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Abstract

Monte Carlo evidence has made it clear that asymptotic tests based on generalized method of

moments (GMM) estimation have disappointing size. The problem is exacerbated when the

moment conditions are serially correlated. Several block bootstrap techniques have been proposed

to correct the problem, including Hall and Horowitz (1996) and Inoue and Shintani (2006). We

propose an empirical likelihood block bootstrap procedure to improve inference where models are

characterized by nonlinear moment conditions that are serially correlated of possibly infinite

order. Combining the ideas of Kitamura (1997) and Brown and Newey (2002), the parameters of a

model are initially estimated by GMM which are then used to compute the empirical likelihood

probability weights of the blocks of moment conditions. The probability weights serve as the

multinomial distribution used in resampling. The first-order asymptotic validity of the proposed

procedure is proven, and a series of Monte Carlo experiments show it may improve test sizes over

conventional block bootstrapping.

JEL classification: C14, C22
Bank classification: Econometric and statistical methods

Résumé

Les simulations de Monte-Carlo montrent bien que les tests asymptotiques fondés sur la méthode

des moments généralisés ont un niveau peu satisfaisant. Ce défaut s’accentue dès lors que les

conditions de moments sont autocorrélées. Pour surmonter cette difficulté, plusieurs techniques

de rééchantillonnage par blocs ont été mises en avant, notamment par Hall et Horowitz (1996)

ainsi que par Inoue et Shintani (2006). Les auteurs proposent ici une technique de

rééchantillonnage par blocs faisant appel à une méthode empirique de vraisemblance qui permet

d’améliorer la qualité des inférences dans les modèles caractérisés par des conditions de moments

non linéaires autocorrélées et d’ordre peut-être infini. Conjuguant les démarches de Kitamura

(1997) et de Brown et Newey (2002), ils estiment par la méthode des moments généralisés des

paramètres qui leur serviront ensuite à calculer, au moyen de la méthode de vraisemblance

utilisée, les probabilités associées aux blocs des conditions de moments. De ces probabilités, ils

tirent la distribution multinomiale employée dans le rééchantillonnage. Les auteurs démontrent la

validité asymptotique au premier ordre de leur technique, qui peut améliorer le niveau des tests

par rapport à la technique classique de rééchantillonnage par blocs, comme le révèle une série de

simulations de Monte-Carlo.

Classification JEL : C14, C22
Classification de la Banque : Méthodes économétriques et statistiques



1 Introduction

Generalized method of moments (GMM, Hansen (1982)) has been an essential tool for econome-

tricians, partly because of its straightforward application and fairly weak restrictions on the data gener-

ating process. GMM estimation is widely used in applied economics to estimate and test asset pricing

models (Hansen and Singleton (1982), Kocherlakota (1990), Altonji and Segal (1996)), business cycle

models (Christiano and Haan (1996)), models that use longitudinal data (Arellano and Bond (1991),

Ahn and Schmidt (1995)), as well as stochastic dynamic general equilibrium models (Ruge-Murcia

(2007)).

Despite the widespread use of GMM, there is ample evidence that the finite sample properties for

inference have been disappointing (e.g. the 1996 special issue of JBES); t-tests on parameters and

Hansen’s test of overidentifying restrictions (J-test, or Sargan test) for model specification perform

poorly and tend to be biased away from the null hypothesis. The situation is especially severe for

dependent data (see Clark (1996)). Consequently, inferences based on asymptotic critical values can

often be very misleading. From an applied perspective, this means that theoretical models may be more

frequently rejected than necessary due to poor inference rather than poor modeling.

Various attempts have been made to address finite sample size problems while allowing for depen-

dence in the data. Berkowitz and Kilian (2000), Ruiz and Pascual (2002), and Härdle et al. (2003)

review some of the techniques developed for bootstrapping time-series models, including financial

time series. Lahiri (2003) is an excellent monograph on resampling methods for dependent data. Hall

and Horowitz (1996) apply the block bootstrap approach to GMM and establish the asymptotic re-

finements of their procedure when the moment conditions are uncorrelated after finitely many lags.

Andrews (2002) provides similar results for the k-step bootstrap procedure first proposed by Davidson

and Mackinnon (1999).

Limited Monte Carlo results indicate the block-bootstrap has some success at improving inference

in GMM. More recent papers by Zvingelis (2002) and Inoue and Shintani (2006) attempt refinements

to Hall and Horowitz (1996) and Andrews (2002). The main requirement of these earlier papers is that

the data is serially uncorrelated after a finite number of lags. In contrast, Inoue and Shintani (2006)

prove that the block bootstrap provides asymptotic refinements for the GMM estimator of linear models

when the moment conditions are serially correlated of possibly infinite order. Zvingelis (2002) derives

the optimal block length for coverage probabilities of normalized and Studentized statistics.

A complementary line of research has examined empirical likelihood (EL) estimators, or their

generalization (GEL). Rather than try to improve the finite properties of the GMM estimator directly,

researchers such as Kitamura (1997), Kitamura and Stutzer (1997), Smith (1997), and Imbens et al.
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(1998) have proposed and/or tested new statistics, ones based on GEL-estimators.1 A GEL estimator

minimizes the distance between the empirical density and a synthetic density subject to the restriction

that all the moment conditions are satisfied. GEL estimators have the same first-order asymptotic

properties as GMM but have smaller bias than GMM in finite samples. Furthermore, these biases do

not increase in the number of overidentifying restrictions in the case of GEL. Newey and Smith (2004)

provide theoretical evidence of the higher-order efficiency of GEL estimators. Gregory et al. (2002)

have shown, however, that these alternatives to GMM do not solve the over-rejection problem in finite

samples.

Brown and Newey (2002) introduce the empirical likelihood bootstrap technique for iid data.

Rather than resampling from the empirical distribution function, the empirical likelihood bootstrap

resamples from a multinomial distribution function, where the probability weights are computed by

empirical likelihood. Brown and Newey (2002) show that empirical likelihood bootstrap provides an

asymptotically efficient estimator of the distribution of t ratios and overidentification test-statistics.

The author’s Monte Carlo design features a dynamic panel model with persistence and iid error struc-

ture. The results suggest that the empirical likelihood bootstrap is more accurate than the asymptotic

approximation, and not dissimilar to the Hall and Horowitz (1996) bootstrap.

In this paper, the approach of Brown and Newey (2002) is extended to the case of dependent

data, using the empirical likelihood (Owen (1990)). A number of researchers have implemented this

approach with some success in linear time-series models (Ramalho (2006)) as well as dynamic panel

data models (Gonzalez (2007)). With serially correlated data the idea is that parameters of a model are

initially estimated by GMM and then used to compute the empirical likelihood probability weights of

the blocks of moment conditions, which serve as the multinomial distribution for resampling. In this

paper the first-order asymptotic validity of the proposed empirical likelihood block bootstrap is proven

using the results in Gonçalves and White (2004). We report on the finite-sample properties of t-ratios

and overidentification test-statistics. A series of Monte Carlo experiments show that the empirical

likelihood block bootstrap can reduce size distortions considerably and improve test sizes over first-

order asymptotic theory and frequently outperforms conventional block bootstrapping approaches.2

Furthermore, the empirical likelihood block bootstrap does not require solving the difficult saddle point

problem associated with GEL estimators. This is because estimation of the probability weights can

be conducted by plugging-in first-stage GMM estimates. Difficulties with solving the saddle point

problem is a common argument amongst applied researchers for not switching from GMM to EL, even

though the latter is higher-order efficient.

1See Kitamura (2007) for a review of recent research on empirical likelihood methods.
2In addition to bootstrapping using empirical likelihood estimated weights it would seem natural to consider subsampling

using the same weights. Subsampling (Politis and Romano (1994), Politis et al. (1999), and Hong and Scaillet (2006)) is an
alternative to bootstrapping where each block is treated as it’s own series and test-statistics are calculated for each sub-series.
This is left as future work.
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The paper is organized as follows. Section 2 provides an overview of GMM and EL. Section 3

presents a discussion of how resampling methods might improve inference in GMM. Section 4 presents

the asymptotic results. Section 5 presents the Monte Carlo design for both linear and nonlinear models.

Section 6 concludes. The technical assumption and proofs are collected at the end of the paper in the

mathematical appendix.

2 Overview of GMM and GEL

In this section we present an overview of GMM and EL to establish notation and framework.

2.1 GMM

Let Xt ∈Rk, t = 1, . . .n, be a set of observations from a stochastic sequence. Suppose for some true

parameter value θ0 (p×1) the following moment conditions (m equations) hold and p≤ m < n:

E [g(Xt ,θ0)] = 0, (1)

where g : Rk×Θ→ Rm. The GMM estimator is defined as:

θ̂ = argminQn(θ), Qn(θ) =

(
n−1

n

∑
t=1

g(Xt ,θ)

)′

Wn

(
n−1

n

∑
t=1

g(Xt ,θ)

)
, (2)

where the weighting matrix Wn →p W . Hansen (1982) shows that the GMM estimator θ̂ is consis-

tent and asymptotically normally distributed subject to some regularity conditions. The elements of

{g(Xt ,θ)} and {∇g(x,θ)} are assumed to be near epoch dependent (NED) on the α-mixing sequence

{Vt} of size −1 uniformly on (Θ,ρ) where ρ is any convenient norm on Rp. ||x||p denotes the Lp norm

(E|Xnt |p)1/p. For a (m× k) matrix x, let |x| denote the 1-norm of x, so |x|= ∑
m
i=1 ∑

k
j=1 |xi j|.

