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Abstract

We present a new matrix-logarithm model of the realized covariance matrix of stock returns. The

model uses latent factors which are functions of both lagged volatility and returns. The model has

several advantages: it is parsimonious; it does not require imposing parameter restrictions; and, it

results in a positive-definite covariance matrix. We apply the model to the covariance matrix of

size-sorted stock returns and find that two factors are sufficient to capture most of the dynamics.

We also introduce a new method to track an index using our model of the realized volatility

covariance matrix.

JEL classification: G14, C53, C32
Bank classification: Econometric and statistical methods; Financial markets

Résumé

Les auteurs présentent un nouveau modèle de la matrice des covariances réalisées des rendements

boursiers dans lequel la matrice est exprimée sous forme logarithmique et les facteurs latents sont

fonction à la fois de la volatilité passée et des rendements historiques. Le modèle offre plusieurs

avantages : il est parcimonieux, il ne nécessite pas l’imposition de restrictions sur les paramètres

et il produit une matrice des covariances définie positive. L’application du modèle à la prévision

de la matrice des covariances des rendements classés selon la taille de l’entreprise fait ressortir

que deux facteurs suffisent pour rendre compte de l’essentiel de la dynamique. Les auteurs

proposent aussi une méthode permettant de reproduire l’évolution d’un indice à l’aide de leur

modèle de la matrice des covariances réalisées.

Classification JEL : G14, C53, C32
Classification de la Banque : Méthodes économétriques et statistiques; Marchés financiers



1 Introduction

The covariance matrix of stock returns resides at the center of a number of important
concepts in financial economics. The covariance of a stock’s return with other stocks
forms the basis of the CAPM and other asset pricing models. The covariance matrix is
used in designing tracking strategies, where the portfolio manager attempts to closely
follow the return on a benchmark portfolio. The matrix is also used for risk management
measures such as Value at Risk. An assessment of market stability and contagion depends
on measuring time-varying volatilities and correlations. Finally, accurate measures of
covariances are required for corporate hedging strategies.
One key stylized fact in empirical finance is that the variances and covariances of

stock returns vary over time.1 As a result, many important financial applications require
a model of the conditional covariance matrix. Three distinct categories of methods for
estimating a conditional covariance matrix have evolved in the literature. In the first, and
probably best known category, are the various forms of the multivariate GARCH model
where forecasts of future volatility depend on past volatility and shocks.2 In the second
category, authors have modeled asset return variances and covariances as functions of a
number of predetermined variables.3 The third category includes multivariate stochastic
volatility models.4

Existing approaches to modeling the conditional covariance matrix suffer from three
primary limitations. First, in the extant models, the covariances of asset returns are
treated as an unobserved or latent process. However, the availability of high-frequency
data has spawned the use of ‘realized volatility’ modeling, allowing more precise estimates
of the volatility process to be constructed.5 While the majority of the existing papers have
focused on estimates of an individual realized volatility series, we investigate methods for
analyzing the realized conditional covariance matrix. Second, the existing approaches
to modeling multivariate latent volatility require a number of restrictions on the model’s
parameters to ensure that the estimated covariance matrix is positive definite. These

1 For a very comprehensive survey of the literature on volatility modeling and forecasting, see
Andersen et al. (2005b).

2 See Bauwens et al. (2004) for a recent survey of this literature.
3 Examples include Campbell (1987) and Harvey (1989). See Ferson (1995) for a survey of this

literature.
4 Asai et al. (2005) survey the multivariate stochastic volatility literature.
5 Using daily data to construct estimates of monthly volatility originated with French, Schwert and

Stambaugh (1989), and Schwert (1989, 1990). Andersen and Bollerslev (1998) introduced the idea of
using microstructure data to construct estimates of daily ‘realized volatility’. Andersen et al. (2003)
formalized the definition which was applied to equity markets in Andersen et al. (2001) and exchange
rates in Andersen et al. (2001).
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restrictions may confound accurate estimates of the drivers of conditional covariances.
Third, the existing approaches model volatility either as a function of past volatility or
as a function of a number of predetermined variables. Yet, the conditional covariance
matrix may be a function of both.
In this paper, we introduce a new model of the realized covariance matrix that over-

comes these three limitations. Regarding problem one, unobservability, we use high-
frequency data to construct estimates of the daily variances and covariances of five size-
sorted stock portfolios. By using high-frequency data we obtain an estimate of the matrix
of ‘quadratic variations and covariations’ that differs from the true conditional covariance
matrix by mean zero errors (e.g. Andersen et al. (2001), (2003)). Thus, we can treat
our conditional covariance matrix not as latent, but observed. This implies that very
accurate estimates of the factors driving the conditional covariances can be found.
We overcome problem two, cumbersome parameter restrictions to ensure a positive

definite covariance matrix, by transforming the realized covariance matrix using the ma-
trix logarithm function to yield a series of transformed volatilities which we term the
log-space volatilities. The matrix logarithm is a non-linear function of all of the elements
of the covariance matrix and thus, the log-space volatilities do not correspond one-to-one
with their counterparts in the realized covariance matrix.6 However, modelling the time
variation of the log-space volatilities is straightforward and avoids the problems that
plague existing estimators of the latent volatility matrix.
We eliminate problem three by modelling the dynamics of the log-space volatility

matrix using functions of both past volatilities and other factors that can help forecast
future volatility. The model is estimated by Generalized Method of Moments (GMM)
yielding a series of fitted values. We then transform these fitted values, using the matrix
exponential function, back into forecasts of the realized covariance matrix. Our estimated
matrix is positive definite by construction and does not require any parameter restrictions
to be imposed. The approach can thus be viewed as a multivariate version of standard
stochastic variance models, where the variance is an exponential function of the factors
and the associated parameters.
In addition to introducing our new realized covariance matrix we also test the fore-

casting ability of alternative variables for time-varying equity market covariances. Our
motivation is that researchers have examined a number of variables for forecasting re-
turns but there is much less evidence that the variables forecast risks. The cross-section
of small- and large-firm volatility has been examined in a number of earlier papers (Con-

6 The matrix logarithm has been used for estimators of latent volatility by Chiu, Leonard and Tsui
(1996) and Kawakatsu (2003) and was also suggested in Asai et al. (2005). However, to the best of our
knowledge, we are the first to use it for realized covariance modeling.
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rad, Gultekin and Kaul (1991), Kroner and Ng (1998), Chan, Karceski and Lakonishok
(1999), and Moskowitz (2003)). However, these papers used models of latent volatility
to capture the variation in the covariances.7 In contrast, we use quote-by-quote data
to construct daily measures of the realized covariance matrix of small and large firms
over the 1988 to 2002 period. Our measures of volatility are more precise than those in
previous work and allow a detailed examination of the drivers of conditional covariances.
We use three sets of forecasting variables from the existing literature to capture

movements in the covariance matrix. The first set contains lagged realized variances and
covariances only. Following Corsi (2004) and Andersen, Bollerslev and Diebold (2003),
we use past weekly and monthly realized volatilities in a Heterogeneous Autoregressive
model of realized volatility (HAR-RV). We implement a multivariate version of their
model by using our matrix-logarithm transformation and by estimating latent volatility
factors. Our factor model can thus be viewed as a multivariate HAR model of realized
volatility (MHAR-RV).
The second set of forecasting variables adds lagged stock returns to the first set.

