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Abstract

Nowadays researchers can choose the sampling frequency of exchange rates and interest rates. If

the number of observations per contract period is large relative to the sample size, standard GMM

asymptotic theory provides unreliable inferences in UIP regression tests. We specify a bivariate

continuous-time model for exchange rates and forward premia robust to temporal aggregation,

unlike the discrete time models in the literature. We obtain the UIP restrictions on the continuous-

time model parameters, which we estimate efficiently, and propose a novel specification test that

compares estimators at different frequencies. Our empirical results based on correctly specified

models reject UIP.

JEL classification: F31, G15
Bank classification: Exchange rates; Econometric and statistical methods

Résumé

De nos jours, les chercheurs peuvent choisir la fréquence d’échantillonnage des taux de change et

des taux d’intérêt. Si la période couverte par le contrat compte un nombre d’observations élevé

par rapport à la taille de l’échantillon, le recours à une approximation asymptotique pour tester

l’hypothèse de parité des taux d’intérêt non couverte à l’aide de la méthode des moments

généralisés peut conduire à des conclusions fallacieuses. Le modèle en temps continu que

définissent les auteurs pour l’évolution du taux de change et du report n’est pas sensible à

l’agrégation temporelle, contrairement à ceux en temps discret que l’on trouve dans la littérature.

Les auteurs obtiennent des estimations efficaces des paramètres du modèle en temps continu, en

testant les restrictions associées à la parité des taux d’intérêt non couverte, et proposent un test de

spécification novateur qui permet de comparer les estimateurs à différentes fréquences. Les

résultats empiriques tirés de l’estimation de modèles bien spécifiés conduisent au rejet de la parité

des taux non couverte.

Classification JEL : F31, G15
Classification de la Banque : Taux de change; Modèles économétriques et statistiques



1 Introduction

During the last twenty-�ve years the majority of studies have rejected the hypothesis of

uncovered interest parity (UIP), which in its basic form implies that the (nominal) expected

return to speculation in the forward foreign exchange market conditioned on available

information should be zero. Many studies have regressed ex post rates of depreciation on a

constant and the forward premium, rejecting the null hypothesis that the slope coe¢ cient

is one. In fact, a robust result is that the slope is negative. This phenomenon, known as

the �forward premium puzzle�, implies that, contrary to the theory, high domestic interest

rates relative to those in the foreign country predict a future appreciation of the home

currency. In fact, the so-called �carry trade�, which involves borrowing low-interest-rate

currencies and investing in high-interest-rate ones, constitutes a very popular currency

speculation strategy developed by �nancial market practitioners to exploit this �anomaly�

(see Burnside et al. 2006).

While some authors have argued that the empirical rejections found could be due to

the existence of a rational risk premium in the foreign exchange rate market, �peso prob-

lems�, or even violations of the rational expectations assumption, the focus of our paper is

di¤erent.1 We are interested in assessing whether existing tests of uncovered interest parity

provide reliable inferences. In this sense, it is interesting to emphasize that the empirical

evidence against UIP has been lessened in recent studies. In particular, Flood and Rose

(2002) �nd that UIP works better in the 1990�s, Bekaert and Hodrick (2001) �nd that the

evidence against uncovered interest parity is much less strong under �nite sample inference

than under standard asymptotic theory, while Baillie and Bollerslev (2000) and Maynard

and Phillips (2001) cast some doubt on the econometric validity of the forward premium

puzzle on account of the highly persistent behaviour of the forward premium.

In this paper, we focus instead on the impact of temporal aggregation on the statistical

properties of traditional tests of UIP, where by temporal aggregation we mean the fact

that exchange rates evolve on a much �ner time-scale than the frequency of observations

typically employed by empirical researchers. While in many areas of economics the sampling

frequency is given because collecting data is very expensive in terms of time and money

(e.g. output or labor force statistics), this is not the case for �nancial prices any more. For

1See Lewis (1989) for details of the �peso problem approach�, and Mark and Wu (1998) for a model
that adapts the overlapping-generation noise-trader model of De Long et al. (1990).
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exchange rates and interest rates in particular, nowadays the sampling frequency is to a

large extent chosen by the researcher.

Two important problems arise when we consider the impact of the choice of sampling

frequency onto traditional UIP tests. The �rst one a¤ects the usual regression approach

in which one estimates a single equation that linearly relates the increment of the spot ex-

change rate over the contract period to the forward premia at the beginning of the period.

As is well known, if the period of the forward contract is longer than the sampling interval,

then there will be overlapping observations, and thereby, serially correlated regression er-

rors. For that reason, Hansen and Hodrick (1980) use Hansen�s (1982) Generalized Method

of Moments (GMM) to obtain standard errors that are robust to autocorrelation. Unfor-

tunately, if the number of observations per contract period is large relative to the sample

size (which in terms of test power should be a good thing), standard GMM asymptotic

theory no longer provides a good approximation to the �nite sample distribution of UIP

regression tests (see e.g. Richardson and Stock, 1989). For example, imagine that we are

interested in testing UIP using weekly data on 3-month forward contracts, as in Hansen and

Hodrick (1980). Since the degree of overlapping is only 12 periods, we may expect the usual

asymptotic results to be reliable if the sample size is reasonably large. But if we decide

to use daily data instead, then we will have an overlapping degree of 60 periods, which is

likely to render standard GMM asymptotics useless. Therefore, by choosing the sampling

frequency, we are in e¤ect taking a stand on the degree of overlapping, and, inadvertently,

on the �nite-sample size and power properties of the test.

The second problem a¤ects the alternative approach that �rst speci�es the joint sto-

chastic process driving the forward premia and the increment on the spot exchange rate

over the sampling interval, and then test the constraints that UIP implies on the dynamic

evolution of both variables. In this second approach, one usually speci�es a vector au-

toregressive (VAR) model in which the variation of the spot exchange rate is measured

over the sampling interval in order to avoid overlapping residuals. However, the election

of the sampling frequency also has implications in this context because VAR models are

not usually invariant to temporal aggregation. For instance, if daily observations of the

forward premia and the rate of depreciation follow a VAR model, then monthly obser-

vations of the same variables will typically satisfy a more complex vector autoregressive

moving average (VARMA) model (see e.g. McCrorie and Chambers, 2006). Therefore,
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having a model that is invariant to temporal aggregation or, in other words, a model that

is �sampling-frequency-proof�, will eliminate the misspeci�cation problems that may arise

from mechanically equating the data generating interval to the sampling interval when the

former is in fact �ner. This is important because testing UIP in a multivariate framework

is a joint test of the UIP hypothesis and the dynamic speci�cation of the model, and like in

many other contexts, having a misspeci�ed model will often result in misleading UIP tests.

Motivated by these two problems, we use a continuous-time approach to derive a new

test of uncovered interest rate parity. In particular, we assume that there is an underlying

continuous-time joint process for exchange rates and interest rate di¤erentials, which can

be observed at discrete points of time. We then estimate the parameters of the underly-

ing continuous process on the basis of discretely sampled data, and test the implied UIP

restrictions. Our approach has the advantage that we can accommodate situations with

a large ratio of observations per contract period, with the corresponding gains in terms

of asymptotic power. At the same time, though, the model that we estimate is the same

irrespective of the sampling frequency.

An alternative approach would be to assume that the data is generated at some spe-

ci�c discrete-time frequency (e.g. daily), which is �ner than the sampling interval (e.g.

weekly). Then, one could use the results in Marcellino (1999) to obtain the model that the

observed data follows. However, such an approach requires knowledge of the data genera-

tion frequency, which seems arbitrary. In this paper, we e¤ectively take this approach to

its logical limit by assuming that exchange rate and interest rate data are generated on a

continuous-time basis.

We begin our analysis by deriving the conditions that uncovered interest parity im-

poses on the Wold decomposition of continuous-time processes.2 Then, we explain how

to evaluate the Gaussian pseudo-likelihood function of data observed at arbitrary discrete

intervals via the prediction error decomposition using Kalman �ltering techniques, which,

under certain assumptions, allow us to obtain asymptotically e¢ cient estimators of the

parameters characterizing the continuous-time speci�cation. We also assess the usefulness

of our proposed methodology by comparing it to existing methods. In particular, we pro-

vide a detailed Monte Carlo study which suggests that: (i) in situations where traditional

tests of the UIP hypothesis have size distortions, the test based on our continuous-time

2Throughout this paper, we equate linear projections to conditional expectations.
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approach has the right size, and (ii) in situations where existing tests have the right size,

our proposed test is more powerful.

Importantly, we also propose a novel Hausman speci�cation test that exploits the fact

that discrete-time observations generated by a correctly speci�ed continuous-time model

will satisfy a valid discrete-time representation regardless of the sampling frequency. The

idea is the following: if the model is well-speci�ed, then the estimators of the model parame-

ters obtained at di¤erent frequencies converge to their common true values. However, if the

model is misspeci�ed then the probability limit of the coe¢ cients estimated at di¤erent fre-

quencies will diverge. Although we concentrate on continuous-time models for the exchange

rate and interest rate di¤erentials, our testing principle has much wider applicability.

Finally, we apply our continuous time approach to test the UIP hypothesis on the

U.S. dollar bilateral exchange rates against the British pound, the German DM-Euro and

the Canadian dollar using weekly data over the period from January 1977 to December

2005. Importantly, we also use our proposed speci�cation test to check the validity of

the continuous-time processes that we estimate. The results that we obtain with correctly

speci�ed models continue to reject the uncovered interest parity hypothesis even after taking

care of temporal aggregation problems.

