as in the McCallum�s (1994b)

rule. We show in the appendix B that the short rate can be expressed as

rt = '0 + '1

�
y
(n)
t � rt

�
+ '2rt�1 + vt;

where the parameters '1 and '2 satisfy that:

'1 =
n(1� �)

n(1� �)� (1� �n)
� �1 � �2

�2
; (28)

'2 = �1; (29)

and '0 is a highly non-linear function of the parameters of the term structure model. Thus,

we can recover the coe¢ cients on the McCallum (1994b) as functions of the estimated

underlying parameters of this term structure model and obtain standard errors of these

estimates using the delta method.

5.2 Results

We estimate the discrete-time version of the two-factor arbitrage-free Nelson-Siegel model

using the Kalman �lter. We assume that all yields are observed with measurement error.

While not reported for space considerations, we �nd that our estimated model share

many similar features to those in Diebold and Li (2006) and Christensen et al. (2007).

For instance, we �nd that both the level and the slope factor are very persistent and

that the slope factor is more volatile than the level factor. Finally, the estimate (standard

error) of the parameter � is 0.961 (0.002) for Canada, 0.974 (0.001) for Germany and 0.915

(0.005) for the U.K. These number are similar to the equivalent (discretized) parameter

estimate in Christensen et al. (2007).

Next, we recover the coe¢ cients of the McCallum (1994b) yield-curve-smoothing policy

rule '0, '1 and '2 from the estimated parameters of the Nelson-Siegel model and compute

their standard errors using the delta method. These are reported in Panel a of Table 11.

Notice that estimated yield-curve smoothing, '1, is positive for all three countries. This

indicates that the monetary authority increases the short rate when a widening spread

signals higher expected future in�ation. This coe¢ cient is signi�cant at the 5% level for

Canada and the U.K. and signi�cant at the 10% level for Germany. Yet, this coe¢ cient

tends to be small: a one percent change in the spread leads to a 1.68 bp per month

increase in the Canadian short rate, 1.01 bp increase in the German short rate, and 2.34

bp increase in the British short rate. On the other hand, the interest rate smoothing

parameter, '2, is close to one for all three countries under consideration.
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To compare how both McCallum rule models �t the yield curve, Panel b of Table 11

reports MPEs and MAPEs obtained from the Nelson-Siegel model. Note that this panel

is analogous to Table 8. We �nd that the MPEs obtained from the Nelson-Siegel model

are all larger than those reported for the McCallum (1994a) a¢ ne term structure model.

They are now larger than one basis point. For example, the MPE of the Canadian one-

month yield (ten-year yield) is 3.75bp (2.25 bp) per month, 2.39 bp (0.91 bp) per month

for Germany, and 3.61 bp (1.71 bp) per month for the U.K. Looking to MAPEs, we �nd

a similar picture: the McCallum (1994a) a¢ ne term structure model still tends to do

better. However, we now �nd that the Nelson-Siegel model provides a better �t for the

long-end of yield curve. For example, the MAPE for the Nelson-Siegel model (McCallum

exchange-rate-stabilization model) is 4.48 bp (5.87 bp) for Canada, 2.87 bp (3.94 bp) for

Germany, and 3.79 bp (5.79 bp).

To conclude, both McCallum rule models seem to provide similar �ts of the yield

curve. If any, the McCallum (1994a) exchange-rate-stabilisation rule seems to do slightly

better.

6 Final Remarks

In this paper we estimate the McCallum (1994a) rule within the framework of an a¢ ne

term structure model with time varying risk premia. Using yield curve data over the

period January 1979 to December 2005 for Canada, Germany and the U.K., we �nd that

the monetary authority in these three countries responded to exchange rate movements.

In particular, we �nd that the exchange rate stabilisation coe¢ cient is signi�cant at the

5% level for Canada and the U.K. and signi�cant at the 10% level for Germany. This

indicates that the central bank interprets a depreciating exchange rate as a signal of higher

expected future in�ation and, therefore, it increases the short rate. More importantly, the

proposed a¢ ne term structure model replicates the forward premium puzzle, as it is able

to replicate a negative slope coe¢ cient on a regression of the ex-post rate of depreciation

on a constant and the interest rate di¤erential for all three datasets.