The asymmetric relationship between realized returns and subsequent equity market
volatility is well documented (Black (1976), Pagan and Schwert (1990), Engle and Ng
(1993), Bollerslev, Litvinova and Tauchen (2005)) and is easily handled in our model.8

The third set of forecasting variables uses the ‘usual suspects’ that have been shown to
have predictive power for equity market returns (e.g., dividend yields, term structure
slopes, etc.). We add to that literature by showing that these variables have predictive
power for conditional volatilities.9

We evaluate our models of the conditional covariance matrix in two ways. The first
is a set of standard econometric tests of the fit of the log-space and actual volatilities.

7 Schwert and Seguin (1990) use daily return data to construct measures of monthly stock volatility.
They find that a single index model describes the cross section of volatility in contrast to the multi-factor
model found here.

8 A few papers have analyzed the asymmetric relationship in a multivariate setting. Conrad, Gul-
tekin and Kaul (1991) present a new GARCH model and show that surprises to large firm returns have
an effect on small firm volatility but the reverse is not true. Kroner and Ng (1998) also introduce a
new GARCH model of latent volatility and find that negative large firm returns affect future small-firm
volatility. Chan, Karceski and Lakonishok (1999) and Moskowitz (2003) examine whether the Fama and
French (1992) size factor can capture the cross section of stock volatility.

9 A number of papers have examined market volatility and its relationship to various forecasting
variables. Schwert (1989) examines the ability of several financial and macroeconomic factors to forecast
monthly volatility over the 1859 to 1987 period. Attanasio (1991) examines the relationship between
dividend yield and market volatility. Glosten, Jagannathan, and Runkle (1993) use the one-month
Treasury bill yield in an augmented GARCH model. Whitelaw (1994) examines how the yield spread
(Baa-Aaa rated), commercial paper-Treasury yield spread, one year Treasury yield and S&P dividend
yield forecast monthly measures of volatility based on daily returns. Shanken and Tamayo (2004) present
a Bayesian analysis of the effects of dividend yields on latent volatility.
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The second is to analyze the dynamics of the global minimum variance portfolio and a
tracking error portfolio. The portfolio analysis provides an economic comparison across
alternative specifications and reveals interesting differences among the variables used. In
fact, our tests suggest that including variables that forecast stock returns, along with
lagged volatility factors, produce portfolios with superior performance.
Our method of estimating the conditional realized covariance matrix has a number

of advantages when compared to existing approaches. First, standard GARCH type
models of latent volatility can yield volatility estimates that are quite noisy (Andersen
and Bollerslev (1998)). Our estimator is based on realized volatility constructed using
high-frequency data. Thus, our measures of equity market variances and covariances
are more precise. This allows us greater power in determining the effects of alternative
forecasting variables on equity market volatility when compared to earlier efforts based
on latent volatility models.
Second, existing models require numerous constraints on the parameters to yield a

positive-definite covariance matrix. However, the constrained values of the parameters
may not reveal the true influence of the forecasting variables. In contrast, we do not
impose any constraints on our estimates of the log-space volatilities. Using the matrix
exponential function results in estimates of the covariance matrix that are positive semi-
definite by construction.
Third, most existing models require a large number of parameters to be estimated,

making practical implementation difficult. By applying a factor approach to the log-space
volatilities, we are able to model the conditional covariance matrix using a relatively small
number of variables. Below, we show that two factors can capture the volatility dynamics
of the size-sorted portfolios.10

Fourth, existing studies have usually taken two extreme approaches to modeling
volatility. The first approach focuses on the autoregressive nature of volatility via ARCH
and GARCH type effects and usually ignores the effect of other forecasting variables.
The second ignores the autoregressive nature of volatility and uses variables from the
expected return forecasting literature to capture time variation in volatilities. In our
approach, we can easily incorporate both sources of dynamics into our estimates.
The final advantage of our model is its ability to characterize the volatility of volatility.

A number of authors have noted that volatility process itself depends on the level of
volatility in the market. For example, both Das and Sundaram (1999) and Jones (2003)
show that the levels of skewness and kurtosis displayed by equity index data are both
functions of the level of volatility in the stock market. However, to the best of our

10 In addition, the factor structure allows us to capture the long-memory property of realized volatil-
ity measure. We return to the issue of modeling long memory in volatility below.
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knowledge, no one has yet determined the economic variables that cause volatility to be
volatile. Using our factor model estimates, we can obtain the derivatives of the realized
covariance matrix with respect to the variables in the model.11 We are able to calculate
the derivatives at each point in our sample, yielding a series of conditional volatility
elasticities that are functions of both the level of the volatility and the factors driving
the volatility. This time series allows us to characterize the time-varying elasticities of
expected volatility with respect to its underlying factors.
Naturally all of these advantages come at a cost. The main cost is that by performing

our analysis on the log-space volatilities and then using the (non-linear) matrix expo-
nential function, the estimated volatilities will not be unbiased.12 However, as we show
below, a simple bias correction is available that greatly reduces the problem. Another
cost is that direct interpretation of the effects of an instrument on expected volatility is
difficult due to the non-linear nature of the model. However, the volatility elasticities
show the ultimate impact of any variable of interest.
Our paper is part of the growing literature examining the dynamics of realized volatil-

ity. Most of these papers look at the volatility of a single series. Andersen et al. (2001)
construct multivariate measures of realized volatility in two foreign exchange rate markets
as well as in the “cross market.” They are able to model a conditional covariance matrix
by relying on the triangular arbitrage between three spot exchange rates. We note that
this approach would not work for general assets whose spot market prices are not con-
strained by arbitrage relationships such as the stock market portfolios that we examine.
Andersen et al. (2004) construct quarterly estimates of realized variances, covariances
and stock-market betas using daily data. They focus on the time-series predictability of
betas for individual firms.
The paper is organized as follows. In section 2, we present our model of matrix

logarithmic realized volatility. In section 3, we outline our method for constructing the
realized volatility matrices and give the sources of the data. In section 4, we give our
results. In section 5, we evaluate the alternative models using the global minimum
variance and tracking error portfolios criteria. In section 6, we conclude.