The paper is organized as follows. Section 2 details our dynamic framework, the testable

restrictions that uncovered interest parity imposes on continuous-time models, and the

Monte Carlo evidence on size and power. In Section 3, we introduce our speci�cation

test, while Section 4 contains our empirical results. Finally, we provide some concluding

remarks and future lines of research in Section 5. Proofs and auxiliary results are gathered

in appendices.

2 A continuous-time framework

2.1 Conditions for UIP

The most common version of uncovered interest parity (UIP) states that the (nominal)

expected return to speculation in the forward foreign exchange market conditioned on

available information is zero. Typically, this hypothesis is formally written as:

Et (st+� � st) = pt;� ; (1)
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where st is the logarithm of the spot exchange rate St (e.g. dollar per euro), pt;� = ft;� � st
is the forward premium,3 and ft;� is the logarithm of the forward rate Ft;� contracted at

t that matures at t + � . As a consequence, if (1) holds then the (log) forward exchange

rate will be an unbiased predictor of the � -period ahead (log) spot exchange rate. For

this reason, UIP is also known as the �Unbiasedness Hypothesis�. A frequent criticism of

this version of UIP is that it pays no attention to issues of risk aversion and intertemporal

allocation of wealth. However, Hansen and Hodrick (1983) show that with an additional

constant term, equation (1) is consistent with a model of rational maximizing behaviour in

which assets are priced by a no arbitrage restriction. In what follows, we shall refer to this

�Modi�ed Unbiasedness Hypothesis�as UIP. In order to economise on the use of constants,

we will also understand pt;� and �st as the demeaned values of forward premium and the

�rst di¤erence of the spot exchange rate, respectively.

As mentioned before, we could simply specify a joint covariance stationary process for

�st and pt;� in discrete-time, and test the constraints that UIP implies on the dynamic

evolution of both variables. In typical discrete-time models, both the forward and spot ex-

change rates have a unit root, and, in addition, there is a (1;�1) cointegration relationship
between both variables. In this paper, we specify instead a continuous-time model for the

in�nitesimal increment of the exchange rate and the forward premium. In particular, we

borrow from Phillips (1991) and Chambers (2003) to state the following continuous-time

model in which the (1;�1) cointegration relationship is also satis�ed:

p� (t) = u1(t); (2)

ds(t) = u2(t)dt+ dWs(t); (3)

where u(t) = [u1(t); u2(t)]
0 is a covariance stationary, continuous-time residual,4 and where

we have dropped the dependence of u1(t) on � because we are concentrating on a single

forward contract.
3Most often, uncovered interest parity is stated in terms of the interest rate di¤erential between two

countries. In particular, the covered interest parity hypothesis states that the forward premium is equal
to the interest rate di¤erential between two countries: ft;� � st = rt;� � r�t;� , where rt;� and r�t;� are the
� -period interest rates on a deposit denominated in domestic and foreign currency, respectively.

4Note that if we drop the dWs(t) term from (3), then we obtain Phillips (1991)�s continuous-time
cointegrated system in triangular form representation. In that case, (3) can be expressed as Ds(t) = u2(t)
where D � d=dt is the mean square di¤erential operator. This implies that the sample paths for the spot
exchange rate s(t) are di¤erentiable, and therefore that the in�nitesimal change in s(t) is smooth. However,
the assumption of di¤erentiable exchange rate paths does not seem to be supported by data.
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In this context, UIP is expressed as:

Et [s(t+ �)� s(t)] = Et

�Z �

0

ds(t+ h)

�
= p� (t) (4)

which imposes a set of conditions on the temporal evolution of the forward premia and the

exchange rate. As an extreme example, let the forward contract period � go to zero (see

Mark and Moh, 2006). Then, the restriction Et [ds(t)] = p0(t) will be satis�ed if and only

if u1(t) = u2(t) 8t, which forces the movements of the forward premia and the exchange
rate drift to be exactly the same. The case of � = 0, though, is not empirically relevant

because instantaneous forward contracts do not exist. For the general case of � 6= 0, the
following proposition summarizes the conditions which guarantee that UIP holds:

Proposition 1 Assume that the temporal evolution of the forward premium and the spot

exchange rate is given by (2) and (3), where u(t) = [u1(t); u2(t)]
0 is a covariance stationary

continuous-time process whose Wold decomposition is given by:

u(t) =

Z 1

0

�(h)dWu(t� h); (5)

Wu(t) is a 2-dimensional Wiener process with instantaneous covariance matrix given by

E [dWu(t)dWu(t)
0] = �udt, and �(h) is a 2� 2 matrix of square integrable functions such

that tr
�R1
0
�(h)�u�(h)

0dh
�
<1. Then, the Uncovered Interest Parity condition (4) holds

if and only if:

�11(h) =

Z �

0

�21(h+ r)dr 8h; (6)

�12(h) =

Z �

0

�22(h+ r)dr 8h; (7)

where �ij(h) is the ij-element of �(h).

This proposition is the continuous-time analogue to the results provided in the appendix

of Hansen and Hodrick (1980), who derived the restrictions that UIP implies on the Wold

decomposition of discrete-time processes. In the next subsection, we will illustrate it with

two empirically realistic examples.

2.2 Examples

A multivariate Orstein-Uhlenbeck (O-U) model is a continuous-time process character-

ized by the system of linear stochastic di¤erential equations with constant coe¢ cients:

d�(t) = A�(t)dt+ S1=2dW(t): (8)
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Under some regularity conditions (see e.g. Bergstrom 1984), (8) generates discrete obser-

vations that will exactly satisfy the following VAR model:

�t = F�t�h + �t; (9)

where h is the discretization interval, F = exp(Ah), �tj�t�h; �t�2h; : : : � N(0;
) and


 =
R h
0
eArSeA

0rdr. This result illustrates the main advantages of O-U models: they have

an exact discrete-time representation whose structure is the same regardless the discretiza-

tion frequency.

Example 1. Suppose that the temporal evolution of the forward premium and the

spot exchange rate is given by:

d

�
p� (t)
s(t)

�
=

�
'11 0
'21 0

��
p� (t)
s(t)

�
dt+

�

11 0

21 
22

��
dW1(t)
dW2(t)

�
; (10)

dv(t) = �v(t)dt+ �1=2dW(t);

with '11 < 0 and E[dW(t)dW(t)0] = Idt, where I is the identity matrix. A direct applica-

tion of (9) gives us that the discrete-time representation of the continuous time model (10)

will be given by the following restricted VAR(1):�
pt;�
st

�
=

�
e'11h 0

'21
'11
(e'11h � 1) 1

��
pt�h;�
st�h

�
+

�
�1t
�2t

�
; (11)

vt = e�vt�h + �t;

where �t =
R t
t�h e

�(t�r)�1=2dW(r). Hence, it follows that the forward premia at the h

interval is a stationary AR(1) process with autocorrelation coe¢ cient e'11h, while the spot

exchange rate has a unit root. Moreover, there is no feedback from the exchange rate,

s(t), to the forward premium, p� (t). Rewriting this model in terms of xt = (pt;� ;�hst)
0 we

obtain: �
pt;�
�hst

�
=

�
e'11h 0

'21
'11
(e'11h � 1) 0

��
pt�h;�
�hst�h

�
+

�
�1t
�2t

�
; (12)

xt = Fxt�h + �t;

While we could use Proposition 1 to obtain the UIP conditions for this example, it is eas-

ier to set the discretization period h equal to the contract period � . By doing so, we obtain
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that the least squares projection coe¢ cient of ��st+� on pt;� is equal to '21 (e
'11� � 1) ='11.

Thus, Et (��st+� ) = pt;� is guaranteed if and only if:

'21 =
'11

e'11� � 1 : (13)

Finally, estimation of the parameters of the continuous-time model (10) can be per-

formed by maximum likelihood on the basis of (12) by exploiting the fact that:

�tj�t�h; �t�2h; : : : � N(0;
)

with 
 =
R h
0
e�r�e�

0rdr.

Example 2. Suppose that the temporal evolution of the forward premium and the

spot exchange rate is given by:

p� (t) = u1(t);

ds(t) = u2(t)dt+�
0dW(t);

with

d

�
u1(t)
u2(t)

�
=

�
�11 �12
�21 �22

��
u1(t)
u2(t)

�
dt+

�
�11 0
�21 �22

��
dW1(t)
dW2(t)

�
; (14)

du(t) = �u(t)dt+�1=2dW(t);

where � has two negative eigenvalues to guarantee the stationarity of the process, and

E[dW(t)dW(t)0] = Idt.

To obtain the discrete-time representation of this model, it is convenient to write it �rst

as the following augmented O-U process:

d

24 p� (t)
u2(t)
s(t)

35 =
0@ �11 �12 0

�21 �22 0
0 1 0

1A24 p� (t)
u2(t)
s(t)

35 dt+
0@ �11 0

�21 �22
�1 �2

1A� dW1(t)
dW2(t)

�
; (15)

d�(t) = A�(t)dt+ S1=2dW(t);

and then apply equation (9), together with the fact that eAh =
P1

k=0
1
k!
(Ah)k. In this way,

we obtain that: �
ut
st

�
=

�
e�h 0

e02�
�1(e�h � I) 1

��
ut�h
st�h

�
+ �t;
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where �t =
R t
t�h e

A(t�r)�1=2dW(r). Therefore, discretely sampled observations of model

(14) will satisfy the following state-space model:�
pt;�
�hst

�
=

�
1 0 0
0 0 1

�0@ u1t
u2t
�hst

1A ; (16)

�
ut
�hst

�
=

�
e�h 0

e02�
�1(e�h � I) 0

��
ut�h
�hst�h

�
+ �t; (17)

Once again, setting h = � gives us the projections of st+��st onto (u0t; st�st�� )0. In this
case, it is straightforward to prove that the UIP condition Et (��st+� ) = pt;� is equivalent

to:

e02�
�1(e�� � I) = e01: (18)

where ej is a vector of the same dimension as u(t) with a one in the jth position, and zeroes

in the others.