Similarly, we �nd that the U.S. short-rate tends to be the main driver of the variability

of the long-end of the yield curve regardless of the country being examined. For example,

95% of the ten-year ahead variance of the Canadian ten-year yield, 65% of the variance

of the German ten-year yield and 87% of the variance of the British ten-year yield can

be attributed to movements in the U.S. short-rate. Second, the variability of the short-

end of the yield curve is mainly explained by shocks to the exchange rate. Over 56% of
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the one-month ahead variance of the Canadian one-month yield, 87% of the variance of

the German one-month yield, and 90% of the variance of the British one-month yield is

due to exchange rate movements. Finally, both bond and foreign exchange risk premia

are explained by a combination of domestic and foreign exchange shocks with the U.S.

short-rate playing little or no role at all.

While in this paper we only estimate a McCallum (1994a) rule, our modelling frame-

work can be easily handled to estimate other central bank reaction functions that also

respond to the rate of depreciation (see the open-economy Taylor-rules of Svensson, 2000,

and Taylor, 2001). In such cases, the estimation of these rules requires the inclusion of the

exchange rate into the set of state variables, and, therefore, one has to guarantee again

the self-consistency of the model.

We have also found that while the McCallum (1994a) exchange-rate-stabilisation pro-

vides a better �t of the curve overall, the McCallum (1994b) yield-curve-smoothing rule

provides a better �t of the long-end of the yield curve. Thus, it would be desirable to

obtain a rule that combines both aspects of the monetary policy explanation. That is,

a rule such that the central bank increases the short-rate in response to a depreciating

exchange rate and to a widening spread. Such a rule was proposed by Kugler (2000) and

its estimation using no-arbitrage methods remains an open research question.

Finally, since we do not rely on a microfounded model, our modelling strategy has the

main drawback that we are unable to link the prices of risk to individuals�preferences.

Constructing an open-economy version of the structural model in Gallmeyer et al. (2005)

or Gallmeyer et al. (2008) would allow us to better understand the monetary policy

reaction function of such central banks.
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Appendix

A Estimation

If eyt is the 11�1 vector of observed variables eyt = (y�0t ;y0t;�st)0, where y�t = (y(1M)�
t ; : : : ; y

(10Y )�
t )

and yt = (y
(1M)
t ; : : : ; y

(10Y )
t ), then one can express the model in section 3 as

eyt = A+Bxt + �t;
xt = � +�xt�1 + ut;�

"t
ut

����� � yt�1
�t�1

�
;

�
yt�2
�t�2

�
; : : : � N

��
0
0

�
;

�

 0
0 �

��
;

where, again, xt = (r�t ; ft;�st)
0 and

A =

0BBBBBBBBB@

a�1M
...

a�10Y
a1M
...

a10Y
0

1CCCCCCCCCA
B =

0BBBBBBBBB@

b�01M
...

b�010Y
b01M
...

b010Y
e03

1CCCCCCCCCA
;

and


 =

�
�2�I10 0
0 0

�
;

where I10 is the 10� 10 identity matrix.
Given this state-space formulation, we can evaluate the exact Gaussian likelihood via

the usual prediction error decomposition:

lnL(�) =

TX
t=1

lt;

with

lt = �
N

2
ln(2�)� 1

2
ln jFtj �

1

2
v0tF

�1
t vt; (30)

where N = 11 is the dimension of eyt, � is the vector of parameters of the continuous-time
model, vt is the vector of one-step-ahead prediction errors produced by the Kalman �lter,
and Ft their conditional variance. The Kalman �lter recursions are given by

xtjt�1 = � +�xt�1jt�1
Ptjt�1 = �P

0
t�1jt�1�+�

vt = eyt � a�Bxtjt�1
Ft = BPtjt�1B

0 +

xtjt = xtjt�1 +Ptjt�1B

0F�1t vt
Ptjt = Ptjt�1 �Ptjt�1B0F�1t BPtjt�1

9>>>>>>=>>>>>>;
(31)
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where xtjt�1 = Et�1(xt) and Ptjt�1 = E
�
(xt � xtjt�1)(xt � xtjt�1)0

�
are the expectation

and covariance matrix of xt conditional on information up to time t � 1, while xtjt =
Et(xt) and Ptjt = E