Define Σ = limn→∞var(n−1/2
∑

n
t=1 g(Xt ,θ0)). The standard kernel estimate of Σ is:

Sn(θ) =
n

∑
h=−n

k
(

h
m

)
Γ̂(h,θ), (3)

where k(·) is a kernel and Γ̂(h,θ)= n−1
∑

n
t=h+1 g(Xt ,θ)g(Xt+h,θ)′ for h≥ 0 and n−1

∑
n−h
t=1 g(Xt ,θ)g(Xt−h,θ)′

for h < 0. It is known that Sn(θ̃)→p Σ if θ̃→p θ0 under weak conditions on the kernel and bandwidth;

see de Jong and Davidson (2000).
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The optimal weighting matrix is given by Sn(θ̃)−1 with θ̃→p θ0. When the optimal weighting ma-

trix is used, the asymptotic covariance matrix of θ̂ is (G′Σ−1G)−1, where G = limn→∞ E(n−1
∑

n
t=1 ∇g(Xt ,θ0))

with ∇g(x,θ)=∂g(x,θ)/∂θ′.

In terms of testing for model misspecification, the most popular test is Hansen’s J-test for overiden-

tifying restrictions:

Jn = Kn(θ̂n)′Kn(θ̂n)→d χm−r, (4)

where

Kn(θ) = S−1/2
n n−1/2

n

∑
t=1

g(Xt ,θ),

and Sn is a consistent estimate of Σ. Let θr denote the rth element of θ, and let θ0r denote the rth

element of θ0. The t-statistic for testing the null hypothesis H0 : θr = θ0r is:

Tnr =
√

n(θ̂nr−θ0r)
σ̂nr

→d N(0,1), (5)

where θ̂nr is the rth element of θ̂n, and σ̂2
nr is a consistent estimate of the asymptotic variance of θ̂nr.

2.2 Empirical Likelihood

Empirical Likelihood (EL) estimation has some history in the statistical literature but has only

recently been explored by econometricians. One attractive feature is that while its first-order asymptotic

properties are the same as GMM, there is an improvement for EL at the second-order (see Qin and

Lawless (1994) and Newey and Smith (2004)). For time-series models see Anatolyev (2005). This

suggests that there might be some gain for EL over GMM in finite sample performance. At present,

limited Monte Carlo evidence (see Gregory et al. (2002)) has provided mixed results.

The idea of EL is to use likelihood methods for model estimation and inference without having to

choose a specific parametric family or probability densities. The parameters are estimated by minimiz-

ing the distance between the empirical density and a density that identically satisfies all of the moment

conditions. The main advantages over GMM are that it is invariant to linear transformations of the

moment functions and does not require the calculation of the optimal weighting matrix for asymptotic

efficiency (although smoothing or blocking of the moment condition is necessary for dependent data).

The main disadvantage is that it is computationally more demanding than GMM in that a saddle point

problem needs to be solved.
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The Generalized Empirical Likelihood Estimator solves the following Lagrangian:

maxL =
1
n

n

∑
t=1

h(·)−µ(
n

∑
t=1

πt −1)− γ
′

n

∑
t=1

πtg(xt ,θ). (6)

Solving for πt gives

πt =
h1(δ′g(xt ,θ))

∑h1(δ′g(xt ,θ))
, h1(v) = ∂h(v)/∂v. (7)

In the case of EL, h(·) = log(πt). The presence of serially correlated observations necessitates a modifi-

cation of equation (6). Kitamura and Stutzer (1997) address the data dependency problem by smoothing

the moment conditions. Anatolyev (2005) provides conditions on the amount of smoothing necessary

for the bias of the GEL estimator to be less than the GMM estimator. Kitamura (1997) and Bravo

(2005) address serial correlation in the moment conditions by using averages across blocks of data.

3 Improving Inference: Resampling Methods

Under the assumption of finite autocorrelation of the moment conditions, Hall and Horowitz (1996)

show that block bootstrapping provides asymptotic refinements to the critical values of t-tests and

Hansen’s J-test. A small Monte Carlo experiment, consisting of two nonlinear moment conditions and

one parameter, is used to show that the block bootstrap usually reduces the errors in level from the

critical values based on first-order asymptotic theory.3

3.1 The Block Bootstrap

The bootstrap amounts to treating the estimation data as if they were the population and carrying a

Monte Carlo in which bootstrap data is generated by resampling the estimation data. If the estimation

data is serially correlated, then blocks of data are resampled and the blocks are treated as the iid sample.

Operationally one needs to choose a block size when implementing the block-bootstrap. Härdle et al.

(2003) point out that the optimal block length depends on the objective of bootstrapping. That is, the

block length depends on whether or not one is interested in bootstrapping one-sided or two-sided tests

or whether one is concerned with estimating a distribution function. Among others, Zvingelis (2002)

solves for optimal block lengths given different scenarios. Practically, the optimal block lengths for

each different hypothesis test are unlikely to be implemented since practitioner’s are interested in a

variety of problems across various hypotheses. Experimentation is done with fixed block lengths as

well as data-dependent methods.
3This paper follows this design in the Monte Carlo experiments and also includes cases with persistence, heteroscedastic-

ity, and asymmetry in the moment conditions.
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We implement two forms of the block bootstrap. The first approach implements the overlapping

bootstrap (MBB, Künsch (1989)). Let b be the number of blocks and ` the block length, such that

n = b`. The ith overlapping block is X̃i = {Xi, ...,Xi+`−1}, i = 1, ...,n− `+ 1. The MBB resample is

{X∗
t }n

t=1 = {X̃∗
1 , ..., X̃∗

b }, where X̃∗
i ∼ iid(X̃1, ..., X̃n−`+1). The GMM estimator is therefore:

θ∗∗MBB = argminQ∗∗
MBB,n(θ),

Q∗∗
MBB,n(θ) =

(
n−1

∑
n
t=1 g∗(X∗

t ,θ)
)′W ∗∗

n
(
n−1

∑
n
t=1 g∗(X∗

t ,θ)
)
,

where g∗(X∗
t ,θ) = g(X∗

t ,θ)− n−1
∑

n
t=1 g(Xt , θ̂n) and W ∗∗

n is a weighting matrix. That is, given a

weighting matrix W ∗∗
n , the GMM estimator that minimizes the quadratic form of the demeaned block-

resampled moment conditions is θ∗∗MBB.

Hall and Horowitz (1996) implement the nonoverlapping block bootstrap (NBB, Carlstein (1986)).

This approach is also considered (in addition to the MBB). Let b be the number of blocks and ` the

block length, and assume b` = n. We resample b blocks with replacement from {X̃i : i = 1, . . . ,b}where

X̃i = (X(i−1)`+1, . . . ,X(i−1)`+`). The NBB resample is {X∗
t }n

t=1. The NBB version of the GMM problem

is identical to the MBB version, except for the way one resamples the data.

As shown in Gonçalves and White (2004) (hereafter GW04), because the resampled b blocks are

(conditionally) iid, the bootstrap version of the long-run autocovariance matrix estimate takes the form

(cf. equation (3.1) of GW04):

S∗∗n (θ∗∗) = `b−1
b

∑
i=1

(
`−1

`

∑
t=1

g∗(X∗
(i−1)`+t ,θ

∗∗)

)(
`−1

`

∑
t=1

g∗(X∗
(i−1)`+t ,θ

∗∗)

)′

, (8)

where θ∗∗ denotes either θ∗∗MBB or θ∗∗NBB. The optimal weighting matrix is given by (S∗∗n (θ̃∗∗))−1, where

θ̃∗∗ is the first-stage MBB/NBB estimator. The bootstrap version of the J-statistic, J ∗∗MBB,n and J ∗∗NBB,n, is

defined analogously to Jn but using (S∗∗n (θ̃∗∗))−1/2 and n−1/2
∑

n
t=1 g∗(X∗

t ,θ).

Note that in Hall and Horowitz (1996), the recentering of the sample moment condition is necessary

in order to establish the asymptotic refinements of the bootstrap. This is because in general there is no

θ such that E∗g(x,θ) = 0 when there are more moments than parameters and the resampling schemes

must impose the null hypothesis. Recentering is not necessary for establishing the first-order validity

of the bootstrap version of θ̂n (cf. Hahn (1996)), but is necessary for the first-order validity of the

bootstrap J-test.

Both bootstrap approaches are considered because there is little known about the finite sample

properties of either method. It is, however, known that the bias and variance of a block bootstrap

estimator depends on the block length (Hall et al. (1992)), and that the MBB is more efficient than the

NBB in estimating the variance (Lahiri (1999)).
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3.2 Empirical Likelihood Bootstrap

In this section we develop the empirical likelihood approach to estimating time-series models. Two

cases are considered: (i) the overlapping empirical likelihood block bootstrap (EMB), and (ii) the non-

overlapping empirical likelihood block bootstrap (ENB). The procedure for implementing the empirical

block bootstrap is straightforward and outlined in Section 7.

3.2.1 EMB

First consider the overlapping bootstrap. Let N = n− ` + 1 be the total number of overlapping

blocks. Define the ith overlapping block of the sample moment as (o stands for “overlapping”):

T o
i (θ) = `−1

`

∑
t=1

g(Xi+t−1,θ), i = 1, . . . ,N,

and the Lagrangian as:

L =
N

∑
i=1

log(πo
i )+µ

(
1−

N

∑
i=1

π
o
i

)
−Nγ

′
N

∑
i=1

π
o
i T o

i (θ).