Estimation can also be done by maximum likelihood using the fact that:

�tj�t�h; �t�2h; : : : � N(0;
)

with 
 =
R h
0
eArSeA

0rdr. However, note that u2t is an unobservable factor. For that reason,

we resort to the Kalman �lter to evaluate the exact Gaussian likelihood function of this

model.

Finally, it is worth pointing out that the model in Example 1 can be nested within the

model in Example 2 in several di¤erent ways. In particular, since the condition Et[ds(t)] =

u2(t) = '21p� (t) implies that:

du2(t) = '21dp� (t) = '21'11p� (t)dt+ '21
11dW1(t);

we can write:

d

24 p� (t)
u2(t)
s(t)

35 =
0@ '11 0 0

'21'11 0 0
0 1 0

1A24 p� (t)
u2(t)
s(t)

35 dt+
0@ 
11 0

'21
11 0

21 
22

1A� dW1(t)
dW2(t)

�
:

However, we can also use the fact that u2(t) = '21p� (t) to prove that

du2(t) = '11u2(t)dt+ '21
11dW1(t);

which delivers the following alternative expression:

d

24 p� (t)
u2(t)
s(t)

35 =
0@ '11 0 0

0 '11 0
0 1 0

1A24 p� (t)
u2(t)
s(t)

35 dt+
0@ 
11 0

'21
11 0

21 
22

1A� dW1(t)
dW2(t)

�
:
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Therefore, if the true model is given by (10), then some of the parameters appearing in

(14) will not be identi�ed.

2.3 Comparison to OLS and discrete-time VAR

Let us quickly review the two main approaches to test UIP in the existing literature:

Ordinary Least Squares. We can combine the equation Et (st+� � st) = ft;� � st

with the assumption that expectations are rational to obtain:

st+� � st = ft;� � st + wt+� ;

where wt+� is a rational expectations error that is mean independent from any variable in

the information set at time t. This equation has motivated the regression equation

st+� � st = �+ �(ft;� � st) + wt+� (19)

as the usual starting point to test the UIP theory. In the context of (19), the �Unbiasedness

Proposition�implies that � = 0 and � = 1, while we just need � = 1 to satisfy the �Modi�ed

Unbiasedness Proposition�. In addition, the rational expectations assumption implies that

wt+� is not autocorrelated as long the sampling interval is equal or larger than � . For

this reason, several authors (see e.g. Frenkel, 1977 among others) sample exchange and

interest rates every � periods to produce a data set with non-overlapping residuals, even

though doing so entails a considerable waste of sample information. In contrast, Hansen

and Hodrick (1980) show how to use overlapping data in order to increase the sample size,

which should result in gains in the asymptotic power of UIP tests. Using Hansen�s (1982)

Generalized Method of Moments, they obtain asymptotic standard errors that take into

account the serial correlation of the regression errors when the prediction horizon is higher

than the sampling interval of the data. They also explain how to compute standard errors

robust to conditional heteroskedasticity.

Nonetheless, it is well known that the sample estimates of heteroskedasticity and au-

tocorrelation consistent (HAC) covariance matrices are very sensitive to the election of

bandwidth and kernel, which often results in inferences that are severely distorted (see den

Haan and Levin, 1996, and Ligeralde, 1997). Moreover, if the degree of overlapping be-

comes non-trivial relative to the sample size, standard GMM asymptotic theory no longer
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applies (see Richardson and Stock, 1989). We will revisit these issues in the Monte Carlo

experiments of Section 2.4.

Vector Autoregressions (VAR). This second approach estimates a joint covariance

stationary process for the �rst di¤erence of the spot exchange rate �st and the forward

premia pt;� by Gaussian pseudo maximum likelihood (PML). In this case, the di¤erence

operation on the spot exchange rate is taken over the sampling interval in order to avoid

overlapping residuals. Consequently, the UIP condition becomes:

Et (st+� � st) = Et

 
�X
i=1

�st+i

!
= pt;� : (20)

The constraints that this condition imposes on the joint process for �st and pt;� can

be found by using the Wold decomposition of the joint process to obtain the projection

of each �st+i (i = 1; : : : ; �) onto the information set de�ned by f�st; pt;� ;�st�1;pt�1;� ; :::g
(see Hansen and Hodrick, 1980). In this sense, our Proposition 1 can be seen as a limiting

case of this methodology.

In this context, Baillie, Lippens and McMahon (1984) and Hakkio (1981) show how to

translate the restrictions on the Wold decomposition in Hansen and Hodrick (1980) into

testable hypotheses on a VAR. The rationale for looking at vector autoregressions is that

we can always approximate any strictly invertible and covariance stationary discrete-time

process by a VAR model with a su¢ cient number of lags. Moreover, the VAR assumption

allows us to use the Campbell and Shiller (1987) methodology for testing present value

models. Speci�cally, we can use the VAR model to produce optimal forecasts of the in-

crement of the spot exchange rate in (20), from which we can obtain the appropriate UIP

conditions. As an illustration, assume that xt = (pt;� ;�st)
0 follows the VAR(1) model

xt = Bxt�1 + "t; (21)

where "t is a 2-dimensional vector of white noise disturbances with contemporaneous co-

variance matrix E ("t"0t) = �. Then, the optimal forecast of xt+i (i = 1; :::; �) based on

the information set de�ned by xt and its lagged values is given by Etxt+i = Bixt. Conse-

quently, the projection of �st+i will be given by e02B
ixt, where ej is a vector with a one in

the jth position and zeroes in the others. Since the LHS of (20) can be expressed as:

Et

 
�X
i=1

�st+i

!
= e02

 
�X
i=1

Bixt

!
= e02B(I�B)

�1(I�B� )xt;
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while the right hand side (RHS) is:

pt;� = e
0
1xt;

it follows that the testable restrictions on the VAR parameters that UIP implies for a

� -period forward contract are:

e02B(I�B)
�1(I�B� ) = e01: (22)

Although we can always consider (21) as the �rst order companion form of a higher

order VAR, if our estimated model does not provide a good representation of the joint Wold

decomposition of �st and pt;� because we have selected an insu¢ cient number of lags, say,

then we may end up rejecting the UIP hypothesis when in fact it is true. Therefore, testing

UIP in a full information set-up should be considered as a joint test of the UIP hypothesis

and the dynamic speci�cation of the model. Consequently, the application of speci�cation

tests is especially relevant in this context. Again, we will show examples of the e¤ects of

such misspeci�cations in our Monte Carlo experiments.

2.4 Monte Carlo Simulations

In this section, we carry out an extensive Monte Carlo study to assess the ability of

our proposed methodology to test UIP. Further, we also compare our approach to the

traditional UIP tests described in the previous section.

We initially simulate 10,000 samples of 30 years of weekly data (T = 1; 560) from the

continuous-time model (14) in which we �x the contract period � to 52 (one year). To make

them more realistic, we include unconditional means for the observed variables. Therefore,

the model that we simulate is given by:

� ept;�
�~st

�
=

�
�p
��s

�
+

�
1 0 0
0 0 1

�0@ u1t
u2t
�st

1A ; (23)

�
ut
�st

�
=

�
e� 0

e02�
�1(e� � I) 0

��
ut�1
�1st�1

�
+ �t; (24)

where ept;� = �p + pt;� , �~st = ��s +�st, �t =
R t
t�h e

A(t�r)�1=2dW(r) with A; �1=2 de�ned

in equation (15), �11 = :2; �21 = �:3; �22 = �:1; �1 = �:2; �2 = �1:5; �p = 2; and

��s = 0. In order to impose the null hypothesis of UIP, we �rst decompose � as PDP�1,

12



where D is a diagonal matrix with elements d1 = �:025 and d2 = �:25, and then choose
P so that � satis�es (18).

Given the highly non-linear nature of the model, we obtain good initial values for the

optimization algorithm by exploiting its Euler discretization as explained in appendix B.

Then, we employ a scoring algorithm to maximize the exact log-likelihood function, with

analytical expressions for the score vector and information matrix obtained by di¤erenti-

ating the Kalman �lter prediction and updating equations as in Harvey (1989, pp 140-3).

We also use those analytical expressions to obtain heteroskedasticity-robust standard errors

and Wald tests. Additional computational details can be found in Appendix C.

In addition, we compare the �nite-sample performance of our proposed continuous-time

approach to another six di¤erent UIP tests. In particular, for the same simulated data we

compute OLS-based UIP tests in which asymptotically valid standard errors are estimated

using the following four di¤erent methods:

1. Newey-West (1987) approach (NW) with a �xed bandwidth, which is the most popu-

lar method to construct asymptotic standard errors when testing UIP in a regression

setup (see e.g. Bansal and Dahlquist, 2000, and Flood and Rose, 2002). We use a

bandwidth given by the rule of thumb T 1=3, where T is the sample size (see Andrews,

1991).

2. Eichenbaum, Hansen and Singleton (1988) approach (EHS), which exploits that,

under the null hypothesis, the error term in the OLS estimation of (19) follows a

moving-average (MA) process of �nite known order but with unknown coe¢ cients to

construct the asymptotic covariance matrix.5 We follow Eichenbaum, Hansen and

Singleton (1988) in using Durbin (1960)�s method to estimate the MA structure.