�
(xt � xtjt)(xt � xtjt)0

�
are the expectation and covariance matrix

of xt conditional on information up to time t (see Harvey, 1989). Given that we are
assuming that the state variables are covariance stationarity, we initialize the �lter using
x0 = E(xt) = (I��)�1� and vec(P0) = (I��
�)�1 vec(�).
The prediction error decomposition in (30) can also be used to obtain �rst and second

derivatives of the log likelihood function (see Harvey, 1989), which we need to estimate the
variance of the score and the expected value of the Hessian that appear in the asymptotic
distribution of the Gaussian ML estimator of �. In particular, the score vector takes the
following form:

@lt(�)

@ i
= st(�) = �

1

2
tr

��
F�1t

@Ft
@ i

��
I� F�1t vtv0t

��
� @v0t
@ i

F�1t vt;

while the ij -th element of the conditionally expected Hessian matrix satis�es:

�Et�1
�

@2lt
@ i@ j

�
=
1

2
tr

�
F�1t

@Ft
@ i

F�1t
@Ft
@ ij

�
+
@v0t
@ i

F�1t
@vt
@ j

:

In turn, these two expressions require the �rst derivatives of Ft and vt, which we can
evaluate analytically by an extra set of recursions that run in parallel with the Kalman
�lter. As Harvey (1989, pp 140-3) shows, the extra recursions are obtained by di¤er-
entiating the Kalman �lter prediction and updating equations (31). In our a¢ ne term
structure model, the analytical derivatives of the Kalman �lter equations with respect to
the structural parameters require the derivatives of the bond price coe¢ cients an and bn.
These are obtained using the following di¤erence equations:

@An+1
@ i

=
@An
@ i

+
@B0n
@ i

�Q +B0n
@An�

Q

@ i
+
@B0n
@ i

�Bn +
1

2
B0n

@�

@ i
Bn �

@�0
@ i

;

@B0n+1
@ i

=
@B0n
@ i

�Q +
@B0n
@ i

�Q � @�01
@ i

:

with @A1=@ i = �@�0=@ i and @B1=@ i = �@�1=@ i.

B Latent factor rotation

In this appendix, we use the methodology developped in Gallmeyer et al. (2005) to rotate
the space of state variables in our a¢ ne term structure model and relate the short rate
to the term premium as in equation (24). In particular, a given m factor model can be
rotated into a new set of state variable that includes the short rate and the yield spread
on m� 1 bonds of longer maturity. Since in our equation McCallum (1994b) rule we only
have the spread on the n-period bond, we focus only on the rotation of models with only
two latent factors.
Let xt be a 2� 1 vector of state variables such that the short rate is:

rt = �0 + �
0xt;
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and xt follows a VAR(1) under both the physical measure:

xt+1 = � +�xt +�
1=2"t+1; (32)

and the risk-neutral measure:

xt+1 = �
Q +�Qxt +�

1=2"t+1: (33)

For this model we know that there is an a¢ ne term structure for continuously com-
pounded yields:

y
(n)
t = an + b

0
nxt;

where an and bn solve some recursive relations. Note that our model in section 4 belongs
to this category.
Following, Gallmeyer et al. (2005), we de�ne a new 2� 1 vector of state variables, zt,

to include the short rate and the yield spread on the n-period bond:

zt =
�
rt; s

(n)
t

�0
;

where s(n)t = y
(n)
t � rt. This new vector of state variables is an a¢ ne function of the

original state variable. That is, zt = d+Hxt, where

d =

�
a1

an � a1

�
; H =

�
b01

b0n � b01

�
:

Provided that H has full rank (as it is in the case of our Nelson-Siegel model), we can
recover the original set of state variable as xt = H�1(zt � d). Thus, we write:

zt = d+Hxt;

zt = d+H
�
� +�xt�1 +�

1=2"t
�
;

zt = e� + e�zt�1 + vt;
where e� = (I�H�H�1)d+H�, e� = H�H�1 and �t = H�1=2"t.
This last equation allows us to write the short rate as:

rt = e�1 + e�11rt�1 + e�12s(n)t�1 + �1t;

as well as the spread, s(n)t�1, as

s
(n)
t�1 =

1e�22 s(n)t �
e�2e�22 �

e�21e�22 rt�1 � 1e�22 �2t;
Substituting s(n)t�1 into rt we get equation a McCallum (1994b) rule:

rt = '0 + '1

�
y
(n)
t � rt

�
+ '2rt�1 + vt;

where '0, '1, and '2 are non-linear functions of the underlying parameters of the term
structure model satisfying:

'1 =
e�12e�22 ;