It is known that the solution for the probability weights are given by:

π
o
i =

1
N

(
1

1+ γo(θ)′T o
i (θ)

)
,

where

γ
o(θ) = argmax

λ∈Λn(θ)

N

∑
i=1

log(1+ γ
′T o

i (θ)). (9)

Solving out the Lagrange multipliers and the coefficients simultaneously requires solving a diffi-

cult saddle point problem outlined in Kitamura (1997). Instead, one can use the GMM estimate of

θ to compute πo
i and attach these weights to the bootstrapped (blocks of) samples. Given the GMM

estimate θ̂, compute γo(θ̂), which is a much smaller dimensional problem. Then solve for the empirical

probability weights:

π̂
o
i =

1
N

(
1

1+ γo(θ̂)′T o
i (θ̂)

)
, (10)
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which satisfy the moment condition ∑
N
i=1 π̂o

i T o
i (θ̂) = 0. The EMB version of θ̂ is defined as:

θ∗MBB = argminQ∗
MBB,n(θ),

Q∗
MBB,n(θ) =

(
b−1

∑
b
i=1 Nπ̂o∗

i T o∗
i (θ)

)′
W ∗

MBB,n
(
b−1

∑
b
i=1 Nπ̂o∗

i T o∗
i (θ)

)
,

where W ∗
MBB,n is a weighting matrix and {π̂o∗

i T o∗
i (θ)} are b iid samples (with replacement) from

{π̂o
i T o

i (θ) : j = 1, . . . ,N}. The multiplicative numbers b−1 and N are included so that the order of

Q∗
MBB,n(θ) mimics that of Qn(θ). Note that E∗π̂o∗

i T o∗
i (θ̂) = N−1

∑
N
i=1 π̂o

i T o
i (θ̂) = 0.

The long-run autocovariance matrix estimator for EMB takes the form:

S∗MBB,n(θ) = `b−1
b

∑
i=1

(Nπ̂
o∗
i T o∗

i (θ))(Nπ̂
o∗
i T o∗

i (θ))′ = `b−1N2
b

∑
i=1

π̂
o∗
i T o∗

i (θ)π̂o∗
i T o∗

i (θ)′, (11)

and the second-stage (optimal) weighting matrix is given by S∗MBB,n(θ̃
∗
MBB)−1, where θ̃∗MBB is the first-

stage EMB estimator. The overlapping block Wald tests are based on the long-run autocovariance

matrix S∗MBB,n(θ). The EMB version of the J-statistic, J ∗MBB,n, is defined analogously to Jn but using

(S∗MBB,n(θ̃
∗
MBB))−1/2 and n−1/2b−1

∑
b
i=1 Nπ̂o∗

i T o∗
i (θ).

3.2.2 ENB

The ENB uses b non-overlapping blocks rather than overlapping blocks. The ith non-overlapping

block is defined as:

Ti(θ) = `−1
`

∑
t=1

g(X(i−1)`+t ,θ), i = 1, . . . ,b,

and the Lagrange multiplier and empirical probability weights are given by:

γ(θ̂) = argmax
λ∈Λn(θ̂)

b

∑
i=1

log(1+ γ
′Ti(θ̂)), π̂i =

1
b

(
1

1+ γ(θ̂)′Ti(θ̂)

)
. (12)

The ENB estimator is defined as:

θ
∗
NBB = argminQ∗

NBB,n(θ), Q∗
NBB,n(θ) =

(
b

∑
i=1

π̂
∗
i T ∗

i (θ)

)′

W ∗
NBB,n

(
b

∑
i=1

π̂
∗
i T ∗

i (θ)

)
,

where W ∗
NBB,n is a weighting matrix. The long-run autocovariance matrix estimator for ENB is:

S∗NBB,n(θ) = `b−1
b

∑
i=1

(bπ̂
∗
i T ∗

i (θ))(bπ̂
∗
i T ∗

i (θ))′ = `b
b

∑
i=1

π̂
∗
i T ∗

i (θ)π̂∗i T ∗
i (θ)′, (13)

8



and the optimal weighting matrix is given by S∗NBB,n(θ̃
∗
NBB)−1, where θ̃∗NBB is the first-stage ENB estima-

tor. The non-overlapping block Wald tests are based on the long-run autocovariance matrix, S∗NBB,n(θ).

The ENB version of the J-statistic, J ∗NBB,n, is defined analogously to J ∗MBB,n.

4 Consistency of the bootstrap-based inference

The following lemmas establish the consistency of the bootstrap-based inference. The proofs are

based on the results in Gonçalves and White (2004) and hereafter referred to as GW04. As in GW04,

let P denote the probability measure that governs the behavior of the original time-series and let P∗

be the probability measure induced by bootstrapping. For a bootstrap statistic T ∗
n we write T ∗

n → 0

prob-P∗, prob-P (or T ∗
n →P∗,P 0) if for any ε > 0 and any δ > 0, limn→∞ P[P∗[|T ∗

n |> ε] > δ] = 0. Also

following GW04 we use the notation xn →d∗ x prob-P when weak convergence under P∗ occurs in a set

with probability converging to one.

Lemma 1 Suppose Assumption A in the mathematical appendix hold. Then θ̂−θ0 →P 0. If also `→∞

and ` = o(n), then θ∗∗MBB− θ̂→P∗,P 0. If also Assumption B in Appendix hold and ` = o(n1/2−1/r), then

θ∗MBB− θ̂→P∗,P 0.

Lemma 2 Suppose Assumption A in the mathematical appendix hold, ` → ∞, and ` = o(n). Then

θ∗∗NBB − θ̂ →P∗,P 0. If also ` = o(n(r−2)/2(r−1)), then θ∗NBB − θ̂ →P∗,P 0. Note that ` must satisfy ` =

o(n1/2) because (r−2)/2(r−1) < 1/2.

If we compare conditions on `, the condition with the NBB is slightly weaker because (r− 2)/2(r−
1) = 1/2−1/2(r−1) and 2(r−1) > r.

Lemma 3 Let Assumptions A and B in the mathematical appendix hold. If `→∞, ` = o(n1/2−1/r), and

W ∗∗
n ,W ∗

MBB,n →P∗,P W, then for any ε > 0, Pr{supx∈Rp |P∗[
√

n(θ∗MBB− θ̂)≤ x]−P[
√

n(θ̂−θ0)≤ x]|>
ε}→ 0 and Pr{supx∈Rp |P∗[

√
n(θ∗∗MBB− θ̂)≤ x]−P[

√
n(θ̂−θ0)≤ x]|> ε}→ 0.

Lemma 4 Let Assumptions A and B in the mathematical appendix hold. If `→∞, ` = o(n(r−2)/2(r−1)),

and W ∗∗
n ,W ∗

NBB,n →P∗,P W, then for any ε > 0, Pr{supx∈Rp |P∗[
√

n(θ∗NBB − θ̂) ≤ x]−P[
√

n(θ̂− θ0) ≤
x]|> ε}→ 0 and Pr{supx∈Rp |P∗[

√
n(θ∗∗NBB− θ̂)≤ x]−P[

√
n(θ̂−θ0)≤ x]|> ε}→ 0.

Lemma 5 Let Assumptions A and B in the mathematical appendix hold. Assume Sn →P Σ. If ` → ∞

and ` = o(n1/2−1/r), then the Wald statistic converges to χ2
q in distribution Jn →d χ2

m−p, and J ∗MBB,n,

J ∗NBB,n, J ∗∗MBB,n, J ∗∗NBB,n →d∗ χ2
m−p prob-P. Therefore, the bootstrap inference is consistent.

9



5 Monte Carlo Experiments

In this section, a comparison of the finite sample performance differences of the standard block

bootstrapping approaches to the empirical likelihood block bootstrap approaches is undertaken in a

number of Monte Carlo experiments. The Monte Carlo design includes both linear and nonlinear

models. For each experiment we report actual and nominal size at the 1, 5, and 10 per cent level for

the t-test and J-test. Parameter settings are deliberately chosen to illustrate the most challenging size

problems. There are sample sizes: 100, 250, and 1000. Each experiment has 2000 replications and 499

bootstrap samples. This number of bootstrap samples does not lead to appreciable distortions in size

for any of the experiments.

5.1 Case I: Linear models

5.1.1 Symmetric Errors

Consider the same linear process as Inoue and Shintani (2006):

yt = θ1 +θ2xt +ut for t = 1, ...T, (14)

where (θ1,θ2) = (0,0), ut = ρut−1 + ε1t and xt = ρxt−1 + ε2t . The error structure, ε = (ε1,ε2) are

uncorrelated iid normal processes with mean 0 and variance 1. The approach is instrumental variable

estimation of θ1 and θ2 with instruments zt = (ι xt xt−1 xt−2). There are two overidentifying restrictions.

The null hypothesis being tested is: Ho : θ2 = 0. The statistics based on the GMM estimator are

Studentized using a Bartlett kernel applied to pre-whitened series (see Andrews and Monahan (1992)).

The bootstrap sample is not smoothed since the b blocks are iid. Both the non-overlapping block

bootstrap and the overlapping block bootstrap are considered in the experiment.

Results are reported in Table 1. The amount of dependence in the moment conditions is relatively

high, ρ = 0.9. The block length is set equal to the lag window in the HAC estimator, which is cho-

sen using a data-dependent method (Newey and West (1994)). One immediate observation is that the

asymptotic test-statistics severely over-reject the true null hypothesis. For example, with 100 observa-

tions the actual level for a 10% t-test is 42.25%. The actual level of the J-test is closer to the nominal

level, although there is still over-rejection. The block bootstrap, with block size averaging from 1.96

for 100 observations to 4.48 for 1,000 observations, reduces the amount of over-rejection of the t-test

substantially. The greatest improvements for the t-test are with the standard bootstrap. For the J-test

the empirical likelihood bootstrap produces actual size much closer to the nominal size than the alterna-

10



tives. Interestingly, the overlapping bootstrap has worse size than the non-overlapping block bootstrap

for the t-test.