11 The derivatives are based on calculations presented in Najfeld and Havel (1995) and Mathias
(1996).
12 However, any univariate estimator that models log volatility will produce biased estimates of

volatility in the real space.
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2 Model

2.1 The matrix log transformation

In this paper, we use the matrix exponential and matrix logarithm functions to model
the time-varying covariance matrix. The matrix exponential function performs a power
series expansion on a square matrix A

V = expm(A) ≡
∞P
n=0

1

n!
An. (1)

The matrix exponential function has a number of useful properties (Chiu, Leonard and
Tsui (1996)).13 The most important of these is that if A is a real, symmetric matrix,
then V is a real, positive definite matrix. The converse is also true and describes one of
the useful properties of the matrix logarithm function. The matrix logarithm function
is the inverse of the matrix exponential function. Taking the matrix logarithm of a real,
positive definite matrix V results in a real, symmetric matrix A:

A = logm(V ).

The matrix logarithm and matrix exponential functions are used in our three-step
procedure to obtain forecasts of the conditional covariance matrix of stock returns. In
the first step, for each day t, we use high-frequency (quote-by-quote) data to construct
the P × P realized conditional covariance matrix Vt.14 The Vt matrix is positive definite
by construction. Applying the matrix logarithm function,

At = logm(Vt), (2)

yields a real, symmetric P × P matrix At. We term the elements of At the “log-space
volatilities” and note that the elements of At do not correspond one-to-one with the
elements of Vt. Thus, for example, the (1, 1) element of At is not the log volatility of the
first portfolio.
In the second step, we model the dynamics of the At matrix. To do this, we follow

Chiu, Leonard and Tsui (1996) and apply the vech operator to the matrix At

at = vech(At),

which stacks the elements on and below the diagonal of At to obtain the p× 1 vector at,
where p = 1

2
P (P + 1). We note at contains all of the unique elements of the symmetric

At matrix.
13 The matrix exponential function has a long history in physics (e.g., Thompson (1965)) and has

recently been used in modeling spatially dependent data by LeSage and Pace (2003).
14 The details of how the matrix is constructed are presented below.
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The at vector forms the basis for all subsequent models. For example, to model
time-varying volatilities based on their past values, we could estimate a simple first-order
vector auto-regression of the at processes:

at = γ0 + γ1at−1 + εt, (3)

where γ0 is a p × 1 vector of intercepts, γ1 is a p × p matrix of coefficients, and εt is a
vector of residuals. This model would yield a series of fitted values

bat ≡ Et(at) = bγ0 + bγ1at−1.
Below, we present a factor model for the at processes which has a much smaller number
of parameters to be estimated and allows other variables to forecast volatility.
In the third step, we transform the fitted values from the log-volatility space into

fitted values in the actual volatility space. We use the inverse of the vech function to
form a P × P symmetric matrix bAt of the fitted values at each time t from the vectorbat. Applying the matrix exponential functionbVt = expm( bAt), (4)

yields the matrix bVt, which is our estimate of the conditional covariance matrix for day
t. We note that as long as the elements of bAt are real, then bVt is positive definite by
construction (Chiu, Leonard and Tsui (1996)).

2.2 A small example

A small example adapted fromWilliams (1999) can help clarify how our matrix logarithm
model works. Suppose that the time-varying volatility matrix for two assets has the form

Vt =

·
1 ρt
ρt 1

¸
, (5)

so that the volatilities are constant but the correlation is time varying. As Vt is a positive-
definite, symmetric matrix then there exists matrices Bt and Dt such that Vt = BtDtB

T
t .

Bt is an orthonormal 2 × 2 matrix with the eigenvectors of Vt in its columns, while Dt

is a diagonal matrix with the eigenvalues on its diagonal. Then, by the properties of the
matrix logarithm function, we have

At = logm(Vt) = Bt log(Dt)B
0
t.

The matrix logarithm function takes the log of the eigenvalues of the matrix while leaving
the eigenvectors intact.15

15 Chiu, Leonard and Tsui (1996) discuss a number of properties of matrix logarithm function.
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Taking the matrix logarithm of our simple example (5) yields

At = logm(Vt) =
1

2

"
log(1− ρ2t ) log(1+ρt

1−ρt )
log(1+ρt

1−ρt ) log(1− ρ2t )

#
.

Estimation of the time-series process of at =
n
0.5 log(1− ρ2t ), 0.5 log(

1+ρt
1−ρt )

o
proceeds

with no need for parameter restrictions on the user specified model. Using the fitted
values from the estimation, we can form the matrix

bAt =
1

2

 \log(1− ρ2t )
\log(1+ρt

1−ρt )
\log(1+ρt

1−ρt )
\log(1− ρ2t )

 . (6)

Taking the matrix exponential of (6) yields the estimate of bVt. We note that restrictions
on the parameters are not required except that the elements of bAt must be real. Given
this, the resulting bVt matrix is positive definite.
2.3 Factor models of volatility

As mentioned above, we will use several different groups of variables to forecast the
conditional covariances. Based on the existing literature, we can separate the variables
into two groups. The first are matrix-log values of realized volatility (at, at−1, at−2, ...)
which are used to capture the autoregressive nature of the volatility. We note that the
existing literature shows that capturing volatility dynamics will likely require a long lag
structure. The second group are those variables that have been shown to forecast equity
market returns, Xt. In equilibrium, expected returns should be related to risk, so it
is natural to question whether these variables also forecast the components of market
wide volatility. We denote the augmented matrix of the forecasting variables as Zt =

(at, at−1, at−2, ... Xt) and note that Zt will differ depending on the information set chosen.
The simplest approach to modeling variation in the log-space transformation of the

conditional covariance matrix is then

at = γ0 + γ1at−1 + γ2at−2 + ...+ γkat−L + γXXt−1 + εt, (7)

where log-space volatility is modeled as a function of L lags of volatility plus the prede-
termined forecast variables. In this specification, there are a large number of parameters
in the γ1, ..., γL and γX matrixes: L · p2 in the former and p ·M , where M is the number
of variables in Xt−1, in the latter.16 It would be preferable to adopt a specification with

16 For example, to model the 5 × 5 matrix Vt of the size sorted-stock portfolios would require 15
parameters in γ0, 225 = 15

2 parameters in each of the γL, and 15·M parameters in γX .
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fewer parameters, ceterus paribus. To do this, we use a sequence of three dimension
reduction techniques.
The first technique is designed to reduce the number of lagged log-space volatil-

ity variables by adapting the Heterogeneous Autoregressive model of realized volatility
(HAR-RV) of Corsi (2004) and Andersen, Bollerslev and Diebold (2003) to a multi-
variate setting. These authors show that aggregate market realized volatility is best
forecast by a (linear) combination of lagged daily, weekly and monthly realized volatility.
Other authors have indicated that lagged realized volatility may not be the best predic-
tor, however. In particular, both Andersen, Bollerslev and Diebold (2003) and Ghysels,
Santa-Clara and Valkanov (2004b) find that bi-power covariation — an estimate of the
continuous part of the volatility diffusion that is defined below — is a good predictor of
aggregate market realized volatility.17