'0 = e�1 � '1
e�2; '2 =

e�11 � '1
e�21;

and vt = �1t�'1�2t. Specializing these previous equations to the discrete-time no-arbitrage
Nelson-Siegel model in section 4, we obtain equations (28) and (29) in the text.
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Table 1
Summary Statistics

Autocorrelation
Variable Mean Std. Dev Min. Max. 1 2 3
U.S.
1-month yield 6.844 3.941 1.016 20.250 0.979 0.955 0.932
1-year yield 6.630 3.300 1.060 15.870 0.985 0.966 0.950
2-year yield 6.896 3.161 1.300 15.730 0.987 0.969 0.954
5-year yield 7.394 2.869 2.350 15.310 0.989 0.974 0.962
10-year yield 7.750 2.593 3.580 14.860 0.990 0.978 0.966

Canada
Rate of Depreciation -0.093 17.964 -52.402 54.441 0.019 -0.039 0.018
1-month yield 7.667 4.209 2.016 22.313 0.987 0.969 0.947
1-year yield 7.582 3.585 2.020 18.820 0.987 0.971 0.953
2-year yield 7.760 3.341 2.400 18.080 0.986 0.968 0.952
5-year yield 8.160 3.001 3.270 17.420 0.987 0.973 0.960
10-year yield 8.537 2.895 3.830 17.290 0.990 0.979 0.969

Germany
Rate of Depreciation -0.452 38.424 -100.314 132.246 0.060 0.054 0.029
1-month yield 5.431 2.618 2.016 15.000 0.985 0.973 0.963
1-year yield 5.534 2.487 1.930 13.170 0.992 0.978 0.962
2-year yield 5.734 2.326 2.040 12.330 0.991 0.977 0.962
5-year yield 6.246 1.985 2.560 11.490 0.990 0.977 0.963
10-year yield 6.648 1.650 3.210 10.240 0.989 0.975 0.963

U.K.
Rate of Depreciation 0.547 36.552 -163.359 157.402 0.063 0.002 0.010
1-month yield 8.949 3.909 3.375 18.625 0.988 0.976 0.961
1-year yield 8.294 3.186 3.230 14.960 0.988 0.975 0.962
2-year yield 8.352 3.037 3.320 15.120 0.988 0.974 0.960
5-year yield 8.517 2.960 3.770 15.540 0.989 0.976 0.964
10-year yield 8.584 2.983 4.050 15.440 0.993 0.984 0.976

Note: Data are monthly and the sample is January 1979 to December 2005. All variables
are measured in percentage points per year, and monthly rates of depreciation are annualized by
multiplying by 1,200.



Table 2
Estimates of McCallum (1994a) A¢ ne Term Structure Model: Canada

Panel a: McCallum Rule
 0 �st rt � r�t

0.0004 0.0175 0.9934
(0.0022) (0.0053) (0.0188)

Panel b: Physical Measure
� �1=2

� r�t ft �st r�t ft �st
r�t 0.0008 0.9983 0 0 0.0129 0 0

(0.0009) (0.0017) - - (0.0004) - -
ft  0 0  2  1 2 0 0.0266 0

- - - - - (0.0030) -
�st -0.0744 0.6571 -3.3871 -0.0537 -0.4786 -0.2086 1.5383

(0.1927) (0.3127) (0.7691) (0.0645) (0.0865) (0.5047) (0.0840)

Panel c: Risk Neutral Measure
�Q

�Q r�t ft �st
r�t 0.0166 0.9935 0 0

(0.0013) (0.0004) - -
ft 0.0014 0.0006 0.9597 0.0033

(0.0078) (0.0008) (0.0056) (0.0050)
�st �1

2
e03�e3 0 1  1
- - - -

Panel d: Tests
H0 Wald d.f p-value

� = �Q 81.86 7 <0.0001
� = �Q 151.98 3 <0.0001
� = �Q

�
160.76 3 <0.0001

Note: This table lists the estimated coe¢ cients for the a¢ ne term structure model in equations
(6)-(9) subject to the restrictions in equation (22) for Canada. We assume that all (both domestic
and foreign) yields are observed with error. Panel a reports the estimates of the McCallum (1994a)
rule in equation (4): rt � r�t =  0 +  1�st +  2(rt�1 � r�t�1) + et. Panel b presents the estimates
of the parameters of the model under the physical measure, while panel c reports the parameters
of the model under the risk neutral measure. In panel d, we test if the coe¢ cients under both the
physical and risk neutral measure are the same. The estimate (standard error) of the standard
deviation of the measurement error is �� = 0:0634 (0:0008). Data are monthly and the sample is
January 1979 to December 2005.