3. Den Haan and Levin (1996)�s approach with a VAR order automatically selected using

either the Akaike Information Criteria (VARHAC-AIC) or the Bayesian Information

Criteria (VARHAC-BIC). Den Haan and Levin (1996)�s data-dependent approach

assumes that the moment conditions implicit in the normal equations of (19) have a

�nite VAR representation, which they exploit to construct their estimated covariance

matrix.

Furthermore, we also compute VAR-based tests with p = 1 and 4 lags.
5Hence, we cannot use Hodrick�s (1992) standard errors.
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Nonetheless, one has to be careful in comparing all these di¤erent tests of the UIP

hypothesis because each of them has a di¤erent alternative hypothesis in mind. As a

con�rmation, simply note that OLS-based tests have one degree of freedom, VAR(p)-based

tests have 2p degrees of freedom, while tests based on the continuous-time model (14) have

two degrees of freedom. In order to make a fair comparison across models, we follow Hodrick

(1992) and Bekaert (1995) and obtain an implied beta from the VAR and the continuous-

time approach that is analogous to the regression slope tested in the simple regression

approach. Given that the regression coe¢ cient is simply the ratio of the covariance between

the expected future rate of depreciation and the forward premium to the variance of the

forward premium, the implied slope in the VAR(1) in equation (21) will be:

�V AR(1) =
e02B(I�B)

�1(I�B� )	e1
e01	e1

; (25)

where 	 is the unconditional covariance matrix of xt = (pt;� ;�st)
0, which can be obtained

from the equation vec(	) = (I �B
B)�1vec(�). On the other hand, the implied slope
for the continuous time model (14) is given by

�OU =
e02�

�1(e�� � I)�e1
e01�e1

; (26)

where vec(�) = � (�
 I+ I
�)�1 vec(�) is the unconditional variance of ut. Therefore,
we will concentrate on the null hypotheses H0 : �

V AR(p) = 1 for p = 1 and 4, as well as

H0 : �
OU = 1.

Figure 1 summarises the �nite sample size properties of each of the aforementioned

UIP tests by means of Davidson and MacKinnon�s (1998) p-value discrepancy plots, which

show the di¤erence between actual and nominal test sizes for every possible nominal size.

As expected, given the large degree of overlapping, the tests based on OLS regressions

with standard errors that rely on the usual GMM asymptotic results su¤er considerable

size distortions. For example, the test that uses the Newey-West estimator of the long-run

covariance matrix of the OLS moment conditions massively over-rejects the UIP hypothesis.

This result is not entirely surprising since the autocorrelation structure of wt+� in (19) is

not well-captured by a bandwidth of T 1=3 ' 11 when the correct order of the MA structure
is � � 1 = 51. In contrast, the actual size of tests based on the EHS and VARHAC-BIC
methods are well below their nominal sizes. The size distortions for the EHS method

probably re�ect the di¢ culties in estimating a MA(51) structure using Durbin�s method,

14



while those in the VARHAC-BIC approach might be caused by the apparent tendency of

the BIC lag selection procedure to choose an insu¢ cient number of lags. Although the best

OLS-based method is the VARHAC approach with AIC order selection, it still over-rejects

in �nite samples.

As for VAR-based tests, we �nd that we approximate better the autocorrelation struc-

ture of xt = (pt;� ;�st)
0 as we increase the order the VAR from p = 1 to p = 4. A

simple explanation for this phenomenon can be obtained from an inspection of the pop-

ulation values of the implicit beta obtained by estimating a misspeci�ed VAR(p) when

the true model is in fact given by the continuous-time process (14). Without loss of

generality, assume that p = 1 (otherwise, simply write a higher order VAR as an aug-

mented VAR(1)). The companion matrix of a VAR(1) model is de�ned by the relationship

B � E
�
xtx

0
t�1
�
[E (xtx

0
t)]
�1, while the variance-covariance matrix of the residuals is given

by� � E
�
xtx

0
t�1
�
�E

�
xtx

0
t�1
�
[E (xtx

0
t)]
�1E

�
xtx

0
t�1
�0
. If we then plug in the expressions

for E (xtx0t) and E
�
xtx

0
t�1
�
implied by the continuous-time model (14),6 we will obtain

analytical expressions for the population value of B(�) and �(�) as a function of the pa-

rameters of the continuous-time model, �. Then, we can use equation (25) to compute the

population value of �V AR(1)(�), which we can understand as the implicit beta obtained by

postulating a VAR(1) model when in fact the true model is the continuous time process

(14). In this way, we obtain �V AR(1)(�) = 0:6952 and �V AR(4)(�) = 0:9802 for the value of �

in our experimental design. These values con�rm that the implicit beta approaches 1 as we

increase p, which explains why the test based on a VAR(1) process largely over-rejects in

�nite samples, while the actual and nominal sizes of the test based on the VAR(4) process

are quite close for standard nominal levels.

Finally, note that the test based on our continuous-time approach provides very reliable

inferences.

We run a second Monte Carlo experiment with another 10,000 replications to assess

the �nite-sample power of the same seven tests. In this case, the design is essentially

identical to the previous one, including the eigenvalues of �. The only di¤erence is that

we now set �11 = �:025; �12 = 1; �21 = 0, and �22 = �:25 so that UIP is violated because
e02�

�1(e�� � I) = 4e02 6= e01. Figure 2 summarises the �nite sample power properties for

6In this case E (xtx0t) = H	H
0 and E

�
xtx

0
t�1
�
= HF	H0 whereH is a matrix that has ones in the (1,1)

and (2,3) positions and zeros in the others; F =eA, 
 =
R h
0
eArSeA

0rdr with A and S de�ned in equation
(15); and 	 is the unconditional variance of �t, which is computed from vec(	) = (I� F
 F)�1vec(
).
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each of the UIP tests by means of Davidson and MacKinnon�s (1998) size-power curves,

which shows power for every possible actual size. The most obvious result from this �gure

is that the test based on our continuous-time approach has the highest power for any

given size, followed by the test based on the VAR(4) model, the OLS-based tests, and

�nally the VAR(1) one. Intuitively, our continuous-time approach, and to a less extent

the VAR(4), have high power because they exploit the correct dynamic properties of the

data (see Hallwood and MacDonald, 1994).7 To interpret our results, it is useful to resort

again to the population values of the implicit beta for the VAR models. For this design,

we have that �V AR(1)(�) = 0:4795 and �V AR(4)(�) = 0:1966, while the population value of

the implicit beta for the continuous-time model (14) calculated according to equation (26)

is �OU(�) = 0:0879. Note that under the alternative hypothesis, the smaller the order of

the VAR(p) model, the closer the value of �V AR(p) is to one, which explains the relative

ranking of the two VAR-based tests.

In summary, our Monte Carlo results suggest that: (i) in situations where traditional

tests of the UIP hypothesis have size distortions, a test based on our continuous-time

approach has the right size, and (ii) in situations where existing tests have the right size,

our proposed test is more powerful.

3 Speci�cation tests that combine di¤erent sampling
frequencies

3.1 Description

As illustrated in the previous section, misspeci�cation of the joint autocorrelation struc-

ture of exchange rates and interest rate di¤erentials can lead to systematic rejections of

UIP when, in fact, it holds. For example, we have shown that if we choose an insu¢ cient

number of lags in a VAR model, then UIP tests based on this model will tend to over-reject.

To some extent, our continuous-time approach also su¤ers from the same problem, and the

power gains that we see in Figure 2 come at a cost: if the joint autocorrelation struc-

ture implied by our continuous-time model is not valid, then our proposed UIP test may

also become misleading. Therefore, the calculation of dynamic speci�cation tests becomes

particularly relevant in our context.

7Note that if the true distribution is Gaussian then our continuous-time approach delivers the maximum
likelihood estimator, which is e¢ cient, and gives rise to optimal tests.
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For this reason, we introduce a novel Hausman test that exploits the fact that the

structure of a continuous time model is the same regardless of the discretization frequency,

h. As a result, we can �rst estimate the model using the whole sample (e.g. weekly data),

then using data on odd observations only, say (e.g. bi-weekly data), and �nally decide if

those two estimators are �statistically close�. Under the null hypothesis that our continuous

time speci�cation is valid, Gaussian pseudo maximum likelihood parameter estimators are

consistent regardless of the sampling frequency, but those that use the whole sample will

be e¢ cient. In contrast, if the dynamic speci�cation is incorrect, then estimators based on

di¤erent sampling frequencies will have di¤erent probability limits.