Following the approaches in these papers, we construct daily, weekly and monthly
multivariate bi-power covariation as summary measures of lagged volatility (details be-
low). As in (2) above, we take the matrix logarithm of the bi-power covariation matrix
over the past d days to yield ABP (d)t. Taking the vech of this matrix yields the unique
elements aBP (d)t, which can act as forecasting variables. We can then replace the large
number of lagged log-space volatilities at−1, ..., at−k on the right hand side of (7) to yield:

at = γ0 + γ1a
BP (1)t−1 + γ5a

BP (5)t−1 + γ20a
BP (20)t−1 + γXXt−1 + εt, (8)

where aBP (1)t, a
BP (5)t, and aBP (20)t are the matrix-logarithms of daily, weekly and

monthly multivariate bi-power covariation, respectively. This specification reduces the
number of parameters from (7) by (L− 3) · p2.18 Our approach (8) can be viewed as a
multivariate approach to the HAR-RV model.
While multivariate HAR-RV approach reduces the number of parameters consider-

ably, there is still a large number of variables in the p×p matrixes aBP (d)t. While the Vt
matrix is full rank, it is likely that the volatilities, and hence the bi-power covariation, are
driven by a smaller number of components. Our second dimension reduction technique
is thus based on the (testable) hypothesis that the aBP (d)t series are driven by a smaller
number of factors. We test this by estimating the principal components of aBP (d)t,

aBP (d, i), i = 1, ..., pc, (9)

17 Andersen, Bollerslev and Diebold (2003) also find that jumps help predict future volatility. We
have tried some preliminary analysis using multivariate jumps and find that while they are statistically
significant predictors of future daily volatility, they have little explanatory power.
18 The reduction in parameters is quite large considering p2 = 225 and a large number of k potential

lags.
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where aBP (d, i) is the ith principal component of the d-day log-space bi-power covariation
matrix. We find that a small number of components capture the volatility of the daily,
weekly and monthly log-space bi-power covariation series (results below). We replace
these variables in (8) with a small number of their principal components (9) to yield:

at = γ0 + γ1,1a
BP (1, 1)t−1 + γ1,2a

BP (1, 2)t−1 + γ5,1a
BP (5, 1)t−1 (10)

+γ5,2a
BP (5, 2)t−1 + γ20,1a

BP (20, 1)t−1 + γ20,2a
BP (20, 2)t−1 + ...+ γXXt−1 + εt.

Although this specification appears complicated, it reduces the number of parameters
dramatically as we have replaced the aBP (d)t matrixes (each of which is p×p) with their
aBP (d, i)t counterparts (each of which is p × 1).19 In our models below, we find that
including a small number of principal components (pc < p) is sufficient to model the
realized covariance matrix.
The first two techniques considerably reduce the number of parameters required to

estimate the effects of lagged volatility on future volatility. However, there will still be
a large number of parameters associated with the combined

£
γ1,1, ..., γ5,1, ..., γ20,1, ..., γX

¤
matrix. The third dimension reduction technique is to use a latent factor approach where
the factors that drive the time-varying volatility are not specified directly. Rather, we
assume that our set of forecasting variables in (10)

Zt = (a
BP (1, 1)t, ..., a

BP (5, 1)t, ..., a
BP (20, 1)t, ...,Xt),

is related to the true, but unknown, volatility factors. We thus specify the k-th volatility
factor υk,t as a linear combination of the set of N variables Zt:

υk,t = θkZt−1, (11)

where the θk = {θk,(1), ..., θk,(N)} are coefficients that aggregate the forecasting variables
in Zt. Each of the log-space volatilities ait is a function of the K volatility factors:

ait = γi0 + βiθZt−1 + εit, i = 1, ..., p,

where γi0 is the ith element of the intercept vector γ0, β
i is the 1 × K vector of the

loadings of log-space volatility i on the K factors, and the K × Nθ matrix contains
the coefficients on the Zt−1 variables for the K factors. Assembling the model for all p
log-space volatilities yields

at = γ0 + βθZt−1 + εt, (12)

19 The γd,i parameters in (10) are each p× 1, while the γd coefficinet matrixes in (8) are each p× p.
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where the p × K matrix β is the loading of the log-space volatilities on the time-varying
factors.
We note that using latent factors to model covariance matrixes have a number of

advantages over existing methods. First, it allows us to combine both lagged volatility
measures (the principal components in (9)) as well as the Xt variables in a parsimonious
manner. Previous models required each variable to be a separate factor. While the
large number of variables may help forecast the covariance matrix, it is unlikely that
each variable represents a specific volatility factor.20 Our approach can be used to weigh
(via the θ coefficients) all of the variables in a way that is optimal for forecasting the
covariance matrix.
A second advantage to our approach is that it avoids using expected returns in mod-

eling the volatility matrix. Aggregating squared return or bi-power covariation data over
high frequencies means that expected return variation can be ignored. Thus, we do
not need to rely on expected returns to obtain the loadings on the factors as in Chan,
Karceski and Lakonishok (1999) or Moskowitz (2003). As the realized covariance ma-
trix can be estimated more precisely than can expected returns, we should obtain more
precise measures of the determinants of the covariance matrix.
The third advantage is parsimony. For example, assume that we require 20 lags of

daily log-space bi-power covariation plus 5 forecasting variables inXt to capture volatility
dynamics in our 5×5 volatility matrix. The number of parameters in the base line model
(7) would be 4, 590 while a K = 2 factor version of (12) using the first three principal
components of the log-space bi-power covariation matrixes (for d = 1, 5 and 20 days) has
only 69. The small number of parameters in the factor model helps in estimating and
interpreting the model in-sample and should help in out-of-sample forecasting.
Our approach using latent factors to model volatility dynamics is related to previous

work. Diebold and Nerlove (1989) propose a factor ARCH model of the cross section
of exchange rate changes. In their model, a single (latent) factor captures the common
variation in the three exchange rates.21 In addition, a number of papers have suggested
that two or more factors are necessary to capture the dynamics of a single latent volatility
series. Ding and Granger (1996) propose an N component model to capture the long
memory in stock and foreign exchange volatility. They need to let N get very large
to capture the long-run properties. Engle and Lee (1999) suggest that two factors are
necessary to capture the dynamics of stock return volatility. One factor is very long lived
while the other is a more quickly mean-reverting short-term factor. Gallant, Hsu and

20 For example, Chan, Karceski and Lakonishok (1999) find little difference between the forecasting
ability of volatility models with 3 and10 factors.
21 See also King, Sentana and Wadhwani (1994) and Harvey, Ruiz and Shephard (1994).
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Tauchen (1999) estimate a two factor model of volatility using the daily range to capture
volatility dynamics. They also find both a long-run and short-run volatility component.
Andersen and Bollerslev (1997) show that foreign exchange volatility can be modeled by
a mixture process, where the short-run volatility dynamics are driven by “news”.