Table 3
Estimates of McCallum (1994a) A¢ ne Term Structure Model: Germany

Panel a: McCallum Rule
 0 �st rt � r�t

0.0063 0.0336 1.0409
(0.0079) (0.0192) (0.0410)

Panel b: Physical Measure
� �1=2

� r�t ft �st r�t ft �st
r�t 0.0010 0.9980 0 0 0.0130 0 0

(0.0010) (0.0019) - - (0.0004) - -
ft  0 0  2  1 2 0 0.1049 0

- - - - - (0.0637) -
�st -0.2667 0.0211 -1.6227 -0.0674 -0.2886 -3.3188 0.5893

(0.2093) (0.1423) (0.8876) (0.0464) (0.1435) (0.1536) (0.3709)

Panel c: Risk Neutral Measure
�Q

�Q r�t ft �st
r�t 0.0149 0.9920 0 0

(0.0019) (0.0003) - -
ft 0.1693 -0.0040 0.9459 0.0285

(0.1117) (0.0008) (0.0194) (0.0174)
�st �1

2
e03�e3 0 1  1
- - - -

Panel d: Tests
H0 Wald d.f p-value

� = �Q 66.69 7 <0.0001
� = �Q 241.80 3 <0.0001
� = �Q

�
258.08 3 <0.0001

Note: This table lists the estimated coe¢ cients for the a¢ ne term structure model in equations
(6)-(9) subject to the restrictions in equation (22) for Germany. We assume that all (both domestic
and foreign) yields are observed with error. Panel a reports the estimates of the McCallum (1994a)
rule in equation (4): rt � r�t =  0 +  1�st +  2(rt�1 � r�t�1) + et. Panel b presents the estimates
of the parameters of the model under the physical measure, while panel c reports the parameters
of the model under the risk neutral measure. In panel d, we test if the coe¢ cients under both the
physical and risk neutral measure are the same. The estimate (standard error) of the standard
deviation of the measurement error is �� = 0:0532 (0:0007). Data are monthly and the sample is
January 1979 to December 2005.



Table 4
Estimates of McCallum (1994a) A¢ ne Term Structure Model: U.K.

Panel a: McCallum Rule
 0 �st rt � r�t

-0.0194 0.0313 1.0861
(0.0119) (0.0115) (0.0520)

Panel b: Physical Measure
� �1=2

� r�t ft �st r�t ft �st
r�t 0.0008 0.9985 0 0 0.0130 0 0

(0.0009) (0.0016) - - (0.0004) - -
ft  0 0  2  1 2 0 0.0931 0

- - - - - (0.0378) -
�st 0.7826 0.0791 -3.9614 -0.2354 -0.4053 -3.3186 1.0292

(0.3295) (0.2044) (1.1898) (0.0545) (0.1061) (0.1916) (0.4196)

Panel c: Risk Neutral Measure
�Q

�Q r�t ft �st
r�t 0.0159 0.9932 0 0

(0.0015) (0.0004) - -
ft 0.1399 0.0048 0.9456 0.0222

(0.0711) (0.0008) (0.0117) (0.0103)
�st

1
2
e03�e3 0 1  1
- - - -

Panel d: Tests
H0 Wald d.f p-value

� = �Q 99.23 7 <0.0001
� = �Q 299.48 3 <0.0001
� = �Q

�
202.81 3 <0.0001

Note: This table lists the estimated coe¢ cients for the a¢ ne term structure model in equations
(6)-(9) subject to the restrictions in equation (22) for the U.K. We assume that all (both domestic
and foreign) yields are observed with error. Panel a reports the estimates of the McCallum (1994a)
rule in equation (4): rt � r�t =  0 +  1�st +  2(rt�1 � r�t�1) + et. Panel b presents the estimates
of the parameters of the model under the physical measure, while panel c reports the parameters
of the model under the risk neutral measure. In panel d, we test if the coe¢ cients under both the
physical and risk neutral measure are the same. The estimate (standard error) of the standard
deviation of the measurement error is �� = 0:0628 (0:0008). Data are monthly and the sample is
January 1979 to December 2005.