In order to illustrate the implementation of our proposed speci�cation test, consider

again the continuous-time model (10) in Example 1, and imagine that we want to compare

the estimators of the model obtained using weekly and bi-weekly data.8 As we saw in

Section 2.2, observations of this model sampled at the weekly frequency will satisfy the

following VAR(1) process:�
pt;�
�st

�
=

�
e'11 0

'21
'11
(e'11 � 1) 0

��
pt�1;�
�st�1

�
+

 
�
(1)
1t

�
(1)
2t

!
; (27)

while bi-weekly observations will satisfy the alternative VAR(1) process:�
pt;�
�2st

�
=

�
e2'11 0

'21
'11
(e2'11 � 1) 0

��
pt�2;�
�2st�2

�
+

 
�
(2)
1t

�
(2)
2t

!
; (28)

where  
�
(2)
1t

�
(2)
2t

!
=

 
�
(1)
1t

�
(1)
2t

!
+

�
e'11 0

'21
'11
(e'11 � 1) 1

� 
�
(1)
1t�1
�
(1)
2t�1

!
(29)

Thus, if we denote by �̂
(1)
and �̂

(2)
the estimators that we obtain from (27) and (28),

respectively, then our testing methodology simply assesses whether their probability limits

coincide. To see how, de�ne  =
�
�(1)0;�(2)0

�0
, and think of  ̂ as solving the sample

versions of the following set of moment conditions:�
E[s(1)(�(1))]

E[s(2)(�(2))]

�
= E [st( )] = 0; (30)

where the in�uence functions s(1)(�(1)) and s(2)(�(2)) are the Gaussian pseudo-scores of

models (27) and (28), respectively. Then, we can use standard GMM asymptotic theory to

8In practice, we can compare any two di¤erent frequencies of choice. For instance, in the Monte
Carlo simulations of the speci�cation tests and the empirical application, we compare weekly and monthly
estimates instead.
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show that:
p
T ( ̂ � ) d!N

�
0;D0�1VD�1� ;

where D = E [@st( )=@ 
0] and V =

P1
j=�1E [st( )st�j( )

0]. On this basis, we can test

the restriction �(1) = �(2) using the Wald test:

T �  ̂0R0(RD̂
0�1
V̂D̂

�1
R0)�1R ̂;

where R = (I;�I), and D̂ and V̂ are consistent estimates of D and V, respectively.

Note, however, that the comparison of estimators at di¤erent frequencies also induces an

overlapping problem that in general makes E [st( )st�j( )0] 6= 0 for j � � � 1, where �
is the ratio of the sampling frequencies (=2 in this example). For instance, (29) implies

that E
�
�
(2)
t �

(1)0
t�1

�
6= 0. Nevertheless, this overlapping problem is far less severe than the

problem that plagues the OLS-based UIP tests, unless we decide to compare weekly and

yearly estimates. Further details on this speci�cation test can be found in Appendix D.

In any case, it is worth remembering that we mostly care about the sampling inter-

val in as much as a change in h leads to di¤erent conclusions on the validity of the UIP.

For this reason, rather than testing whether the full parameter vectors �(1) and �(2) co-

incide, we simply test if the implied betas remain the same when we vary the sampling

frequency. In the context of model (10) in particular, we would test if �(1) = �(2), with

� = �21
�
e�11� � 1

�
=�11, using the following Wald statistic

T � f( ̂)
 
@f( ̂)

@ 0
D̂0�1V̂D̂

�1@f( ̂)

@ 

!�1
f( ̂);

where f( ) = '
(1)
21

�
e'

(1)
11 � � 1

�
='

(1)
11 � '

(2)
21

�
e'

(2)
11 � � 1

�
='

(2)
11 . In addition, note that by

focusing on this particular characteristic of the model we avoid the use of a large number

of degrees of freedom, which is likely to improve the �nite sample properties of our test.

Similarly, we can test the speci�cation of the continuous time model (14) in example 2

by checking if r(1) = r(2), where r(j) = e02
�
�(j)

��1
(e�

(j)� � I)� e01 are the restrictions that
UIP implies on this model.

3.2 Monte Carlo Simulations

In this section, we investigate the performance of the speci�cation test discussed above

by means of two additional Monte Carlo studies. In order to assess its �nite-sample size
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properties, we generate 10,000 simulations of 30 years of weekly data (T = 1; 560) from the

continuous-time model (10) in Example 1, where once again we �x the contract period to

be equal to � = 52. Similar to what we did in Section 2.4, we add unconditional means to

xt = [pt;� ;�st]
0, so that the model that we simulate is:� ept;�

�~st

�
=

�
�p
��s

�
+

�
1 0
0 1

��
pt;�
�st

�
;�

pt;�
�st

�
=

�
e'11 0

'21
'11
(e'11 � 1) 0

��
pt�1;�
�st�1

�
+

 
�
(1)
1t

�
(1)
2t

!
;

where '11 = �:025; '21 = '11= (e

11� � 1) ; 
11 = :2; 
21 = �:2; 
22 = �1:5; �p = 2 and

��s = 0. Importantly, note that we maintain the UIP restriction (13). Details on the

estimation of this model at two di¤erent frequencies can also be found in Appendix D.

Since empirical researchers often decide between working with weekly or monthly data

to test UIP, we compare the value of � that we obtain using the weekly sample, �(1), with the

one that we would obtain had we sampled the data once a month. The comparison between

weekly and monthly estimators creates an overlapping problem that introduces an MA(3)

structure in the moment conditions (30), which is much simpler than the MA(51) structure

in section 2.4. For that reason, we consider again the Newey-West (1987) approach (NW),

the Eichenbaum, Hansen and Singleton (1988) approach (EHS), as well as the Den Haan

and Levin (1996)�s VARHAC approaches with VAR order selected using either the Akaike

Information Criteria (VARHAC-AIC) or the Bayesian Information Criteria (VARHAC-

BIC). In this sense, the only change with respect to section 2.4 is that in the EHS approach

we explicitly impose that the scores of the model at the highest frequency are uncorrelated.

Figure 3 summarises the �nite sample size properties of our proposed speci�cation test

for each of the HAC covariance estimation methods. As can be seen, the EHS approach

tends to over-reject slightly in �nite samples, while the VARHAC-BIC approach tends to

under-reject by almost the same magnitude. In contrast, both the VARHAC-AIC and NW

approaches are rather more conservative.

We also generate another 10,000 simulations of 30 years of weekly data from the

continuous-time model (14) to assess the �nite-sample power of the speci�cation test that

takes as its null hypothesis that the correct model is given by (10). Speci�cally, we simulate

again from the model in equations (23) and (24) for � = 52, except that this time we choose

d2 = �1:00 because all four versions of our speci�cation test reject with probability 1 when
d2 = �:25. Once again, note that we maintain the UIP restrictions in (18).
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Figure 4 summarises the �nite sample power properties of each of the HAC covariance

estimation methods. The �rst thing to note is that our speci�cation test has non-trivial

power against dynamic misspeci�cation of the continuous-time process. We can also see

that the version of the test based on the NWapproach has the highest power, followed by the

ones based on the EHS approach, the VARHAC-AIC approach and �nally the VARHAC-

BIC one. However, we should remember that the reported results are size-adjusted. In

practice, the NW approach has poor size and, therefore, one would not want to use it to

test the dynamic speci�cation of the model. If we focus on the EHS and the VARHAC-BIC

approaches, which are the ones with the most reliable sizes, the EHS method seems to be

the one with the highest power.

4 Can we rescue UIP?

In this section, we apply our continuous time approach to test the UIP hypothesis on

the U.S. dollar bilateral exchange rates against the British pound, the German DM-Euro

and the Canadian dollar using weekly data over the period from January 1977 to December

2005. As for � , we use the appropriate Eurocurrency interest rates at maturities of one,

three, six, and twelve months.

Table 1 reports the estimated coe¢ cients of the continuous-time model (10) in Example

1, as well as the estimate of the implied beta. This reveals several interesting facts. First,

the estimated '11 is close to zero, which con�rms that the forward premium is rather

persistent (see e.g. Baillie and Bollerslev, 2000, and Maynard and Phillips, 2001). For

example, the monthly autocorrelation coe¢ cient of the one-month forward premium is

approximately 0.95 for the U.K., 0.97 for Germany, and 0.90 for Canada. Second, the

forward premium is much less volatile than the rate of depreciation, which is consistent

with previous studies (e.g. Bekaert and Hodrick, 2001). Third, the correlation between

the innovation to the forward premium and the innovation to the rate of depreciation is

negative for the U.K. and Germany, and positive for Canada. Finally, the implied beta

is always negative and signi�cantly di¤erent from one. Therefore, UIP is rejected for all

currency pairs and maturities.

As argued before, however, it is important to check the validity of the continuous time

model that we estimate. For that reason, in Table 2 we report the results of our proposed

speci�cation test applied to the estimators of � that we obtain using weekly data with
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the one that we would obtain had we sampled the data monthly. Note that �̂
(4)
tends

to be less negative than �̂
(1)
, with the exception of the one-month forward contracts for

the pound sterling and the Canadian dollar, for which �̂
(1) � �̂

(4)
equals :033 and :029,

respectively. However, the di¤erence is only signi�cantly di¤erent from zero for the one-

year pound sterling contract, and the one-month, three-month and six-month Canadian

dollar contracts.

For this reason, Table 3 presents the estimated coe¢ cients of the more �exible continuous-

time model (14) for the cases in which model (10) is rejected. Still, the forward premium

continues to be very persistent and less volatile than the rate of depreciation, and the

implicit beta remains negative and signi�cantly di¤erent from one. This time, though, we

cannot reject the dynamic speci�cation of model (14). In particular, the p-values of the

speci�cation test lie between 0.98 (BIC) and 0.99 (AIC) for the one-year pound sterling

contract. Similarly, the p-values lie between 0.56 (EHS) and 0.81 (NW), 0.66 (EHS) and

0.99 (AIC), and 0.60 (EHS) and 0.96 (BIC) for the one-month, three-month and six-month

Canadian dollar contracts, respectively.

Therefore, we are unable to rescue the UIP hypothesis even though we appropriately

account for temporal aggregation.