2.4 Estimation

Our multivariate factor model is derived from the latent factor models of expected re-
turn variation that originated with Hansen and Hodrick (1983) and Gibbons and Ferson
(1985). As in these papers, we estimate our factor model of volatility in (12) by GMM
with the Newey-West (1987) form of the optimal weighting matrix.22 In its present form,
(12) is unidentified due to the βθ combination. We thus impose the standard identi-
fication that the first K rows of the matrix β are equal to an identity matrix. The
cross-equation restrictions imposed on (10):

H0:
£
γ1,1, ..., γ5,1, ..., γ20,1, ..., γX

¤
= βθ (13)

can then be tested using the standard χ2 test statistic from a GMM system.
Our model has a potential errors-in-variables problem as the log-space bi-power co-

variation matrix ABP (d)t is constructed with error. Using its principal components as
regressors will result in biased estimates of the coefficients. Ghysels and Jacquier (2005)
have noted a similar problem with estimates of time-varying beta coefficients for portfolio
selection. They advocate using lagged values of the betas in an instrumental variables
regression to overcome the biases. We follow that approach here and use the twice lagged
values of the principal components in the GMM instrument set.
Once the coefficients have been estimated by GMM, the fitted values are reassembled

into a square matrix bAt. Applying the matrix exponential function as in (4) yields the
prediction for the covariance matrix in period t,

bVt = expm³ bAt

´
. (14)

We can then apply standard forecasting evaluation techniques to compare bVt to Vt.
Our bVt estimator will be biased as the estimation is done in the log-volatility space.

We correct for this bias with a simple fix that is discussed in the appendix.

22 We use 5 lags in the Newey-West standard errors to account for any autocorrelation in the resid-
uals. The results are robust to this choice.
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2.5 Interpreting expected volatility

The matrix logarithmic volatility model has the disadvantage that the estimated coeffi-
cients cannot be interpreted directly as the effect of the variable on the specified element
of the realized volatility. This results from the non-linear relationship between particular
elements of bVt and bAt. However, derivatives of the estimated covariance matrix bVt with
respect to the elements of the factor model can be easily obtained (Najfeld and Havel
1995 and Mathias 1996).
Let bA (z) be the P ×P expected conditional covariance matrix from the third step (4)

of our estimation procedure, where we consider the matrix to be a function of a particular
forecasting variable, say z ∈ Z. The matrix of the element-by-element derivatives of bA (z)
with respect to z, dA(z)

dz
, is calculated using the estimated coefficients from our factor

model (12). The P × P matrix of the derivatives of the actual volatilities with respect
to z,

d

dz
bV (z) = d

dz
expm

³ bA (z)´ ,
can be extracted from the upper P × P right block of the following 2P × 2P matrix: expm³ bA (z)´ d

dz
expm

³ bA (z)´
0 expm

³ bA (z)´
 = expm" bA (z) dA(z)

dz

0 bA (z)
#
, (15)

where 0 represents a P × P matrix of zeros. Equation (15) allows the observation and
interpretation of the impact of the forecasting variables on the realized covariance matrix,
even though the estimation occurs in the matrix-log space.
We can calculate either the average impact across the entire sample, or the conditional

impact at a point in time. For example, let bAt(zt) be the estimated realized log-space
volatilities for day t. To find the response of the expected covariance matrix to the
forecasting variable zt, we need to calculate the derivative d

d(zt)
expm

³cAt (zt)
´
. Given

our two-factor structure as defined in (12), we can represent bAt as functions of both
parameters as well as variables, and the matrix of element-by-element derivatives, dAt(zt)

d(zt)
,

is easily obtained. Plugging dAt(zt)
d(zt)

into (15) yields the matrix dVt(zt)
d(zt)

. We can then
calculate the time-varying elasticity

� (i, j, z, t) ≡ dbV (i,j)
t (zt)

d (zt)

σ (zt)bVt(i,j) , (16)

which represents the percent increase in the (i, j)th element of bVt due to a one standard
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deviation shock in the forecasting variable, σ (zt) , at time t.23 We can therefore examine
how the elasticity of a particular equity market variance or covariance changes over time
in response to changes in the forecasting variables. In our results below, we show that
there is significant time variation in the elasticities.

3 Data

3.1 Constructing the realized covariance matrix

We construct our realized covariance matrixes from two data sets: the Institute for
the Study of Securities Markets’ (ISSM) database and the Trades and Quotes (TAQ)
database. Both data sets contain continuously recorded information on stock quotes
and trades for securities listed on the New York Stock Exchange (NYSE). The ISSM
database provides quotes from January 1988 through December 1992 while the TAQ
database provides quotes from January 1993 through December 2002.24

Following Anderson, Bollerslev, Diebold and Wu (2004), realized covariances for a
given day are constructed by summing high-frequency returns as follows:

Vt =
X

j=1,...,m

rt,j·4r0t,j·4, (17)

where Vt is the realized covariance matrix of a set of stocks/portfolios for day t, rt,j·4
is the P × 1 vector of high-frequency returns of length 4 for interval j of day t, and m

is the number of intervals in one day. We use our high-frequency portfolio returns to
calculate a total of 3, 781 daily realized covariance matrixes.
Value-weighted portfolio returns are created by assigning stocks to one of five size-

sorted portfolios based on the prior month’s ending price and shares outstanding. Our
choice of portfolios is partially motivated by an interest to see if the systematic compo-
nents of conditional volatility are common across the size portfolios. We use the CRSP
database to obtain shares outstanding and prior month ending prices. Only stocks that
are found in both the quotes databases (ISSM and TAQ) and CRSP are included in the
sample.25

23 Measuring the elasticity for the covariance elements (i 6= j) is problematic as the covariances can

become arbitrarily small. For these elements, we therefore use
³bVt(i,i) bVt(j,j)´1/2 in the denominator of