Table 5
Implied Betas

Maturity Canada Germany U.K.
in months (n) A¢ ne Sample A¢ ne Sample A¢ ne Sample

1 -1.770 -1.348 -1.261 -1.201 -2.835 -2.556
12 -1.246 -0.699 -1.221 -1.375 -2.283 -2.616
24 -0.872 -0.529 -1.187 -1.294 -2.047 -2.209
60 -0.336 -0.276 -1.006 -1.036 -1.345 -1.191
120 -0.104 -0.082 -0.652 -0.671 -0.655 -0.541

Note: This table presents the term structure of forward premium regression slopes implied by
the a¢ ne term structure model in equations (6)-(9) subject to the restrictions in equation (22).
These are computed using the closed-form formulae derived in the appendix B and by treating
the estimates displayed in tables 2-4 as truth. For comparison purposes, we also compute sample
estimates of these regression slopes from the coe¢ cientes of a VAR(1) on the rate of depreciation,
�st, and the set of interest rate di¤erentials (y

(1M)
t �y(1M)�

t ; : : : ; y
(10Y )
t �y(10Y )�t ). Data are monthly

and the sample is January 1979 to December 2005.



Table 6
Variance Decomposition: Canada

Panel a: Bond Yields
Yield Levels Bond Risk Premia Yield Spreads

r�t ft �st r�t ft �st r�t ft �st
One-month ahead
1-month yield 1.61 41.52 56.87 - - - - - -
1-year yield 18.29 75.06 6.65 8.45 1.32 90.23 7.76 0.63 96.61
5-year yield 45.69 51.23 3.08 8.35 1.21 90.43 3.89 19.82 76.29
10-year yield 67.31 30.88 1.81 8.20 1.21 90.59 1.78 30.55 67.67

One-year ahead
1-month yield 8.18 38.49 53.33 - - - - - -
1-year yield 12.85 40.40 46.75 8.64 2.08 89.28 6.34 8.76 84.90
5-year yield 39.79 28.00 32.21 8.62 1.82 89.57 1.51 35.86 62.63
10-year yield 64.08 16.70 19.21 8.58 1.80 89.61 0.66 39.49 59.85

Ten-year ahead
1-month yield 65.76 14.35 19.89 - - - - - -
1-year yield 71.19 13.09 15.72 9.08 2.28 88.63 12.50 9.80 77.70
5-year yield 87.74 5.58 6.68 9.38 1.97 88.65 19.63 30.03 50.34
10-year yield 94.18 2.65 3.17 9.87 1.94 88.19 27.62 29.06 43.32

Panel b: Exchange Rates
Depreciation Rate FX Risk Premia
r�t ft �st r�t ft �st

One-month ahead 8.68 1.65 89.67 7.48 42.89 49.62
One-year ahead 8.68 2.95 88.37 7.61 39.30 53.09
Ten-year ahead 8.69 3.31 88.00 7.42 39.26 53.32

Note: Panel a reports one-month, one-year and ten-year ahead variance decompositions of
forecast variance for (i) yield levels, y(n)t , (ii) bond risk premium, Etrx

(n)
t+1 = ny

(n)
t �(n�1)y(n�1)t+1 �rt,

and (iii) yield spreads, y(n)t � y
(1)
t . Panel b reports forecast variance decompositions of (i) the rate

of depreciation, �st+1, and (ii) the foreign exchange rate risk premium, Etsx
(n)
t+1 = �st+1 + r

�
t � rt.

We ignore observation errors when computing these variance decompositions. Data are monthly
and the sample is January 1979 to December 2005.



Table 7
Variance Decomposition: Germany

Panel a: Bond Yields
Yield Levels Bond Risk Premia Yield Spreads

r�t ft �st r�t ft �st r�t ft �st
One-month ahead
1-month yield 2.50 9.81 87.68 - - - - - -
1-year yield 7.08 3.63 89.29 0.71 95.26 4.03 1.11 85.10 13.79
5-year yield 19.46 4.50 76.04 0.68 95.25 4.07 1.20 42.86 55.94
10-year yield 35.18 3.73 61.08 0.64 95.28 4.08 0.50 25.16 74.34

One-year ahead
1-month yield 4.36 6.62 89.01 - - - - - -
1-year yield 6.33 5.98 87.68 0.74 94.90 4.36 1.03 60.81 38.16
5-year yield 17.79 5.36 76.84 0.73 94.82 4.45 0.62 13.24 86.14
10-year yield 33.02 4.38 62.60 0.74 94.81 4.46 0.13 9.00 90.87