Finally, we also implement the traditional UIP tests described in Section 2.4. Speci�-

cally, we compute OLS-based UIP tests in which the standard errors are obtained using the

Newey-West (1987), Eichenbaum, Hansen and Singleton (1988), and Den Haan and Levin

(1996)�s VARHAC approaches with VAR order selection computed using either the Akaike

Information Criteria (VARHAC-AIC) or the Bayesian Information Criteria (VARHAC-

BIC). Similarly, we also compute VAR-based tests for lags p = 1 and 4. Not surprisingly,

the results reported in Table 4 indicate that the estimate of the slope coe¢ cient � is neg-

ative. As expected from the Monte Carlo experiment reported in Section 2.4, the results

of the OLS-based UIP tests are somewhat sensitive to the covariance matrix estimator

employed (see also Ligeralde, 1997). For example, if we use the EHS or VARHAC-BIC

method to test UIP at the one-year horizon with U.K. data, we �nd that we cannot reject

that H0 : � = 1. The same occurs if we use the VARHAC-BIC approach to test the UIP

hypothesis with German data at the three-month horizon, or at the one-year horizon with

the EHS, VARHAC-AIC or VARHAC-BIC approaches. In contrast, tests based on the NW

covariance estimator always reject UIP, and the same is true of VAR-based tests.
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5 Final Remarks

In this paper we focus on the impact of temporal aggregation on the statistical prop-

erties of traditional tests of UIP, where by temporal aggregation we mean the fact that

exchange rates evolve on a much �ner time-scale than the frequency of observations typi-

cally employed by empirical researchers. While in many areas of economics collecting data

is very expensive, nowadays the sampling frequency of exchange rates and interest rates is

to a large extent chosen by the researcher.

Two main problems arise when we consider the impact of the choice of sampling fre-

quency on traditional UIP tests. In the regression approach, if the period of the forward

contract is longer than the sampling interval, the resulting overlapping observations will

produce serially correlated regression errors. This fact in turn leads to unreliable �nite sam-

ple inferences, to the extent that if the degree of overlapping becomes non-trivial relative to

the sample size, standard GMM asymptotic theory no longer applies. In the VAR approach,

in contrast, the problem is that if high frequency observations of the forward premia and

the rate of depreciation satisfy a VAR model, then low frequency observations of the same

variables will typically satisfy a more complex VARMA model. But since UIP tests in a

multivariate framework are joint tests of the UIP hypothesis and the speci�cation of the

joint stochastic process for forward premia and exchange rates, dynamic misspeci�cations

will often result in misleading UIP tests.

Motivated by these two problems, we assume that there is an underlying joint process

for exchange rates and interest rate di¤erentials that evolves in continuous time. We then

estimate the parameters of the underlying continuous process on the basis of discretely

sampled data, and test the implied UIP restrictions. Our approach has the advantage that

we can accommodate situations with a large ratio of observations per contract period, with

the corresponding gains in terms of asymptotic power. At the same time, though, the

model that we estimate is the same irrespective of the sampling frequency. Our Monte

Carlo results suggest that: (i) in situations where traditional tests of the UIP hypothesis

have size distortions, a test based on our continuous-time approach has the right size, and

(ii) in situations where existing tests have the right size, our proposed test is more powerful.

However, if the joint autocorrelation structure implied by our continuous-time model

is not valid, then our proposed UIP test may also become misleading. For this reason, we

introduce a novel Hausman test that exploits the fact that the structure of a continuous
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time model is the same regardless the discretization frequency. Speci�cally, we estimate

the model using the whole sample �rst, then using lower frequency observations only, and

decide if those two estimators are �statistically close�.

Finally, we apply our continuous time approach to test the UIP hypothesis on the

U.S. dollar bilateral exchange rates against the British pound, the German DM-Euro and

the Canadian dollar using weekly data over the period from January 1977 to December

2005. Importantly, we also use our proposed speci�cation test to check the validity of

the continuous-time processes that we estimate. The results that we obtain with correctly

speci�ed models continue to reject the uncovered interest parity hypothesis even after taking

care of temporal aggregation problems.

Our Monte Carlo experiments have also con�rmed that the UIP regression tests are

sensitive to the covariance matrix estimator employed, and that although some automatic

lag selection procedures provide more reliable inferences, they are far from perfect. Thus,

there is still scope for improvement in this respect. In particular, a fruitful avenue for further

research would be to consider bootstrap procedures to reduce size-distortions. However,

given that the regressor is not strictly exogenous, a feasible bootstrap procedure may require

an auxiliary ad-hoc speci�cation of the data generating process, which would be subject to

the same criticisms as the discrete-time VAR approach. In contrast, a parametric bootstrap

procedure would be a rather natural choice for our dynamic speci�cation test.

One open question is whether a well-speci�ed continuous-time model such as ours is

more apt to handle the persistence of the forward premium than the standard regression-

based approach, as our Monte Carlo results seem to suggest. Again, we leave this issue for

further research.

Another area that deserves further investigation is the development of alternative con-

tinuous time models for exchange rates and interest rate di¤erentials that can account

for the rejections of the UIP hypothesis that our empirical results have con�rmed. Some

progress along these lines can be found, for example, in Diez de los Rios (2006).

Finally, it is worth mentioning that our speci�cation test can also be applied to check the

dynamic speci�cation of discrete time models such as (21), which have clear implications for

the behaviour of exchange rates and interest rate di¤erentials observed at lower frequencies.

In fact, our test can in principle be applied to any continuous-time or discrete-time process.

This constitutes another interesting avenue for further research.
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Appendix

A Proof of Proposition 1

Given that (3) implies that u2(t) is the drift of s(t), we can express the LHS of the UIP
condition in continuous time (4) as:

Et

�Z �

0

ds(t+ r)

�
= Et

�Z �

0

u2(t+ r)dr +

Z �

0

dWs(t)

�
= Et

�Z �

0

u2(t+ r)dr

�
:

But since the Wold decomposition (5) implies that

u2(t+ r) =

Z 1

�r
�21(h+ r)dWu1(t� h) +

Z 1

�r
�22(h+ r)dWu2(t� h);

then to obtain the required expectation conditioned on information available at time t we
simply need to apply an annihilation operator that zeros out �21(h+ r) and �22(h+ r) for
t 2 [�r; 0] (see Hansen and Sargent, 1991). In this way we obtain

Et [u2(t+ r)] =

Z 1

0

�21(h+ r)dWu1(t� h) +

Z 1

0

�22(h+ r)dWu2(t� h);

which in turn yields:

Et [s(t+ �)� s(t)] =

Z �

0

Z 1

0

�21(h+ r)dWu1(t� h)dr +

Z �

0

Z 1

0

�22(h+ r)dWu2(t� h)dr:

(31)
On the other hand, (5) also implies that:

p� (t) =

Z 1

0

�11(h)dWu1(t� h) +

Z 1

0

�12(h)dWu2(t� h): (32)

Given that the integrals in (31) are de�ned in the wide sense with respect to time, we
can �rst change the order of integration, and then equate the right hand sides of (31) and
(32). On this basis, it is straightforward to see that UIP is equivalent to the conditions (6)
and (7). �

B Initial values for the optimization algorithm

We obtain initial values for the scoring algorithm in Section 2.4 by exploiting the Euler
discretization of the model in equation (15), which is given by:0@ pt;�

u2t
�st

1A =

0@ 1 + �11 �12 0
�21 1 + �22 0
0 1 0

1A0@ pt�1;�
u2t�1
�st�1

1A+
0@ �euler1t

�euler2t

�euler3t

1A :

We proceed as follows:
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1. We �rst compute the sample average of the forward premium and the rate of depre-
ciation to estimate �p and ��s.

2. Then, we estimate the VAR(p) model

xt = A1xt�1 +A2xt�2 + : : :Apxt�p + et

for xt = (pt;� ;�st)
0 where pt;� and �st are the demeaned forward premium and rate

of depreciation, respectively.

3. Given that Et�1�st is exactly equal to u2t in this discretization scheme, we use the
VAR coe¢ cient estimators to construct estimates û2t of the conditional mean of �st
using the fact that

Et�1�st = e
0
2 (A1xt�1 +A2xt�2 + : : :Apxt�p) :

As a by-product, we also obtain ê2t as an estimate of �euler3t .

4. Next, we estimate the VAR(1) model but = Fbut�1+vt for ût = (pt;� ; û2t)0. From here,
we can obtain an estimate of � as �̂ = F̂� I. In addition, we also obtain bvt as an
estimate of (�euler1t ; �euler2t )0:

5. Finally, we obtain estimates of �1=2 and � in the following way. We �rst estimate

, which is the covariance matrix of (�euler1t ; �euler3t ), with the sample covariance ofbzt = (b�euler1t ;b�euler3t )0. Next, we use bl11; bl21 and bl22 as estimates of �11; �1 and �2,
respectively, where LL0 is the Cholesky decomposition of 
. Finally, we estimate �21
and �22 as the coe¢ cients in the regression of b�euler2t on bz�t , where z�t = L�1zt.