(16).
24 The ISSM data actually begins in January 1983; however, the first four years of the data have

many missing days and the necessity of a contiguous data set for our time-series analysis precludes our
use of these years.
25 We use a variety of other filters that reduces the set of securities included in our data base. For
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We use 20 minutes as our high-frequency return interval (4) for a number of reasons.
First, a well-known trade-off between interval length and microstructure effects exists in
high-frequency stock returns (see Campbell, Lo and MacKinlay (1997)). The quadratic
variation theory suggest that the finest return interval possible will lead to the most
precise measure of covariances; however, microstructure effects such as bid-ask bounce
and clustering are magnified by looking at finer return intervals. Our choice of 20 minute
return intervals is based on rule-of-thumb suggestions by Anderson, Bollerslev, Diebold
and Ebens (2001) for mitigating this trade-off for highly liquid securities. Second, while
many of our stocks are illiquid, the fact that we are constructing portfolio realized covari-
ances should diversify away the impact of the bid-ask bounce and other microstructure
effects of individual securities. Last, we have investigated a number of return intervals
varying from two minutes up to one hour and found the results to be quite robust to the
length of 4.
Many of the stocks in our database trade less frequently than 20 minute intervals

and so we follow Anderson and Bollerslev (1997) by constructing artificial equally-spaced
returns for stocks by obtaining the closest quotes surrounding a given interval break and
using linear interpolation to construct an artificial price at the interval break point.
Once we have our time series of high-frequency portfolio returns, we construct our

measure of realized covariance matrixes using a slightly modified version of equation
(17) from Hansen and Lunde (2004).26 Hansen and Lunde (2004) suggest an extension
to the usual construction of realized volatility whose intuition is based on the Newey-
West (1987) variance estimator. They note that the serially autocorrelated nature of
the data is ignored using simple variance calculations such as (17). To incorporate the
serial-correlation effects, equation (17) can be extended to

Vt =
mX
j=1

rt,j·4r0t,j·4 + 2
nX

k=1

µ
1− k

n+ 1

¶m−kX
j=1

rt,j·4r0t,j+k·4, (18)

where n corresponds to number of lagged intervals where serial correlation may exist.
We find that estimates of equation (18) can vary quite dramatically from equation (17)
and for good reasons. Our portfolios of smaller stocks will include securities that are
more illiquid than stocks in the larger quintiles. The illiquidity of small stocks suggests
that prices and volatility responses to information shocks may take more time to be
incorporated into prices, leading to time series autocorrelation in the high-frequency

example, we exclude securities with CRSP share codes that are not 10 or 11, leading to the exclusion of
preferred stocks, warrants, etc.
26 Jagannathan and Ma (2003) present a similar idea for constructing monthly volatility measures

using daily data.

15



returns. The method of Hansen and Lunde (2004) corrects the realized covariance
matrix for these high-frequency autocorrelations. In robustness checks, we find that
our estimation results become quite robust to the choice of 4, if we estimated realized
covariances following equation (18).
We also follow Hansen and Lunde (2005) by including an estimate of the volatility that

occurs when the markets are closed. During the close-to-open hours, no data are recorded
but the price of the asset will still be responding to news. Hansen and Lunde (2005)
provide a way of combining the squared close-to-open return and the high-frequency
open-to-close data to yield an estimate of the daily volatility. It is important in our
portfolio tests below to have estimates of volatility over the entire day as the returns are
over this period.
Table 1a provides summary statistics of the realized covariance matrix Vt. The small-

est stocks are labelled portfolio 1 while the largest are labelled 5. The elements are
labelled by their position in the matrix. Thus the (1, 3) element is the covariance of
the returns on the smallest quintile with those on the mid-quintile. The diagonal ele-
ments show that daily volatility increases as the sizes of the firms increase. This result
runs counter to volatility estimates that are constructed using lower frequency returns
and is driven by larger firms generally trading more frequently and consequently experi-
encing more intra-day price movements than their small stock counterparts. All of the
variance and covariance measures are skewed to the right as the means are above the
medians. Volatility is quite volatile: the standard deviation of the realized variances and
covariances are much larger than their mean values.
The data are persistent as the auto-regressive coefficients are above 0.3 although

not as high as one might expect. As noted by Barndorff-Nielsen and Shephard (2004),
failing to remove the jump component of quadratic volatility is likely to diminish the
serial correlation coefficient of volatility.27 Indeed, the average serial correlation of the
bi-power covariation measures (detailed below), essentially quadratic volatility measures
purged of return shocks, have much higher serial correlation coefficients with the average
across all variances and covariances increasing to 0.55.
The Geweke and Porter-Hudak (1983, hereafter GPH) statistics estimate the degree of

fractional integration. The statistics are clustered around 0.4 indicating that the series are
stationary but have ‘long memory’: shocks to volatility persist for a long time. Ding and
Granger (1996) show that standard GARCH type volatility models cannot capture the
long memory that is usually present in financial time series. They propose a multi-factor
volatility model to capture this effect.28 Baillie, Bollerslev and Mikkelsen (1996) and

27 See also Forsberg and Ghysels (2004).
28 See also Ding, Granger, and (1993) and Granger, and Ding (1996).
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Bollerslev and Mikkelsen (1996) propose using fractionally integrated GARCH models.
Engle and Lee (1999) suggest that a two factor model of volatility – with one persistent
and one short-term factor – would be able to match the volatility dynamics.
The volatility series are not near normally distributed. The final three columns of

Table 1a show the skewness and kurtosis statistics as well as the asymptotic marginal
significance levels (P-values) of the Jarque-Bera tests for normality. The data are quite
skewed and the volatility of volatility causes a great deal of kurtosis. Normality is rejected
for all elements of the realized covariance matrix.29

The summary statistics of the log-space volatility matrix At are shown in Table 1b.
Taking the matrix logarithm of the data changes its properties along several dimensions.
First, while the mean and median values of the series change, the skewness of the volatility
series is decreased. Indeed, many of the skewness coefficients are now close to 0. While the
series are still volatile, the kurtosis statistics are close to 3.00 indicating that there excess
kurtosis levels relative to the normal distribution are not obvious. Although, all of the
Jarque-Bera statistics reject the null of normally distributed data, the test statistic values
(not reported) have decreased quite dramatically. Thus, taking the matrix logarithm of
multivariate realized volatility results in series that are much closer to being normally
distributed. This parallels the univariate finding of Andersen et al. (2001).
The log-space volatilities are still persistent. However, the GPH statistics show a

great deal of heterogeneity when compared to their counterparts for the realized volatility
matrix. Some of the elements are above 0.5 indicating a non-stationary series. As the
factor model combines all of the elements, we can observe if the model can capture the
long-memory property of the actual data.