5.1.2 Heteroscedastic Errors

The subsequent DGP is the same as in the previous section with the addition of conditional het-

eroscedasticity, modeled as a GARCH(1,1). The DGP is:

yt = θ1 +θ2xt +σtut for t = 1, ...T, (15)

where (θ1,θ2) = (0,0), xt = 0.75xt−1 + ε1t , and ut ∼ N(0,σt). σ2
t = 0.0001 + 0.6σ2

t−1 + 0.3ε2
2t−1 and

ε∼ N(0, I). The unconditional variance is 1. The instrument set is zt = [ι xt xt−1 xt−2].

Results with 2,000 replications and 499 bootstrap samples are presented in Table 2. There are three

sample sizes: 100, 250, and 1000. The actual size of the asymptotic tests are close to the nominal size

for sample size 250 and greater. The moving block bootstrap tests have good size and the empirical

likelihood bootstrap performs best out of the bootstrap procedures. Using the standard block bootstrap

actually leads to more severe under-rejection of the true null hypothesis than the asymptotic tests.

5.2 Case II: Nonlinear Models

Two experiments are considered. First the chi-squared experiment from Imbens et al. (1998). Sec-

ond, the asset pricing DGP outlined in Hall and Horowitz (1996) and used by Gregory et al. (2002).

Imbens et al. (1998) also consider this DGP. In addition this section looks at the empirical likelihood

bootstrap in a framework with dependent data. It is the case of nonlinear models where the asymptotic

t-test and J-test tend to severely over-reject.

5.2.1 Asymmetric Errors

First consider a model with Chi-squared moments. Imbens et al. (1998) provide evidence that

average moment tests like the J-test can substantially over-reject a true null hypothesis under a DGP

with Chi-squared moments. The authors find that tests based on the exponential tilting parameter

perform substantially better.

The moment vector is:

g(Xt ,θ1) = (Xt −θ1 X2
t −θ

2
1−2θ1)′.

11



The parameter θ1 is estimated using the two moments.

Results for 2,000 replications and 499 bootstrap samples are presented in Table 3. There is severe

over-rejection of the true null hypothesis when using the asymptotic distribution. The bootstrap pro-

cedures correct for this over-rejection; the empirical likelihood bootstrap performs very well for the

t-tests. For small sample sizes the standard and empirical likelihood bootstrap both outperform the

asymptotic approximation but there is still is an over-rejection.

5.2.2 Asset Pricing Example

Finally consider an asset pricing model with the following moment conditions.4:

E[exp(µ−θ(x+ z)+3z)−1] = 0, Ez[exp(µ−θ(x+ z)+3z)−1] = 0.

It is assumed that

logxt = ρ logxt−1 +
√

(1−ρ2)εxt , zt = ρzt−1 +
√

(1−ρ2)εzt ,

where εxt and εzt are independent normal with mean 0 and variance 0.16. In the experiment ρ = 0.6.

Results for 2,000 replications and 499 bootstrap samples are presented in Table 4. Again, the

asymptotic tests severely over-reject the true null hypothesis. The bootstrap procedures produce tests

with reasonable size, especially for the t-tests. As was the case in the model with asymmetric errors,

the empirical likelihood bootstrap performs best.

6 Conclusion

This paper extends the ideas put forth by Brown and Newey (2002) to bootstrap test-statistics based

on empirical likelihood. Where Brown and Newey (2002) consider bootstrapping in an iid context, this

paper provides a proof of the first-order asymptotic validity of empirical likelihood block bootstrapping

in the context of dependent data. Given the test-statistics considered, the size distortions of those tests

based on the asymptotic distribution are severe, especially in the case of nonlinear moment conditions

and substantial serial correlation. The empirical likelihood bootstrap largely corrects for these size

distortions and produces promising results. This is especially true when the regression errors are non-

spherical. Two possible avenues for future research include combining subsampling methods with

4Derivation of the example can be found in Gregory et al. (2002).
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empirical likelihood probability weights and establishing higher order improvements for the ENB and

EMB.

7 Implementing the Block Bootstrap

The procedure for implementing the GMM overlapping (MBB) and empirical likelihood (EMB)

bootstrap procedures are outlined below. The procedure is similar for the non-overlapping bootstrap.

1. Given the random sample (X1, ...,Xn), calculate θ̂ using 2-stage GMM

2. For EMB calculate π̂o
i using equation (10)

3a. For EMB sample with replacement from {π̂o
jT

o
j (θ̂) : j = 1, . . . ,N}

3b. For MBB uniformly sample with replacement to get {X∗}n
t=1 = (X̃1, ..., X̃b)

4a. For EMB calculate the J-statistic (J ∗MBB,n) and t-statistic (T ∗
nr)

4b. For MBB calculate J-statistic (J ∗∗MBB,n) and t-statistic (T ∗∗
nr )

5. Repeat steps 3-4 B times, where B is the number of bootstraps.

6. Let q̂π
α be a (1−α) percentile of the distribution of T ∗

nr or T ∗∗
nr

7. Let qπ
α be a (1−α) percentile of the distribution of J ∗MBB,n or J ∗∗MBB,n

8. The bootstrap confidence interval for θ0r is θ̂nr± q̂π
αn−1/2σ̂nr

9. For the bootstrap J-test, the test rejects if Jn ≥ qπ
α

13



8 Mathematical Appendix

Assumptions A and B are a simplified version of Assumptions A and B in Gonçalves and White

(2004), tailored to our GMM estimation framework.

Assumption A

A.1 Let (Ω,F ,P) be a complete probability space. The observed data are a realization of a stochastic

process {Xt : Ω → Rk,k ∈ N}, with Xt(ω) = Wt(. . . ,Vt−1(ω),Vt(ω),Vt+1(ω), . . .),Vt : Ω → Rv,

v ∈ N, and Wt : ∏
∞
τ=−∞ Rv → Rl is such that Xt is measurable for all t.

A.2 The functions g : Rk ×Θ → Rm are such that g(·,θ) is measurable for each θ ∈ Θ, a compact

subset of Rp, p ∈ N, and g(Xt , ·) : Θ→ Rm is continuous on Θ a.s.-P, t = 1,2, . . . .

A.3 (i) θ0 is identifiably unique with respect to Eg(Xt ,θ)′WEg(Xt ,θ) and (ii) θ0 is interior to Θ.

A.4 (i) {g(Xt ,θ)} is Lipschitz continuous on Θ, i.e. |g(Xt ,θ)−g(Xt ,θ
o)| ≤ Lt |θ−θo| a.s.-P, ∀ θ,θo ∈

Θ, where supt E(Lt) = O(1). (ii) {∇g(Xt ,θ)} is Lipschitz continuous on Θ.

A.5 For some r > 2 : (i) {g(Xt ,θ)} is r-dominated on Θ uniformly in t, i.e. there exists Dt : Rlt → R
such that |g(Xt ,θ)| ≤ Dt for all θ in Θ and Dt is measurable such that ||Dt ||r ≤ ∆ < ∞ for all t.

(ii) {∇g(Xt ,θ)} is r-dominated on Θ uniformly in t.

A.6 {Vt} is an α-mixing sequence of size −2r/(r−2), with r > 2.

A.7 The elements of (i) {g(Xt ,θ)} are NED on {Vt} of size −1 uniformly on (Θ,ρ), where ρ is any

convenient norm on Rp, and (ii) {∇g(Xt ,θ)} are NED on {Vt} of size −1 uniformly on (Θ,ρ).

A.8 Σ≡ limn→∞var(n−1/2
∑

n
t=1 g(Xt ,θ0)) is positive definite, and G≡ limn→∞ E(n−1

∑
n
t=1 ∇g(Xt ,θ0))

is of full rank.

Assumption B

B.1 {g(Xt ,θ)} is 3r-dominated on Θ uniformly in t, r > 2.

B.2 For some small δ > 0 and some r > 2, the elements of {g(Xt ,θ)} are L2+δ−NED on {Vt} of size

−(2(r−1))/(r−2) uniformly on (Θ,ρ); {Vt} is an α -mixing sequence of size−((2+δ)r)/(r−
2).
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8.1 Proof of Lemma 1

The proof closely follows the proof of Theorem 2.1 of GW04, with two differences: (i) the objec-

tive function is a GMM objective function, and (ii) in the case of EL–MBB, the bootstrapped objective

function contains the probability weight π̂o
i . θ̂−θ0 →P 0 follows from applying Lemma A.2 of GW04

to the GMM objective function, because conditions (a1)-(a3) in Lemma A.2 of GW04 are satisfied by

Assumption A. The consistency of θ∗∗MBB is proved by applying Lemma A.2 of GW04. Their conditions

(b1)-(b2) are satisfied by Assumptions A.2. Define Q̃n(θ)= (n−1
∑

n
t=1 g(X∗

t ,θ))′W ∗
n (n−1

∑
n
t=1 g(X∗

t ,θ)),

then their condition (b3) holds because supθ |Q∗∗
MBB,n(θ)−Q̃n(θ)|→P∗,P 0 from a standard argument and

supθ |Q̃n(θ)−Qn(θ)| →P∗,P 0 by Lemmas A.4 and A.5 of GW04.