Ten-year ahead
1-month yield 29.03 4.74 66.23 - - - - - -
1-year yield 32.90 4.38 62.72 1.49 93.23 5.28 3.70 34.47 61.83
5-year yield 50.07 3.28 46.65 1.82 92.72 5.46 6.01 8.09 85.90
10-year yield 64.68 2.32 33.00 2.36 92.20 5.45 8.68 6.65 84.67

Panel b: Exchange Rates
Depreciation Rate FX Risk Premia
r�t ft �st r�t ft �st

One-month ahead 0.73 96.24 3.03 10.78 45.11 44.11
One-year ahead 0.75 96.13 3.12 16.94 13.31 69.76
Ten-year ahead 0.80 95.86 3.34 17.06 7.88 75.06

Note: Panel a reports one-month, one-year and ten-year ahead variance decompositions of
forecast variance for (i) yield levels, y(n)t , (ii) bond risk premium, Etrx

(n)
t+1 = ny

(n)
t �(n�1)y(n�1)t+1 �rt,

and (iii) yield spreads, y(n)t � y
(1)
t . Panel b reports forecast variance decompositions of (i) the rate

of depreciation, �st+1, and (ii) the foreign exchange rate risk premium, Etsx
(n)
t+1 = �st+1 + r

�
t � rt.

We ignore observation errors when computing these variance decompositions. Data are monthly
and the sample is January 1979 to December 2005.



Table 8
Variance Decomposition: U.K.

Panel a: Bond Yields
Yield Levels Bond Risk Premia Yield Spreads

r�t ft �st r�t ft �st r�t ft �st
One-month ahead
1-month yield 0.01 9.96 90.03 - - - - - -
1-year yield 3.34 17.83 78.84 1.57 87.95 10.49 2.89 76.91 20.20
5-year yield 23.49 17.68 58.84 1.52 87.75 10.72 6.14 37.58 56.28
10-year yield 49.69 11.81 38.50 1.43 87.82 10.75 5.56 22.58 71.87

One-year ahead
1-month yield 1.69 1.46 96.85 - - - - - -
1-year yield 4.01 1.78 94.20 1.57 87.96 10.47 4.00 64.66 31.34
5-year yield 26.33 1.74 71.93 1.54 87.74 10.71 7.16 10.65 82.19
10-year yield 53.68 1.11 45.21 1.51 87.76 10.73 4.92 4.55 90.53

Ten-year ahead
1-month yield 39.17 0.42 60.41 - - - - - -
1-year yield 46.75 0.45 52.80 1.62 87.90 10.48 4.47 53.09 42.44
5-year yield 74.28 0.28 25.44 1.78 87.48 10.74 6.45 5.47 88.08
10-year yield 87.44 0.14 12.42 2.21 87.07 10.72 6.65 2.16 91.20

Panel b: Exchange Rates
Depreciation Rate FX Risk Premia
r�t ft �st r�t ft �st

One-month ahead 1.34 90.00 8.66 4.47 67.24 28.29
One-year ahead 1.48 89.02 9.50 7.77 42.74 49.49
Ten-year ahead 1.58 88.08 10.33 8.93 28.69 62.37

Note: Panel a reports one-month, one-year and ten-year ahead variance decompositions of
forecast variance for (i) yield levels, y(n)t , (ii) bond risk premium, Etrx

(n)
t+1 = ny

(n)
t �(n�1)y(n�1)t+1 �rt,

and (iii) yield spreads, y(n)t � y
(1)
t . Panel b reports forecast variance decompositions of (i) the rate

of depreciation, �st+1, and (ii) the foreign exchange rate risk premium, Etsx
(n)
t+1 = �st+1 + r

�
t � rt.

We ignore observation errors when computing these variance decompositions. Data are monthly
and the sample is January 1979 to December 2005.