3.2 Bi-power covariation

While realized volatility provides an estimate of the quadratic variation of the covari-
ance matrix, it is constructed assuming continuous sample paths for the stock prices.
However, researchers have found that equity markets are characterized by the presence
of jumps in volatility, which results in discontinuous sample paths that can reduce the
predictability of quadratic variation estimates. Barndorff-Nielsen and Shephard (2004b
and 2006) develop the theory of bi-power variation, a measure that, in essence, is the
quadratic variation with the jump components removed. Ghysels, Santa-Clara and Valka-
nov (2004b) find that bi-power variation is a good predictor of aggregate market volatil-

29 Thomakos and Wang (2003) discuss the influence of long-memory on tests of Normality. They
find that the standard Jarque-Bera test is oversized while the QQ and Kolmogorov-Smirnov tests are
approximately correctly sized. These tests also reject normality.
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ity.30 Barndorff-Nielsen and Shephard (2005) extend univariate bi-power variation to the
multivariate case, aptly named bi-power covariation.
Given that our exercise is multivariate, we construct bi-power covariation measures for

our portfolios using Definition 3 of Barndorff-Nielsen and Shephard (2005). Let (BPt, q)

represent the matrix of bi-power variation for portfolios on day t and lag q:

{BPt, q} =


{BP 1

t , BP
1
t ; q} {BP 1

t , BP
2
t ; q} ... {BP 1

t , BP
P
t ; q}

{BP 2
t , BP

1
t ; q} {BP 2

t , BP
2
t ; q} ... {BP 2

t , BP
P
t ; q}

...
...

. . .
...

{BPP
t , BP

1
t ; q} {BPP

t , BP
2
t ; q} ... {BPP

t , BP
P
t ; q}

 , (19)

where

{BP k
t , BP

l
t ; q} =

δq4
4

mX
j=q+1

£¯̄
rkt,j·4 + rlt,j·4

¯̄ ¯̄
rkt,j·4−q + rlt,j·4−q

¯̄
(20)

− ¯̄rkt,j·4 − rlt,j·4
¯̄ ¯̄
rkt,j·4−q − rlt,j·4−q

¯̄¤
and δq4 = m

m−q . The intuition for equation (20) follows from the result that cov(x, y) =
1
4
[V ar(x+ y)− V ar(x− y)] . Equation (20) looks similar to a traditional realized volatil-
ity construction with the exception that contemporaneous returns are not squared but
absolute returns in window j are multiplied by absolute returns in window j − q. This
removes the jumps which are present in contemporaneous squared returns, but have little
impact on the product of contemporaneous and lagged returns. For the case of k = l,
equation (20) simplifies to the univariate bi-power variation measures of Barndorff-Nielsen
and Shephard (2004b and 2006).
Motivated by our earlier discussion of MHAR models and the desire to reduce the pa-

rameter space, we construct log-space bi-power covariation matrixes, ABP (d), aggregated
over the last d = 1, 5 and 20 days.31 We then estimate the principal components (9) of
the matrixes, aBP (d, i). Table 1c presents the first three principal components for each
of the holding periods. As the holding period lengthens, the first principal component
explains more of the variation of the matrix. The component places a large positive
weight on the diagonal terms of the A(d)BP matrix while the weights on the off-diagonal
elements are small.
30 Anderson, Bollerslev, and Diebold (2003) construct volatility measures less influenced by jumps

and also find these measures predict future volatility better than quadratic variation measures
31 The bi-power covariation measures used in our study are constructed setting q = 3 (60 minutes)

following Barndorff-Nielsen and Shephard (2005), although preliminary sensitivity analysis found lit-
tle variation in the predictive ability of alternative bi-power covariation measures constructed using
neighboring values of q.
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3.3 Alternative forecasting variables

Our goal in this paper is to compare alternative models of the conditional covariance ma-
trix. While all of the models use the latent factor form given in (12), they differ by the
forecasting variables Zt−1 used. We construct four alternative models using forecasting
variables that correspond to existing approaches in the literature. Table 1d gives sum-
mary statistics of all of the forecasting variables, while Table 1e shows the correlations
among them.
Our first model, labelled “MHAR-RV-BP,” is a multivariate HAR model of daily re-

alized volatility using the principal components of bi-power covariation as predictors. In
our estimations, we find multicollinearity among all of the principal components. This is
not surprising as the bi-power covariations are measuring the volatility of the equity mar-
ket over different holding periods. Because of the multicollinearity, we use only the first
principal component of the 5-day series (aBP (5, 1)t) and the first three principal compo-
nents of the 20-day series (aBP (20, 1)t, aBP (20, 2)t, aBP (20, 3)t) as regressors. Intuitively,
by including the 5-day measure we hope to capture the higher-frequency volatility varia-
tion. We found the 5-day measures were more stable than the 1-day measures, likely due
to reduced estimation error. Inclusion of the 20-day measures follows from HAR models
where lagged longer horizon volatility measures are included as predictors.
Thus, the set of forecasting variables for this model is

ZMHAR−RV−BP
t = (aBP (5, 1)t, a

BP (20, 1)t, a
BP (20, 2)t, a

BP (20, 3)t).

We show below that these four series do a good job in capturing the forecastability of
the 5× 5 matrix. Incorporating shorter-run (e.g., d = 1 day) volatility measures do not
improve the estimates.
The second model, “MHAR-RV-BPA”, adds the asymmetric response of volatility to

past return shocks to the first model. A number of authors have shown that past negative
returns causes higher future equity market volatility. We therefore include the returns on
the small and large stock portfolios when they are negative (R1,t−1 < 0 and R5,t−1 < 0,

respectively).
Our third model, “MHAR-RV-X,” uses variables that have been shown to forecast

stock returns. These include: a risk-free interest rate, the dividend yield, the credit
spread and the slope of the term structure. We use the return on 30-day Treasury Bill as
our measure of the risk-free rate, TB. Our source is the Ibbotson SBBI database. We
use the trailing 12 months’ dividends divided by the price at the end of month t for our
measure of the dividend yield, DY . The data are created from the CRSP value-weighted
total returns and the monthly CRSP value-weighted capital gains returns. We use the

19



difference between the end of month yield-to-maturity on BAA bonds and AAA bonds
as provided by Moody’s Corporate Bond Indices, for our measure of the credit spread,
CS. Our source is the FRED R° database. We use the difference between the yield-to-
maturity on Ibbotson’s Long-Term Government bond portfolio and the yield-to-maturity
on 3-month Treasury Bills (from FRED R°) as our measure of the term spread, TS.
The above variables are standard in models of rational asset pricing. We also include

a variable that originates in the behavioral finance literature. McQueen and Vorkink
(2004) show that the market’s sensitivity to news can be captured by a measure called
the scorecard, which is a function of prior market returns. They show that the scorecard
adds incremental value to standard asymmetric GARCH models. We construct our
measure of the scorecard, SC, following McQueen and Vorkink (2004). In particular, we
iterate on equations (5) and (6) found in their paper using CRSP value-weighted daily
market returns.32

The fourth model, “MHAR-RV-BPAX,” uses all of the variables from the other mod-
els.