Deriving the asymptotics of θ∗MBB requires the bound of the difference between π̂i and 1/N. First

we show γo(θ̂) = OP(`n−1/2). In view of the argument in pp. 100-101 of Owen (1990) (see also Ki-

tamura (1997)), γo(θ̂) = OP(`n−1/2) holds if (a) `N−1
∑

N
i=1 T o

i (θ̂)T o
i (θ̂)′→P Σ, (b) `N−1

∑
N
i=1 T o

i (θ̂) =

OP(`n−1/2), and (c) max1≤i≤N |T o
i (θ̂)| = oP(n1/2`−1). For (a), a mean value expansion gives, with

θ̄ ∈ [θ0, θ̂], ∣∣∣∣∣`N−1
N

∑
i=1

T o
i (θ̂)T o

i (θ̂)′− `N−1
N

∑
i=1

T o
i (θ0)T o

i (θ0)′
∣∣∣∣∣

≤ |θ̂−θ0|2`N−1
N

∑
i=1
|∇T o

i (θ̄)||T o
i (θ̄)|= OP(n−1/2`) = oP(1),

where the second equality follows because |T o
i (θ)| and |∇T o

i (θ)| are r-dominated on Θ with r > 2.

Define Ḡ∗
n = n−1

∑
n
t=1 g(X∗

t ,θ0), then we have (cf. Lahiri (2003), p. 48) `N−1
∑

N
i=1 T o

i (θ0)T o
i (θ0)′ =

var∗(
√

nḠ∗
n)+`T̄nT̄ ′

n, where T̄n = N−1
∑

N
i=1 T o

i (θ0). var∗(
√

nḠ∗
n)−Σ→P 0 from Corollary 2.1 of Gonçalves

and White (2002) (hereafter GW02). T̄n is equal to X̄γ,n defined in p. 1371 of GW02 if we replace

their Xt with g(Xt ,θ0). GW02 p.1381 shows X̄γ,n = oP(`−1), and hence `T̄ 2
n = oP(1). Therefore,

`N−1
∑

N
i=1 T o

i (θ0)T o
i (θ0)′ →P Σ, and (a) follows. (b) follows from expanding T o

i (θ̂) around θ0 and

using N−1
∑

N
i=1 T o

i (θ0) = n−1
∑

n
t=1 g(Xt ,θ0)+ Op(n−1`) (cf. Lemma A.1 of Fitzenberger (1997)), and

applying the central limit theorem. (c) holds because max1≤i≤N |T o
i (θ̂)|= Oa.s.(N1/r) from Lemma 3.2

of Künsch (1989) and ` = o(n1/2−1/r). Therefore, we have

γ
o(θ̂) = OP(`n−1/2), max

1≤i≤N
|γo(θ̂)′T o

i (θ̂)|= oP(1). (16)

Since (1+α)−1 = 1− (1+ ᾱ)−2α, ᾱ ∈ [0,α], it follows that

π̂
o
i = N−1(1+δni), max

1≤i≤N
|δni|= oP(1). (17)
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Consequently, supθ |Q∗
MBB,n(θ)− Q̃n(θ)| →P∗,P 0, and the stated result follows since the conditions

(b1)-(b2) of Lemma A.2 of GW04 are satisfied by Assumptions A.2. �

8.2 Proof of Lemma 2

In view of the proof of Lemma 1, the consistency of θ∗∗NBB holds because condition (b3) of Lemma

A.2 of GW04 holds because supθ |Q̃n(θ)−Qn(θ)| →P∗,P 0 by Lemmas 6 and 7.

Similarly, θ∗NBB is consistent if

γ(θ̂) = OP(`n−1/2), max
1≤i≤b

|γ(θ̂)′Ti(θ̂)|= oP(1). (18)

Equation (18) holds if (a) `b−1
∑

b
i=1 Ti(θ̂)Ti(θ̂)′ →P Σ, (b) `b−1

∑
b
i=1 Ti(θ̂) = OP(`n−1/2), and (c)

max1≤i≤b |Ti(θ̂)|= oP(n1/2`−1). (a) follows from expanding Ti(θ̂) around θ0 and using Corollary 1. (b)

follows from expanding Ti(θ̂) around θ0 and applying the central limit theorem. (c) follows because

max1≤i≤b |Ti(θ̂)|= Oa.s.(b1/r) and ` = o(n(r−2)/2(r−1)). �

8.3 Proof of Lemma 3

The proof follows the argument in the proof of Theorem 2.2 of GW04. Define

H = (G′WG)−1G′WΣWG(G′WG)−1, then the stated result follows from Polya’s theorem if we show
√

n(θ̂−θ0)→d N(0,H),
√

n(θ∗MBB− θ̂)→d∗ N(0,H) prob-P, and
√

n(θ∗∗MBB− θ̂)→d∗ N(0,H) prob-P.

The limiting distribution of
√

n(θ̂−θ0) follows from a standard argument. First, we derive the limiting

distribution of θ∗MBB. We need to strengthen the bound on π̂o
i −1/N. Since (1+α)−1 = 1−α+2(1+

ᾱ)−3α2, ᾱ ∈ [0,α], it follows that

π̂
o
i = N−1 (1− γ

o(θ̂)′T o
i (θ̂)+Ani[γo(θ̂)′T o

i (θ̂)]2
)
, (19)

max
1≤i≤N

|Ani| ≤ 1 with prob-P approaching one. (20)

The first order condition gives:

0 =

(
b

∑
i=1

π̂
o∗
i ∇T o∗

i (θ∗MBB)

)′

W ∗
MBB,n

(
b

∑
i=1

π̂
o∗
i T o∗

i (θ∗MBB)

)
.
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Expanding ∑
b
i=1 π̂o∗

i T o∗
i (θ∗MBB) around θ̂ gives, with θ̄ ∈ [θ̂,θ∗MBB],

0 =

(
b

∑
i=1

π̂
o∗
i ∇T o∗

i (θ∗MBB)

)′

W ∗
MBB,n

(
b

∑
i=1

π̂
o∗
i T o∗

i (θ̂)

)

+

(
b

∑
i=1

π̂
o∗
i ∇T o∗

i (θ∗MBB)

)′

W ∗
MBB,n

(
b

∑
i=1

π̂
o∗
i ∇T o∗

i (θ̄)

)
(θ∗MBB− θ̂).

Note that

b−1
b

∑
i=1

Nπ̂
o∗
i ∇T o∗

i (θ∗MBB)−G = b−1
b

∑
i=1

(Nπ̂
o∗
i −1)∇T o∗

i (θ∗MBB)+b−1
b

∑
i=1

∇T o∗
i (θ∗MBB)−G.

In view of (17) and E(E∗b−1
∑

b
i=1 supθ |∇T o∗

i (θ)|) = O(1), the first term on the right is oP∗,P(1). Define

Gn(θ) = n−1
∑

n
t=1 ∇g(Xt ,θ). The second term on the right is oP∗,P(1) because b−1

∑
b
i=1 ∇T o∗

i (θ)−Gn(θ)

converges to 0 uniformly in prob-P∗, prob-P from Lemmas A.4 and A.5 of GW04, Gn(θ) converges to

G(θ) = limn→∞ n−1
∑

n
t=1 E∇g(Xt ,θ) uniformly, G(θ) is continuous, and θ∗MBB is consistent. Therefore,

b−1
∑

b
i=1 Nπ̂o∗

i ∇T o∗
i (θ∗MBB) converges to G in prob-P∗, prob-P. b−1

∑
b
i=1 Nπ̂o∗

i ∇T o∗
i (θ̄) converges to G

from the same argument.

We proceed to derive the limiting distribution of
√

nb−1
∑

b
i=1 Nπ̂o∗

i T o∗
i (θ̂). Since ∑

N
i=1 π̂o

i T o
i (θ̂) = 0

by the construction of π̂o
i , we can write

√
nb−1

∑
b
i=1 Nπ̂o∗

i T o∗
i (θ̂) = In + IIn, where

In =
√

nb−1
b

∑
i=1

T o∗
i (θ̂)−

√
nN−1

N

∑
i=1

T o
i (θ̂),

IIn =
√

nb−1
b

∑
i=1

(Nπ̂
o∗
i −1)T o∗

i (θ̂)−
√

nN−1
N

∑
i=1

(Nπ̂
o
i −1)T o

i (θ̂).

Since N−1
∑

N
i=1 T o

i (θ̂) = n−1
∑

n
t=1 g(Xt , θ̂)+Op(n−1`) from Lemma A.1 of Fitzenberger (1997),

In = n−1/2
n

∑
t=1

g(X∗
t , θ̂)−n−1/2

n

∑
t=1

g(Xt , θ̂)+OP(n−1/2`)→d∗ N(0,Σ) prob-P,

where the convergence of n−1/2
∑

n
t=1 g(X∗

t , θ̂)−n−1/2
∑

n
t=1 g(Xt , θ̂) follows from the proof of Theorem

2.2 of GW04.

The limiting distribution of θ∗MBB is obtained if we show IIn = oP∗,P(1). It follows from (19) that

IIn = II1
n +

√
nb−1

b

∑
i=1

Ani[γo(θ̂)′T o∗
i (θ̂)]2T o∗

i (θ̂)−
√

nN−1
N

∑
i=1

Ani[γo(θ̂)′T o
i (θ̂)]2T o

i (θ̂), (21)
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where

II1
n =−

√
nb−1

b

∑
i=1

T o∗
i (θ̂)T o∗

i (θ̂)′γo(θ̂)+
√

nN−1
N

∑
i=1

T o
i (θ̂)T o

i (θ̂)′γo(θ̂).