C Derivatives of the log-likelihood function

We can express the discrete time versions of the continuous time models in Examples 1
and 2 as:

yt = d+ Z�t + "t;

�t = T�t�1 + ut;�
"t
ut

����� � yt�1
�t�1

�
;

�
yt�2
�t�2

�
; : : : � N

��
0
0

�
;

�
R 0
0 Q

��
:

Given this state-space formulation, we can evaluate the exact Gaussian likelihood via
the usual prediction error decomposition:

lnL( ) =

TX
t=1

lt;
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with

lt = �
N

2
ln(2�)� 1

2
ln jFtj �

1

2
v0tF

�1
t vt; (33)

where  is the vector of parameters of the continuous-time model, vt is the vector of
one-step-ahead prediction errors produced by the Kalman �lter, and Ft their conditional
variance. The Kalman �lter recursions are given by

�tjt�1 = T�t�1jt�1
Ptjt�1 = TPt�1jt�1T

0 +Q
vt = yt � d� Z�tjt�1
Ft = ZPtjt�1Z

0 +R
�tjt = �tjt�1 +Ptjt�1Z

0F�1t vt
Ptjt = Ptjt�1 �Ptjt�1Z0F�1t ZPtjt�1

9>>>>>>=>>>>>>;
(34)

where �tjt�1 = Et�1(�t) and Ptjt�1 = E
�
(�t ��tjt�1)(�t ��tjt�1)0

�
are the expectation

and covariance matrix of �t conditional on information up to time t�1, while �tjt = Et(�t)

and Ptjt = E
�
(�t ��tjt)(�t ��tjt)0

�
are the expectation and covariance matrix of �t

conditional on information up to time t (see Harvey, 1989). Given that we are assuming that
the state variables are covariance stationarity, we initialize the �lter using �0 = E(�t) = 0

and vec(P0) = (I�T
T)�1 vec(Q).
The prediction error decomposition in (33) can also be used to obtain �rst and second

derivatives of the log likelihood function (see Harvey, 1989), which we need to estimate the
variance of the score and the expected value of the Hessian that appear in the asymptotic
distribution of the Gaussian pseudo-ML estimator of  . In particular, the score vector
takes the following form:

@lt( )

@ i
= st( ) = �

1

2
tr

��
F�1t

@Ft
@ i

��
I� F�1t vtv0t

��
� @v0t
@ i

F�1t vt;

while the ij -th element of the conditionally expected Hessian matrix satis�es:

�Et�1
�

@2lt
@ i@ j

�
=
1

2
tr

�
F�1t

@Ft
@ i

F�1t
@Ft
@ ij

�
+
@v0t
@ i

F�1t
@vt
@ j

:

In turn, these two expressions require the �rst derivatives of Ft and vt, which we can
evaluate analytically by an extra set of recursions that run in parallel with the Kalman
�lter. As Harvey (1989, pp 140-3) shows, the extra recursions are obtained by di¤erentiating
the Kalman �lter prediction and updating equations (34). In our continuous time models
the analytical derivatives of the Kalman �lter equations with respect to the structural
parameters require the derivatives of the exponential of a matrix, which we obtain using
the results in Chen and Zadrozny (2001).

D Additional details on the speci�cation test

As in the main text, we concentrate on the continuous-time model (10) in Example 1,
and assume that we want to compare the estimators obtained with weekly and bi-weekly
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data. For our purposes it is convenient to write the discretisation (27) in state-space form
as: �

pt;�
�st

�
=

�
1 0
0 1

��
�1t
�2t

�
; (35)�

�1t
�2t

�
=

�
e'11 0

'21
'11
(e'11 � 1) 0

��
�1t�1
�2t�1

�
+

 
�
(1)
1t

�
(1)
2t

!
: (36)

On this basis, we can use the Kalman �lter algorithm described in Appendix C to
obtain Gaussian pseudo ML estimators of the parameters of this model as the solution of
the sample versions of the following moment conditions:

E

"
@l(1)(y

(1)
t ;�)

@�0

#
= E

h
s(1)(y

(1)
t ;�)

i
= 0; (37)

where y(1)t = [pt;� ;�st]
0, l(1)(y(1)t ;�) is the log-likelihood contribution of y

(1)
t , � is the vector

of parameters of the continuous-time model (10), and the superscript (1) indicates that y(1)t
is an observation obtained at the highest available frequency. Analogously, we denote by
�(1) the value of � that solves (37).
Let us initially assume that we discard all even observations. Although we could use

(28) to compute the log likelihood function of such a bi-weekly sample, for our purposes
it is more convenient to use the approach in Mariano and Murasawa (2003), who treat
discarded observations as missing values. Speci�cally, we can construct a new series

y
(2)odd+
t = Dt � y(2)t + (1�Dt)z

even
t ;

where Dt is a dummy variable that takes the value of 1 when y
(2)
t = (pt;� ;�2st)

0 is
observed because t is an odd number, while zevent is a bivariate random vector drawn
from an independent arbitrary distribution that does not depend on �. Let us de�ne
y
(2)odd
T = (y

(2)
1 ; y

(2)
3 ; :::; y

(2)
T )

0 and y(2)odd+T = (y
(2)odd+
1 ; y

(2)odd+
2 ; :::; y

(2)odd+
T )0. Given that the

zevent �s are independent of y(2)oddT by construction, we can write the joint probability distri-
bution of y(2)odd+T as

f(y
(2)odd+
T ;�) = f(y

(2)odd
T ;�) �

Y
t:Dt=0

f(zevent ):

Thus, the likelihood function of � given y(2)oddT and the corresponding log likelihood
given y(2)odd+T are identical up to scale, so they will be maximized by the same value. The
main advantage of working with the augmented data series y(2)odd+T is that it no longer
contains missing observations.
It is then easy to derive a state space model for y(2)odd+t . In particular, the measurement

equation is: �
pt;�
�2st

�
=

�
Dt 0 0
0 Dt Dt

�0@ �1t
�2t
�2t�1

1A+ (1�Dt)z
even
t ; (38)
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while the transition equation will be:0@ �1t
�2t
�2t�1

1A =

0@ e'11 0 0 0
'21
'11
(e'11 � 1) 0 0 0

0 1 0 0

1A0@ �1t�1
�2t�1
�2t�2

1A+
0@ �

(1)
1t

�
(1)
2t

0

1A ; (39)

which can be understood as an augmented version of (36).
Once again, we can use the Kalman �lter to compute the log likelihood function of

this state space model. Similarly, Gaussian pseudo ML estimates of � based on the odd
observations will satisfy the sample analogues to the moment conditions:

E

"
@l(2)odd(y

(2)odd+
t ;�)

@�0

#
= E

h
s(2)odd(y

(2)odd+
t ;�)

i
= 0: (40)

Alternatively, we could discard the odd observations instead. A direct application of
the methods explained in the previous paragraphs leads to the alternative set of moment
conditions:

E

"
@l(2)even(y

(2)even+
t ;�)

@�0

#
= E

h
s(2)even(y

(2)even+
t ;�)

i
= 0: (41)

Given that the choice between even and odd observations is arbitrary, and that dis-
carding observations entails a loss of information, we combine (40) and (41) to obtain the
following set of moment conditions:

E
h
s(2)odd(y

(2)odd+
t ;�) + s(2)even(y

(2)even+
t ;�)

i
= E

h
s(2)(y

(2)
t ;�)

i
= 0: (42)

However, note that the moment conditions that de�ne the unconditional mean para-
meters �p and ��s are identical at both frequencies.

9 Therefore, we drop the moment
conditions that de�ne the unconditional means at the second frequency from the set of
moment conditions in (42) in order to avoid singularities. Finally, if we denote by �(2)

the value of � that solves (42) in the population, our testing methodology is equivalent to
checking whether �(1) = �(2).
In practice, we use the following procedure to estimate model (10) at the highest fre-

quency:

1. We estimate �(1)p and �(1)�s with the full sample means of the forward premium and
the expected rate of depreciation.

2. Then, we estimate the VAR(1) model

xt = Axt�1 + et E [ete
0
t] = 
:

9Note that we have that E (pt) = 0 implies that E [ptDt + pt(1�Dt)] = E (pt) = 0, while E (�st) = 0
implies that E [�2stDt +�2st(1�Dt)] = E (�st +�st�1) = 0, where, again, Dt is a dummy variable
that takes the value of 1 when t is an odd number.
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for xt = (pt;� ;�st)
0 where pt;� and �st are the demeaned forward premium and rate

of depreciation, respectively; and subject to the restrictions that a21 = a22 = 0.
In particular, note that (12) implies that A = e� and 
 =

R 1
0
e�r�e�

0rdr. Thus,
we recover the structural parameters in � and � from the restricted reduced form
parameters in the VAR(1) using the fact that:

'11 = log(a11)

'21 =
a21'11
e'11 � 1

g11 =
2'11!11
e2'11 � 1

g21 =
'11

e'11 � 1

�
!21 �

p
g11'21
2'211

(e'11 � 1)2
�

g22 = !22 �
p
g11'

2
21

2'311

�
2'11 + e2'11 � 4e'11 + 3

�
�
2
p
g11'21
'311

(e'11 � '11 � 1)

where !ij is the ij-th element of 
 and gij is the ij-th element of �:

3. However, the estimates obtained in the previous step only maximize the log-likelihood
function of the data conditional on the �rst observation. For that reason, we feed them
as initial values to the scoring algorithm that we use for the numerical maximization
of the Kalman �lter based exact log-likelihood of the model.