Table 9
Pricing Errors in Basis Points

1 month 1 year 2 year 5 year 10 year
Canada
Mean Pricing Error 0.81 -0.77 -0.62 0.11 0.10
Mean Absolute Pricing Error 5.21 2.44 2.71 4.03 5.87

Germany
Mean Pricing Error 0.55 0.01 -0.60 -0.06 0.23
Mean Absolute Pricing Error 2.92 1.97 2.22 2.96 3.94

U.K.
Mean Pricing Error 1.09 -1.24 -0.71 0.74 -0.30
Mean Absolute Pricing Error 4.59 3.10 3.19 4.40 5.79

Note: This table reports mean pricing errors and mean absolute pricing errors for the a¢ ne
term structure model. These are computed as �(n)t = y

(n)
t � an � b0nxtjt where xtjt is the estimate

of the vector of state variables xt conditional on information up to time t: xtjt = Et (xtj It). Data
are monthly and the sample is January 1979 to December 2005.



Table 10
Comparison of McCallum Rule Estimates

Panel a: OLS Estimates
 0  1  2

Canada 0.0083 0.0007 0.8735
(0.0066) (0.0031) (0.0585)

Germany -0.0047 -0.0042 0.9510
(0.0043) (0.0012) (0.0153)

U.K. 0.0144 -0.0040 0.9159
(0.0057) (0.0014) (0.0213)

Panel b: E-GARCH Estimates
 0  1  2

Canada 0.0013 0.0006 0.9458
(0.0015) (0.0011) (0.0105)

Germany -0.0047 -0.0004 1.0003
(0.0010) (0.0004) (0.0052)

U.K. 0.0023 -0.0020 0.9738
(0.0018) (0.0006) (0.0086)

Panel c: Intrumental Variables Estimates
 0  1  2

Canada -0.0011 -0.0166 0.9413
(0.0049) (0.0336) (0.0471)

Germany -0.0047 -0.0032 0.9756
(0.0037) (0.0187) (0.0190)

U.K. 0.0033 0.0221 0.9741
(0.0327) (0.0603) (0.1635)

Panel d: No-Arbitrage Estimates
 0  1  2

Canada 0.0004 0.0175 0.9934
(0.0022) (0.0053) (0.0188)

Germany 0.0063 0.0336 1.0409
(0.0079) (0.0192) (0.0410)

U.K. -0.0194 0.0313 1.0861
(0.0119) (0.0115) (0.0520)

Note: Panel a reports ordinary least squares of the parameters of the McCallum (1994a)
rule in equation (4): rt � r�t =  0 +  1�st +  2(rt�1 � r�t�1) + et. Panel b reports exponential
GARCH estimates of these parameters. Panel c reports estimates of the McCallum rule when using
the instrument set given by (1;�st�1;�st�2; rt�1 � r�t�1; rt�2 � r�t�2). Panel d reports again the
estimates of the coe¢ cients in the McCallum rule obtained using an a¢ ne term structure model in
Tables 2-44 Data are monthly and the sample is January 1979 to December 2005.



Table 11
Estimates of McCallum (1994b) Rule

Panel a: McCallum Rule
'0 y

(n)
t � rt rt�1

Canada -0.0011 0.0168 0.9998
(0.3051) (0.0071) (0.0003)

Germany -0.0013 0.0101 0.9997
(0.2774) (0.0060) (0.0004)

U.K. 0.0008 0.0234 0.9999
(0.3219) (0.0105) (0.0001)

Panel b: Pricing Errors in basis points
1 month 1 year 2 years 5 years 10 years

Canada
Mean Pricing Error 3.75 -1.90 -3.38 -2.75 2.25
Mean Absolute Pricing Error 5.38 2.92 4.26 4.43 4.48

Germany
Mean Pricing Error 2.39 -0.60 -1.82 -1.75 0.91
Mean Absolute Pricing Error 3.62 1.86 2.80 2.96 2.87

U.K.
Mean Pricing Error 3.61 -3.75 -3.64 -1.64 1.71
Mean Absolute Pricing Error 3.95 4.27 4.70 4.27 3.79

Note: Panel a reports estimates of the McCallum (1994b) yield-curve-smoothing policy rule in
equation (24): rt = '0+'1(y

(n)
t �rt)+'2rt�1+vt. These are functions of the underlying parameters

of the no-arbitrage Nelson-Siegel model in equations (25)-(36). Standard errors are computed using
the delta method. Panel b reports mean pricing errors and mean absolute pricing errors for the
no-arbitrage Nelson-Siegel. Data are monthly and the sample is January 1979 to December 2005.



Figure 1: U.S. short-rate latent factor estimate
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Figure 2: Canadian Latent Factor Estimate
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Figure 3: German Latent Factor Estimate
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Figure 4: British Latent Factor Estimate
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