Expanding T o∗
i (θ̂) and T o

i (θ̂) around θ0 and using (16), we obtain

II1
n = −

√
nb−1

b

∑
i=1

T o∗
i (θ0)T o∗

i (θ0)′γo(θ̂)+
√

nN−1
N

∑
i=1

T o
i (θ0)T o

i (θ0)′γo(θ̂)+oP(1)

= −b−1
b

∑
i=1

{
`T o∗

i (θ0)T o∗
i (θ0)′−E∗ [`T o∗

i (θ0)T o∗
i (θ0)′

]}√
n`−1

γ
o(θ̂)+oP(1).

We assume T o∗
i (θ0) is a scaler and derive the bound on II1

n , because the bound for the vector-valued

case follows from the elementwise bounds and the Cauchy-Schwartz inequality. Let p = 1+δ/2 with

0 < δ ≤ 2. Then, proceeding in a similar manner as the proof of Lemma B.1 of GW04 (p.217), we

obtain

E∗

∣∣∣∣∣b−1
b

∑
i=1

[
(`1/2T o∗

i (θ0))2−E∗(`1/2T o∗
i (θ0))2

]∣∣∣∣∣
p

(22)

≤ b−pCE∗

∣∣∣∣∣b−1
b

∑
i=1

[
(`1/2T o∗

i (θ0))2−E∗(`1/2T o∗
i (θ0))2

]2
∣∣∣∣∣

p/2

≤ b−(p−1)CE∗
∣∣∣(`1/2T o∗

1 (θ0))2−E∗(`1/2T o∗
1 (θ0))2

∣∣∣p
≤ b−(p−1)2pCE∗|`1/2T o∗

1 (θ0)|2p.

From Lemmas A.1 and A.2 of GW02, we have, for i = 1, . . . ,N,

E|`T o
i (θ0)|2p ≤ E

(
max

1≤ j≤`

∣∣∣∣∣i+ j−1

∑
t=i

g(Xt ,θ0)

∣∣∣∣∣
)2p

≤C

(
i+`−1

∑
t=i

c2
t

)2p/2

= O(`p) , (23)

where ct are (uniformly bounded) mixingale constants of {g(Xt ,θ0)}. Therefore, E(E∗|`1/2T o∗
1 (θ0)|2p)=

N−1
∑

N
i=1 `−pE|`T o

i (θ0)|2p = O(1), and (22)= OP(b−(p−1)) and II1
n = oP∗,P(1) follow.

For the other terms in (21), note that the Lyapunov inequality implies E|T o
i (θ0)|2 ≤ (E|T o

i (θ0)|2p)1/p =

O(`−1). Therefore, the third term on the right of (21) is bounded by

√
nN−1

(
max

1≤i≤N
|Ani|

)(
max

1≤i≤N
|γo(θ̂)′T o

i (θ̂)|
)
|γo(θ̂)|

N

∑
i=1
|T o

i (θ̂)|2 = oP(1),

and the second term on the right of (21) oP∗,P(1) by a similar argument. Therefore, IIn = oP∗,P(1) and
√

n(θ∗MBB− θ̂)→d∗ N(0,H) prob-P follows.
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For the standard bootstrap estimator θ∗∗MBB, expanding the first order condition gives

0 = (G+oP∗,P(1))′W ∗∗
n n−1

n

∑
t=1

(
g(X∗

t , θ̂)−g(Xt , θ̂)
)
+(G+oP∗,P(1))′W ∗∗

n (G+oP∗,P(1))(θ∗∗MBB− θ̂),

and the limiting distribution of θ∗∗MBB follows immediately. �

8.4 Proof of Lemma 4

Expanding the first order condition gives, with θ̄ ∈ [θ̂,θ∗NBB],

0 =

(
b

∑
i=1

π̂
∗
i ∇T ∗

i (θ∗NBB)

)′

W ∗
NBB,n

(
b

∑
i=1

π̂
∗
i T ∗

i (θ̂)

)

+

(
b

∑
i=1

π̂
∗
i ∇T ∗

i (θ∗NBB)

)′

W ∗
NBB,n

(
b

∑
i=1

π̂
∗
i ∇T ∗

i (θ̄)

)
(θ∗NBB− θ̂).

In view of (18), the weights π̂i satisfy the bound (17), (19), and (20) with (b,γ(θ̂),Ti(θ̂)) replacing

(N,γo(θ̂),T o
i (θ̂)). Therefore, ∑

b
i=1 π̂∗i ∇T ∗

i (θ∗NBB),∑b
i=1 π̂∗i ∇T ∗

i (θ̄) →P∗,P G follows from repeating the

argument of the proof of Lemma 3 using Lemmas 6 and 7 in place of Lemmas A.4 and A.5 of GW04.

We proceed to derive the limiting distribution of
√

n∑
b
i=1 π̂∗i T ∗

i (θ̂). Since ∑
b
i=1 π̂iTi(θ̂) = 0 by the

construction of π̂i, we can rewrite
√

n∑
b
i=1 π̂∗i T ∗

i (θ̂) =
√

n∑
b
i=1[π̂

∗
i T ∗

i (θ̂)− π̂iTi(θ̂)]. The argument lead-

ing to (23) can be used to show E|`Ti(θ0)|2p = O(`p) for i = 1, . . . ,b. Then, using this bound and the

bounds of π̂i−1/b and proceeding as in the proof of Lemma 3, we obtain

√
n

b

∑
i=1

π̂
∗
i T ∗

i (θ̂) =
√

nb−1
b

∑
i=1

[
T ∗

i (θ̂)−Ti(θ̂)
]
+oP∗,P(1).

Rewrite
√

nb−1
∑

b
i=1[T

∗
i (θ̂)− Ti(θ̂)] = ζ1n + ζ2n + ζ3n, where ζ1n =

√
nb−1

∑
b
i=1[T

∗
i (θ0)− Ti(θ0)] =

√
nb−1

∑
b
i=1[T

∗
i (θ0)−E∗Ti(θ0)], ζ2n =

√
nb−1

∑
b
i=1[T

∗
i (θ̂)−T ∗

i (θ0)], and ζ3n =
√

nb−1
∑

b
i=1[Ti(θ0)−

Ti(θ̂)]. Observe that ζ2n + ζ3n = b−1
∑

b
i=1[∇T ∗

i (θ̄∗)−∇Ti(θ̄)]
√

n(θ̂− θ0), where θ̄∗, θ̄ ∈ [θ0, θ̂]. Then

ζ2n +ζ3n = oP∗,P(1) because both θ̄∗ and θ̄ converge to θ0, b−1
∑

b
i=1[∇T ∗

i (θ)−∇Ti(θ)] and b−1
∑

b
i=1[∇Ti(θ)−

G(θ)] converges to 0 uniformly, and G(θ) is continuous.

In view of the proof of Theorem 2.2 of GW02, ζ1n →d∗ N(0,Σ) prob-P follows if, for some small

δ > 0,

(a) var∗(ζ1n)−Σ→P 0, Σ is positive definite,

(b) bE∗|Z̃n1|2+δ →P 0,
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where Z̃ni = Σ−1/2n−1/2`[T ∗
i (θ0)−E∗T ∗

i (θ0)]. Lemma 8 implies (a), because ζ1n = n−1/2
∑

n
t=1[g(X∗

t ,θ0)−
E∗g(X∗

t ,θ0)]. For (b), first observe that E(E∗|`1/2T ∗
1 (θ0)|2p) = O(1) because E|`Ti(θ0)|2p = O(`p).

Therefore, by setting p = 1+δ/2,

E(bE∗|Z̃ni|2+δ)≤CE(bE∗|n−1/2`T ∗
i (θ0)|2+δ) = O(bn−1−δ/2`1+δ/2) = O(b−δ/2) = o(1),

and ζ1n →d∗ N(0,Σ) prob-P and the limiting distribution of θ∗NBB follows.

For the standard bootstrap estimator θ∗∗NBB, expanding the first order condition gives

0 = (G+oP∗,P(1))′W ∗∗
n

b

∑
i=1

b−1 (T ∗
i (θ̂)−Ti(θ̂)

)
+(G+oP∗,P(1))′W ∗∗

n (G+oP∗,P(1))(θ∗∗NBB− θ̂),

and the limiting distribution of
√

n(θ∗∗NBB− θ̂) follows immediately. �

8.5 Proof of Lemma 5

The validity of the bootstrap Wald test with the EL bootstrap is proven if we show S∗MBB,n(θ
∗)→P∗,P

Σ and S∗NBB,n(θ
∗)→P∗,P Σ for any root-n consistent θ∗. First,

S∗MBB,n(θ
∗) = `b−1

b

∑
i=1

(Nπ̂
o∗
i T o∗

i (θ0))(Nπ̂
o∗
i T o∗

i (θ0))
′+oP∗,P(1)

= `b−1
b

∑
i=1

T o∗
i (θ0)T o∗

i (θ0)′+oP∗,P(1) = Σ+oP∗,P(1),

where the first equality follows from expanding T o∗
i (θ∗) around θ0, the second equality follows from

(17) and E|T o
i (θ0)|2 = O(`−1), and the third equality follows from the proof of Theorem 3.1 of GW04.

Similarly, we obtain

S∗NBB,n(θ) = `b−1
b

∑
i=1

T ∗
i (θ0)T ∗

i (θ0)′+oP∗,P(1)

= `b−1
b

∑
i=1

Ti(θ0)Ti(θ0)′+oP∗,P(1) = Σ+oP∗,P(1),

where the second equality follows because the argument following (22) is valid even if we replace

T o∗
i (θ0) in (22) with T ∗

i (θ0), and the third equality follows Corollary 1. The proof for the standard

MBB and NBB bootstrap is very similar and omitted.