In contrast, to estimate the model at the lower frequency, we minimize the following
quadratic form: "

1

T

TX
t=1

s
(2)
t (�

(2))

#0
W�1

"
1

T

TX
t=1

s
(2)
t (�

(2))

#
;

where s(2)t (�
(2)) = s(2)(y

(2)
t ;�

(2)) is de�ned in equation (42). For the reasons explained
before, though, we exclude the scores corresponding to �(2), and set the mean parameters
to �̂(1). Since equation (42) exactly identi�es �(2), the above quadratic form will take the
value of zero at the optimum for any choice of the weighting matrixW. Still, we use the
estimated values of �(1) as starting values for this numerical optimization procedure, and
chooseW to be the Newey-West estimate of the long-run covariance matrix of the moment

conditions s(2)t (�) evaluated at �̂
(1)
.
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Table 1
Estimates of the continuous-time model in Example 1

Contract '11 '21 
11 
21 
22 �p ��s �
UK
4 weeks -0.015 -0.537 0.041 -0.110 1.367 -0.192 0.014 -2.084

(0.010) (0.199) (0.002) (0.038) (0.042) (0.086) (0.061) (0.780)
13 weeks -0.010 -0.206 0.095 -0.049 1.371 -0.582 0.019 -2.519

(0.008) (0.070) (0.004) (0.041) (0.042) (0.336) (0.079) (0.886)
26 weeks -0.009 -0.112 0.170 -0.054 1.370 -1.082 0.020 -2.605

(0.007) (0.037) (0.006) (0.054) (0.041) (0.648) (0.083) (0.934)
52 weeks -0.008 -0.063 0.297 -0.094 1.368 -1.960 0.021 -2.652

(0.007) (0.021) (0.011) (0.056) (0.041) (1.236) (0.089) (1.063)
Germany
4 weeks -0.006 -0.239 0.031 -0.206 1.461 0.269 0.034 -0.946

(0.005) (0.148) (0.002) (0.049) (0.033) (0.093) (0.046) (0.587)
13 weeks -0.006 -0.075 0.075 -0.175 1.466 0.384 0.026 -0.934

(0.004) (0.060) (0.004) (0.051) (0.033) (0.276) (0.045) (0.760)
26 weeks -0.005 -0.039 0.141 -0.154 1.468 0.783 0.026 -0.957

(0.003) (0.031) (0.008) (0.048) (0.033) (0.536) (0.045) (0.766)
52 weeks -0.005 -0.022 0.239 -0.184 1.465 1.595 0.026 -1.004

(0.002) (0.017) (0.013) (0.049) (0.032) (0.994) (0.046) (0.800)
Canada
4 weeks -0.026 -0.362 0.032 0.048 0.724 -0.065 -0.010 -1.375

(0.009) (0.139) (0.002) (0.022) (0.019) (0.031) (0.021) (0.529)
13 weeks -0.018 -0.128 0.076 0.075 0.722 -0.197 -0.010 -1.480

(0.006) (0.047) (0.004) (0.025) (0.019) (0.107) (0.022) (0.547)
26 weeks -0.015 -0.065 0.131 0.090 0.721 -0.375 -0.010 -1.384

(0.005) (0.024) (0.005) (0.022) (0.019) (0.216) (0.022) (0.531)
52 weeks -0.014 -0.037 0.221 0.087 0.721 -0.701 -0.011 -1.349

(0.004) (0.013) (0.008) (0.021) (0.019) (0.395) (0.022) (0.502)

Note: Robust standard errors in parenthesis. Sample Period: January 1977 to
December 2005; 1,513 weekly observations.



Table 2
Speci�cation tests

� = 4 weeks � = 13 weeks � = 26 weeks � = 52 weeks
UK
�(1) � �(4) 0.033 -0.192 -0.299 -0.354
NW [0.918] [0.596] [0.436] [0.442]
EHS [0.774] [0.165] [0.079] [0.007]
AIC [0.878] [0.230] [0.061] [0.019]
BIC [0.816] [0.244] [0.088] [0.114]
Germany
�(1) � �(4) 0.029 -0.088 -0.096 -0.060
NW [0.901] [0.778] [0.757] [0.852]
EHS [0.739] [0.378] [0.365] [0.522]
AIC [0.643] [0.869] [0.465] [0.620]
BIC [0.878] [0.419] [0.333] [0.514]
Canada
�(1) � �(4) -0.303 -0.297 -0.186 -0.119
NW [0.144] [0.173] [0.378] [0.555]
EHS [0.034] [0.006] [0.021] [0.084]
AIC [0.031] [0.533] [0.494] [0.213]
BIC [0.002] [0.030] [0.111] [0.161]

Note: p-values of the null hypothesis H0 : �(1) � �(4) = 0 are presented in square
brackets. Sample Period: January 1977 to December 2005; 1,513 weekly observations.



Table 3
Estimates of the continuous-time model in Example 2

Contract �11 �21 �12 �22 �11 �21 �22 �1 �2 �p ��s �
UK
52 -0.055 -0.014 -0.728 -0.260 0.283 -0.055 -0.002 -0.076 1.368 -1.862 0.015 -2.077

(0.047) (0.014) (0.698) (0.231) (0.013) (0.038) (0.011) (0.059) (0.040) (0.839) (0.063) (0.998)
Canada
4 -0.034 -0.029 -0.021 -0.289 0.032 -0.057 -0.031 0.064 0.736 -0.065 -0.009 -1.094

(0.012) (0.063) (0.024) (0.211) (0.002) (0.027) (0.025) (0.025) (0.023) (0.029) (0.017) (0.465)
13 -0.024 -0.012 -0.050 -0.280 0.075 -0.059 -0.032 0.094 0.734 -0.198 -0.009 -0.837

(0.008) (0.019) (0.053) (0.176) (0.004) (0.025) (0.024) (0.027) (0.023) (0.099) (0.017) (0.497)
26 -0.007 -0.001 0.122 -0.119 0.132 -0.037 0.008 0.097 0.715 -0.381 -0.008 -0.669

(0.007) (0.005) (0.091) (0.080) (0.005) (0.013) (0.011) (0.023) (0.020) (0.282) (0.022) (0.642)

Note: Robust standard errors in parenthesis. Sample Period: January 1977 to December 2005; 1,513 weekly obser-
vations.



Table 4
Comparison of UIP tests: implicit betas

NW EHS AIC BIC VAR(1) VAR(4) OU(1) OU(2)
UK
� = 4 weeks -2.071 -2.071 -2.071 -2.071 -2.002 -2.107 -2.084

(0.858) (0.714) (0.965) (1.031) (0.790) (0.836) (0.780)
[0.000] [0.000] [0.001] [0.003] [0.000] [0.000] [0.000]

� = 13 weeks -2.155 -2.155 -2.155 -2.155 -2.401 -2.172 -2.519
(0.904) (1.336) (0.962) (1.575) (0.873) (0.934) (0.886)
[0.000] [0.018] [0.001] [0.045] [0.000] [0.001] [0.000]

� = 26 weeks -2.051 -2.051 -2.051 -2.051 -2.407 -2.042 -2.605
(0.760) (1.420) (1.229) (1.446) (0.884) (0.938) (0.934)
[0.000] [0.032] [0.013] [0.035] [0.001] [0.001] [0.000]

� = 52 weeks -1.507 -1.507 -1.507 -1.507 -2.257 -1.989 -2.652 -2.077
(0.578) (1.448) (0.937) (1.595) (0.894) (0.919) (1.063) (0.998)
[0.000] [0.083] [0.007] [0.116] [0.000] [0.001] [0.001] [0.002]

Germany
� = 4 weeks -0.988 -0.988 -0.988 -0.988 -0.950 -0.996 -0.946

(0.572) (0.316) (0.597) (0.637) (0.602) (0.627) (0.587)
[0.001] [0.000] [0.001] [0.002] [0.001] [0.001] [0.001]

� = 13 weeks -0.785 -0.785 -0.785 -0.785 -0.946 -0.699 -0.934
(0.623) (0.896) (0.626) (1.109) (0.780) (0.827) (0.760)
[0.004] [0.046] [0.004] [0.108] [0.013] [0.040] [0.011]

� = 26 weeks -0.911 -0.911 -0.911 -0.911 -0.971 -0.697 -0.957
(0.488) (0.888) (0.873) (0.964) (0.790) (0.835) (0.766)
[0.000] [0.031] [0.029] [0.047] [0.013] [0.042] [0.011]

� = 52 weeks -0.756 -0.756 -0.756 -0.756 -1.029 -0.823 -1.004
(0.383) (1.492) (0.942) (1.039) (0.834) (0.880) (0.800)
[0.000] [0.239] [0.062] [0.091] [0.015] [0.038] [0.012]

Canada
� = 4 weeks -1.081 -1.081 -1.081 -1.081 -1.364 -1.119 -1.375 -1.094

(0.354) (0.416) (0.320) (0.323) (0.499) (0.508) (0.529) (0.465)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

� = 13 weeks -0.842 -0.842 -0.842 -0.842 -1.460 -0.940 -1.480 -0.837
(0.346) (0.402) (0.395) (0.489) (0.514) (0.546) (0.547) (0.497)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

� = 26 weeks -0.746 -0.746 -0.746 -0.746 -1.358 -0.983 -1.384 -0.669
(0.287) (0.474) (0.582) (0.490) (0.496) (0.527) (0.531) (0.642)
[0.000] [0.000] [0.003] [0.000] [0.000] [0.000] [0.000] [0.009]

� = 52 weeks -0.976 -0.976 -0.976 -0.976 -1.317 -1.072 -1.349
(0.282) (1.004) (0.632) (0.615) (0.463) (0.518) (0.502)
[0.000] [0.049] [0.002] [0.001] [0.000] [0.000] [0.000]

Note: Robust standard errors in parenthesis. p-values for the null hypothesis H0 :
� = 1 are provided in square brackets. Sample Period: January 1977 to December 2005;
1,513 weekly observations.
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Figure 1: P-value discrepancy plot for UIP test β =1
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Figure 2: Size-adjusted power for UIP test β =1
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Figure 3: P-value discrepancy plot for specification test β(1)=β(4)
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Figure 4: Size-adjusted power for specification test β(1)=β(4)
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