Jn →d χ2
m−p if Wn →P Σ−1 and n−1/2

∑
n
t=1 g(Xt ,θ0) →d N(0,Σ), which follows from Assump-

tions A and B and a standard argument. J ∗MBB,n →d∗ χ2
m−p prob-P because S∗MBB,n(θ̃

∗
MBB)→P∗,P Σ and
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√
nb−1

∑
b
i=1 Nπ̂o∗

i T o∗
i (θ̂)→d∗ N(0,Σ) prob-P. J ∗∗MBB,n →d∗ χ2

m−p prob-P follows because S∗∗n (θ∗∗MBB)→P∗,P

Σ and we have shown in the proof of Lemma 3 that n−1/2
∑

n
t=1 g∗(Xt , θ̂)= n−1/2

∑
n
t=1 g(X∗

t , θ̂)−n−1/2
∑

n
t=1 g(Xt , θ̂)→d∗

N(0,Σ) prob-P. The convergence of J ∗NBB,n and J ∗∗NBB,n are proven by a similar argument. �

9 Auxiliary results

Lemma 6 (NBB uniform WLLN). Let {q∗nt(·,ω,θ)} be an NBB resample of {qnt(ω,θ)} and assume:

(a) For each θ ∈Θ⊂Rp, Θ a compact set, n∑
n
t=1(q

∗
nt(·,ω,θ)−qnt(ω,θ))→ 0, prob-P∗n,ω, prob-P; and

(b) ∀θ,θ0 ∈ Θ, |qnt(·,θ)−qnt(·,θ0)| ≤ Lnt |θ−θ0| a.s.-P, where supn{n−1
∑

n
t=1 E(Lnt)} = O(1). Then,

if ` = o(n), for any δ > 0 and ξ > 0,

lim
n→∞

P

[
P∗n,ω

(
sup
θ∈Θ

n−1

∣∣∣∣∣ n

∑
t=1

(q∗nt(·,ω,θ)−qnt(ω,θ))

∣∣∣∣∣> δ

)
> ξ

]
= 0.

Proof The proof closely follows that of Lemma 8 of Hall and Horowitz (1996). �

Lemma 7 (NBB pointwise WLLN). For some r > 2, let {qnt : Ω×Θ→Rm : m∈N} be such that for all

n, t, there exists Dnt : Ω → R with |qnt(·,θ)| ≤ Dnt for all θ ∈ Θ and ||Dnt ||r ≤ ∆ < ∞. For each θ ∈ Θ

let {q∗nt(·,ω,θ)} be an NBB resample of {qnt(ω,θ)}. If ` = o(n), then for any δ > 0, ξ > 0 and for each

θ ∈Θ,

lim
n→∞

P

[
P∗n,ω

(
n−1

∣∣∣∣∣ n

∑
t=1

(q∗nt(·,ω,θ)−qnt(ω,θ))

∣∣∣∣∣> δ

)
> ξ

]
= 0.

Proof Fix θ ∈ Θ, and we suppress θ and ω henceforth. Since q∗nt is a NBB resample, E∗q∗nt =

n−1
∑

n
t=1 qnt = q̄n and hence ∑

n
t=1 (q∗nt −qnt) = ∑

n
t=1 (q∗nt −E∗qnt). From the arguments in the proof

of Lemma A.5 of GW04, the stated result follows if ||var∗(n−1/2
∑

n
t=1 q∗nt)||r/2 = O(`) for some r > 2.

Define Uni = `−1
∑

`
t=1 qn,(i−1)`+t , the average of the ith block. Since the blocks are independently sam-

pled, we have (cf. Lahiri (2003), p.48)

var∗
(

n−1/2
n

∑
t=1

q∗nt

)
= b−1`

b

∑
i=1

(Uni− q̄n)(Uni− q̄n)′

= b−1`−1
b

∑
i=1

[
`

∑
t=1

(
qn,(i−1)`+t − q̄n

) `

∑
s=1

(
qn,(i−1)`+s− q̄n

)′]

= Rn(0)+b−1
b

∑
i=1

`−1

∑
τ=1

(
Rni(τ)+R′ni(τ)

)
,
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where

Rn(0) = n−1
n

∑
t=1

(qnt − q̄n)(qnt − q̄n)
′ ,

Rni(τ) = `−1
`−τ

∑
t=1

(
qn,(i−1)`+t − q̄n

)(
qn,(i−1)`+t+τ− q̄n

)′
, τ = 1, . . . , `−1.

Applying Minkowski and Cauchy-Schwartz inequalities gives ||Rn(τ)||r/2 = O(1), τ = 0, . . . , `−1, and

||var∗(n−1/2
∑

n
t=1 q∗nt)||r/2 = O(`) follows. �

Lemma 8 (Consistency of NBB conditional variance). Assume {Xt} satisfies EXt = 0 for all t, ||Xt ||3r ≤
∆ < ∞ for some r > 2 and all t = 1,2, . . . . Assume {Xt} is L2-NED on {Vt} of size −(2(r−1))/(r−2),

and {Vt} is an α-mixing sequence of size −(2r/(r− 2)). Let {X∗
t } be an NBB resample of {Xt}. De-

fine X̄n = n−1
∑

n
t=1 Xt , X̄∗

n = n−1
∑

n
t=1 X∗

t , Σn =var(
√

nX̄n), and Σ̂n =var∗(
√

nX̄∗
n ). Then, if `→ ∞ and

` = o(n1/2), Σn− Σ̂n →P 0.

Corollary 1 Assume Xt satisfies the assumptions of Lemma 8. Define Ui = `−1
∑

`
t=1 X(i−1)`+t , the av-

erage of the ith non-overlapping block. Then, if `→ ∞ and ` = o(n1/2), b−1`∑
b
i=1UiU ′

i −Σn →P 0.

Proof For simplicity, we assume Xt to be a scalar. The extension to the vector-valued Xt is straight-

forward, see GW02. Define Ui = `−1
∑

`
t=1 X(i−1)`+t , the average of the ith block. Since the blocks are

independently sampled, we have

Σ̂n = b−1`
b

∑
i=1

U2
i − `X̄2

n

= b−1`−1
b

∑
i=1

[
`

∑
t=1

X(i−1)`+t

`

∑
s=1

X(i−1)`+s

]
− `X̄2

n (24)

= b−1
b

∑
i=1

R̂i(0)+2b−1
b

∑
i=1

`−1

∑
τ=1

R̂i(τ)− `X̄2
n .

where R̂i(τ) = `−1
∑

`−τ

t=1 X(i−1)`+tX(i−1)`+t+τ, τ = 0, . . . , `− 1. First we show E(Σ̂n)−Σn = o(1). From

Lemmas A.1 and A.2 of GW02, we have, for i = 1, . . . ,b,

E(X̄2
n ) = n−2E

∣∣∣∣∣ n

∑
t=1

Xt

∣∣∣∣∣
2

≤ n−2E

 max
1≤ j≤n

∣∣∣∣∣ j

∑
t=1

Xt

∣∣∣∣∣
2
≤Cn−2

(
n

∑
t=1

c2
t

)
= O

(
n−1) ,

22



where ct are (uniformly bounded) mixingale constants of Xt , and E|`X̄2
n |= o(1) follows. Define Ri(τ) =

`−1
∑

`−τ

t=1 E(X(i−1)`+tX(i−1)`+t+τ) and Ri j = `−1
∑

`
t=1 ∑

`
s=1 E(X(i−1)`+tX( j−1)`+s) so that E(R̂i(τ))= Ri(τ),

then

Σn = b−1
b

∑
i=1

Ri(0)+2b−1
b

∑
i=1

`−1

∑
τ=1

Ri(τ)+b−1
b

∑
i=1

b

∑
j 6=i

Ri j,

and E(Σ̂n)−Σn = b−1
∑

b
i=1 ∑

b
j 6=i Ri j. From Gallant and White (1988) (pp.109-110), E(XtXt+τ) is bounded

by

|EXtXt+τ| ≤ ∆(5α
1/2−1/r
[τ/4] +2v[τ/4])≤Cτ

−1−ξ,

for some ξ ∈ (0,1), where vm is the NED coefficient. Therefore, for |i− j| = k ≥ 2, we have |Ri j| ≤
C`−1

∑
`
t=1 ∑

`
s=1((k−1)`)−1−ξ = O((k−1)−1−ξ`−ξ), and

|Ri,i+1| ≤C`−1
`

∑
t=1

`

∑
s=1

|`+ s− t|−1−ξ ≤C`−1
`−1

∑
h=−`+1

(`−|h|)|`+h|−1−ξ = O(`−ξ),

where the last equality follows from evaluating the sums with h > 0 and h < 0 separately. It follows

that

b−1
b

∑
i=1

b

∑
j 6=i

Ri j = O

(
`−ξ +b−1

b−1

∑
k=2

(b− k)(k−1)−1−ξ`−ξ

)
= O

(
`−ξ

)
,

and we establish E(Σ̂n)−Σn = o(1). It remains to show var(Σ̂n) = o(1). It suffices to show that the

variance of

b−1
b

∑
i=1

(
R̂i(0)−Ri(0)

)
+2b−1

b

∑
i=1

`−1

∑
τ=1

(
R̂i(τ)−Ri(τ)

)
(25)

is o(1). Following the derivation in GW02 leading to their equation (A.4), we obtain

var
(
R̂i(τ)

)
≤ `−2

`−τ

∑
t=1

var(X(i−1)`+tX(i−1)`+t+τ)

+2`−2
`−τ

∑
t=1

`−τ

∑
s=t+1

∣∣ cov
(
X(i−1)`+tX(i−1)`+t+τ,X(i−1)`+sX(i−1)`+s+τ

)∣∣
≤ C`−1

{
∆+

∞

∑
k=1

α
1/2−1/r
[k/4] +

∞

∑
k=1

v[k/4] +
∞

∑
k=1

v(r−2)/2(r−1)
[k/4]

}
+C`−1

(
τα

1−2/r
[τ/4] + τv2

[τ/4] +2τα
1/2−1/r
[τ/4] v[τ/4]

)
= O(`−1).
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Observe that, when |i− j| ≥ 7, from Lemma 6.7(a) of Gallant and White (1988) we have, for some

ξ ∈ (0,1),

cov
(
R̂i(τ), R̂ j(τ)

)
≤ `−2

`−τ

∑
t=1

`−τ

∑
s=1

∣∣cov
(
X(i−1)`+tX(i−1)`+t+τ,X( j−1)`+sX( j−1)`+s+τ

)∣∣
≤ `−2

`−τ

∑
t=1

`−τ

∑
s=1

(
α

1/2−1/r
[(|i− j|−6)`/4] + v(r−2)/2(r−1)

[(|i− j|−6)`/4]

)
= O

(
`−2

`−τ

∑
t=1

`−τ

∑
s=1

[(|i− j|−6)`/4]−1−ξ

)
≤C(`|i− j|)−1−ξ

Define Br = {1≤ i≤ b : i = 7k+r, k ∈N} for r = 1, . . . ,7, so that all i∈Br are at least 7 apart from each

other. Rewrite (25) as ∑
7
r=1 b−1

∑i∈Br(R̂i(0)−Ri(0))+2∑
7
r=1 ∑

`−1
τ=1 b−1

∑i∈Br(R̂i(τ)−Ri(τ)). Then, for

τ = 0, . . . , `−1,

var

(
b−1

∑
i∈Br

(
R̂i(τ)−Ri(τ)

))
= b−2

∑
i∈Br

∑
j∈Br

cov
(
R̂i(τ), R̂ j(τ)

)
= O

(
b−1`−1 + `−1−ξb−2

b

∑
i=1

b

∑
j 6=i
|i− j|−1−ξ

)

= O

(
b−1`−1 + `−1−ξb−2

b−1

∑
h=1

(b−h)h−1−ξ

)
= O

(
b−1`−1) .

Therefore, the variance of (25) is O(`b−1) = O(`2n−1) = o(1), giving the stated result. Corollary 1

follows because b−1`∑
b
i=1UiU ′

i = Σ̂n +oP(1) from (24). �
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Table 1
Linear Model - symmetric errors

Replications=2000; Bootstraps=499; auto-selection block length
yt = θ1 +θ2xt +ut ; ut = 0.9ut−1 + ε1t ;
xt = 0.9xt−1 + ε2t ; zt = (ι xt xt−1 xt−2)
(θ1,θ2) = (0,0); [ε1t ,ε2t ]∼ N(0, I2)

T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic 0.4225 0.3420 0.2335 0.1360 0.0735 0.0245

SNB 0.2725 0.2070 0.1085 0.1505 0.0945 0.0320
SMB 0.3760 0.2885 0.1640 0.1330 0.0755 0.0255

ENB 0.3475 0.2240 0.1580 0.1220 0.0700 0.0280
EMB 0.3510 0.2765 0.1535 0.1395 0.0885 0.0315
250

Asymptotic 0.3485 0.2755 0.1625 0.1225 0.0745 0.0235

SNB 0.2090 0.1460 0.0720 0.1320 0.0840 0.0310
SMB 0.3255 0.2390 0.1320 0.1315 0.0790 0.0260

ENB 0.3135 0.2350 0.1235 0.1215 0.0715 0.0250
EMB 0.3175 0.2330 0.1225 0.1695 0.1095 0.0465
1000

Asymptotic 0.2735 0.1945 0.0955 0.0925 0.0460 0.0075

SNB 0.1675 0.1140 0.0425 0.0930 0.0505 0.0090
SMB 0.2550 0.1815 0.0830 0.0970 0.0450 0.0070

ENB 0.2545 0.1755 0.0803 0.0930 0.0560 0.0100
EMB 0.2450 0.1700 0.0800 0.1110 0.0650 0.0180
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Table 2
Linear Model - GARCH(1,1) errors

Replications=2000; Bootstraps=499; auto-selection block length
yt = θ1 +θ2xt +σtut ; ut ∼ N(0,σt),σ2

t = 0.0001+0.6σ2
t−1 +0.3ε1t−1;

xt = 0.75xt−1 + ε2t , where ε1t ∼ N(0,1); zt = (ι xt xt−1 xt−2)
(θ1,θ2) = (0,0); ε1t ∼ N(0,1)

T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic 0.1420 0.0840 0.0280 0.070 0.0240 0.0040

SNB 0.0820 0.0340 0.0060 0.0530 0.0180 0.0050
SMB 0.0920 0.0480 0.0060 0.0590 0.0160 0.0050

ENB 0.0785 0.0370 0.0006 0.0660 0.0255 0.0020
EMB 0.1350 0.0800 0.0250 0.1000 0.0500 0.0050
250

Asymptotic 0.1150 0.0580 0.0150 0.0840 0.0270 0.0040

SNB 0.0630 0.0300 0.0060 0.0820 0.0230 0.0030
SMB 0.0830 0.0370 0.0080 0.0760 0.0260 0.0040

ENB 0.0885 0.0360 0.0055 0.0810 0.0310 0.0025
EMB 0.1050 0.0500 0.0200 0.1450 0.0900 0.0100
1000

Asymptotic 0.1050 0.0560 0.0150 0.0880 0.0390 0.0060

SNB 0.0700 0.0340 0.0070 0.0840 0.0420 0.0050
SMB 0.0910 0.0470 0.0110 0.0860 0.0410 0.0060

ENB 0.0840 0.0430 0.0105 0.0810 0.0380 0.0120
EMB 0.1000 0.0570 0.0080 0.0900 0.0440 0.0110

Note: The mean block length is 1.96 when T = 100, 2.84 when T = 250, and 4.48 when T = 1000.
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Table 3
Nonlinear Model - Chi-Square Moment Conditions

Replications=2000; Bootstraps=499; auto-selection block length
g(Xt ,θ1) = (Xt −θ1 X2

t −θ2
1−2θ1)′.

T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic 0.1845 0.1250 0.0625 0.2655 0.2065 0.1195

SNB 0.1535 0.1000 0.0380 0.1895 0.1505 0.0870
SMB 0.1800 0.0875 0.0070 0.1825 0.1465 0.0780

ENB 0.1075 0.0525 0.006 0.2235 0.1580 0.0745
EMB 0.1100 0.0600 0.0080 0.2100 0.1600 0.0700
250

Asymptotic 0.1245 0.0700 0.0250 0.1990 0.1560 0.0840

SNB 0.1095 0.0585 0.0200 0.1615 0.1290 0.0790
SMB 0.1240 0.0710 0.0175 0.1520 0.1225 0.0695

ENB 0.1070 0.0550 0.0130 0.1730 0.1200 0.0415
EMB 0.1050 0.0600 0.0120 0.1800 0.1300 0.0400
1000

Asymptotic 0.0975 0.0515 0.0100 0.1325 0.0835 0.0400

SNB 0.0985 0.0620 0.0205 0.1335 0.0985 0.0580
SMB 0.0795 0.0395 0.0075 0.1180 0.0870 0.0430

ENB 0.1000 0.0550 0.0180 0.1300 0.0800 0.0500
EMB 0.0960 0.0400 0.0080 0.1350 0.0705 0.0430

Note: The mean block length is 1.29 when T = 100, 1.99 when T = 250, and 3.33 when T = 1000.
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Table 4
Nonlinear Model - Asset Pricing Model

Replications=2000; Bootstraps=499; auto-selection block length
g = (exp(µ−θ(x+ z)+3z)−1 z[exp(µ−θ(x+ z)+3z)−1]),
logxt = ρ logxt−1 +

√
(1−ρ2)εxt , zt = ρzt−1 +

√
(1−ρ2)εzt ,

where εxt and εzt are independent normal with mean 0 and variance
0.16. In the experiment ρ = 0.6.

T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic 0.4010 0.3235 0.2195 0.3080 0.2350 0.1460

SNB 0.1550 0.0985 0.0400 0.1880 0.1260 0.0385
SMB 0.1540 0.1015 0.0435 0.1930 0.1300 0.0420

ENB 0.1400 0.0820 0.0265 0.1270 0.0700 0.0160
EMB 0.1380 0.0905 0.0300 0.1900 0.0820 0.0205
250

Asymptotic 0.3005 0.2275 0.1240 0.2470 0.1850 0.0995

SNB 0.1270 0.0755 0.0290 0.1435 0.1005 0.0510
SMB 0.1285 0.0780 0.0290 0.1430 0.0985 0.0535

ENB 0.1200 0.0640 0.0170 0.1230 0.0690 0.0190
EMB 0.1300 0.0600 0.0230 0.1275 0.0680 0.0280
1000

Asymptotic 0.2205 0.1440 0.0545 0.1975 0.1335 0.0685

SNB 0.1440 0.0825 0.0280 0.1005 0.0715 0.0220
SMB 0.1420 0.0820 0.0250 0.1040 0.0660 0.0220

ENB 0.1190 0.0600 0.0205 0.1290 0.0700 0.0230
EMB 0.1160 0.0580 0.0170 0.1080 0.0620 0.0170

Note: The mean block length is 1.51 when T = 100, 2.62 when T = 250, and 4.96 when T = 1000.
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