4 Results

4.1 Model fit

We estimated our four versions of (12) with K = 1 factors. However, the model was
rejected for each of the variable sets used. We then estimated the models with 2 factors.
The fits of the two factor models are much better and in the subsequent analysis we
report results for K = 2 factors.
Table 2 presents summary statistics for the overall model fit. We present the statistics

for the non-bias corrected results to show how the model does by itself. Panel A shows
the J statistics that test the over-identifying restrictions (13) from the four models. All
of the models are rejected indicating that the restrictions of a two-factor model are too
onerous. However, we have been unable to estimate a three-factor version using any of
the data sets. We interpret the rejection of the two-factor versions of the models as the
result of Lindley’s paradox (i.e., having a large number of data points implies that any
precise null can be rejected). As three-factor versions of the models are not estimable,
we use the two factor versions in the subsequent analysis.

32 Initial evidence of the predictive power of dividend yields on returns is found in Shiller (1981).
Initial evidence for the credit and term spreads on returns come from Fama and French (1989). Initial
evidence for the relative short rate on returns is from Campbell (1991). Initial evidence on the scorecard’s
ability to predict market volatility comes from McQueen and Vorkink (2004).
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The next panel of Table 2 present statistics that evaluate the overall model fit. The
first three statistics are from Moskowitz (2003). The eigenvalue statistic is

eigt =

q
trace(bV 0

t
bVt)p

trace(V 0
t Vt)

.

The trace of the matrix equals the sum of its eigenvalues. As noted by Moskowitz (2003),
the sum of the eigenvalues of the volatility matrix is a summary measure of time-varying
volatility in the five stock returns. Thus, this ratio shows how the model is able to
capture the time-varying volatility.
The magnitude statistic is

magt =
i0
³¯̄̄
Vt − bVt ¯̄̄´ i
i0 (|Vt|) i ,

where i is a conformable vector of ones. The numerator is the sum of the absolute
values of the difference between the fitted and true values of the volatility matrix. The
denominator is the sum of the absolute values of the true volatility matrix. The statistic
measures the percent error of the fitted values of the model.
The direction statistic is the ratio of the sum of the signed fitted values of the model

to the squared rank of the true volatility matrix,

dirt =
i0sign

³
VtbVt´ i

[rank(Vt)]2
,

and is designed to capture how well the model predicts the correct direction of volatility.
The average values of the three statistics shown in Table 2 reveal that all four models

do a reasonable job of capturing time-varying volatility.33 Indeed, according to these
metrics, there appears to be little difference between the models. In moving from the
first to second model, the eigenvalue statistic decreases slightly as the return variables are
added as regressors. The third model (MHAR-RV-X) that contains the return forecasting
variables is closest to the theoretical value of 1.00. However, the statistics from all four
models are close to this value, indicating that they are able to capture the time-varying
volatility matrix.
The magnitude statistics show a slight improvement as the return variables are added

to the MHAR-RV-BP model. The model using just the return forecasting variables
(MHAR-RV-X) has the highest (i.e., poorest) magnitude statistic. The four values of the

33 Following Moskowitz (2003), we calculate the standard errors of the statistics using a Newey-West
(1987) estimator to account for autocorrelation and heteroskedasticity of unknown form.
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direction statistic are the same and close to the optimal value of 1.000. The last part
of the table shows the multivariate versions of the root-mean squared error and mean
absolute deviation statistics. Once again we observe little variation across the models,
although the return forecasting variable model has the largest errors.
The inability of our tests to distinguish among the models is similar to the results of

Green and Hollified (1992) and Chan et al. (1999). These papers show that there is a
dominant factor in multivariate models of latent volatility. Model comparison tests will
have difficulty differentiating among models that contain this dominant factor. Chan
et al. (1999) suggest using a tracking portfolio metric to better distinguish among the
models. We adopt this approach in section 5.
One question of interest is the reduction in the explanatory power of a variable set

resulting from the imposition of the two-factor structure. While a parsimonious structure
is likely to be preferred in the out-of-sample tests, the in-sample fit may be reduced by
the over-identfying restrictions (13). To test this, we calculate variance ratio statistics
following Campbell (1987). In Panel A of Table 3, we measure the restrictions of the factor
model on the log-space volatilities, At. In these ratios, the numerator is the variance of the
fitted values bAt of the log-space volatilities from the factor model (12). The denominator
is the variance of the fitted values from an ordinary least squares regression of the log-
space volatilities on the variables of the model as in (10). The ratio thus shows how much
imposing the factor structure in (13) reduces the in-sample predictive power.
In Panel B of Table 3, we measure the restrictions of the factor model on the realized

volatility matrix, Vt. In addition, the calculations for these ratios vary by whether they
are for diagonal or off-diagonal elements of Vt. For the diagonal elements, the numerator
is the variance of the (bias-corrected) fitted values of the realized volatility from (14). The
denominator is the variance of the fitted values from an ordinary least squares regression
of the realized volatilities on the variables of the model. For the off-diagonal elements,
we repeat the same exercise using the Fisher transforms of the estimated correlations in
the numerator and the Fisher transforms of the realized correlations in the dominator.
This analysis allows us to measure the effects of the factor model on both the volatilities
and the correlations contained in Vt.
While some of the ratios in Panel A are occasionally quite small (e.g. 0.014 for

the (1, 4) element of the At matrix for the MHAR-RV-BPA model), most of the ratios
are above 0.7. The factor structure does not appear to impose much restrictions on
the dynamics of the log-space volatilities. The results are just as strong for the realized
volatilities in Panel B. Here the average ratios are above 1.00 for the volatilities in all four
models suggesting that the factor model combined with the non-linear transformation in
the matrix exponential function allows our model to capture more of the variation than a
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simple regression can. The results in panel B do show that the models with more variables
have greater difficulty in capturing the dynamics of the time-varying correlations as the
average ratio for the fourth model is 0.528. Overall, the results in Table 3 suggest that the
two factor representation is not too stringent and that much of the variation in expected
variances and correlations is captured by our models.

4.2 Estimated coefficients

Table 4 presents the estimates of the β coefficients from the model that uses all of the
forecasting variables (MHAR-RV-BPAX). The coefficients are arranged according to the
elements of the At matrix that they correspond to. The elements that are normalized for
identification are in the upper left corners of both factors. Each cell presents the estimated
coefficient from the GMM estimation procedure, the Newey-West (1987) standard error,
and the corresponding t-statistic.34

In the first factor, the loadings for the first four diagonal elements are significant and
positive while those for the off-diagonal elements are much smaller. In the second factor,
the estimated coefficients are large and significant for the diagonal elements, while the off-
diagonal elements are smaller, but mostly significant. With the exception of the A(4, 1)
element, all of the log-space volatilities have a significant loading on at least one of the
two factors. The overall significance of the coefficients show that the linear combinations
of the forecasting variables (θZt−1) are able to forecast elements of the At matrix.
The estimated θ coefficients for the two factors in all of the models are shown in Table

5. Panel A presents the coefficients for the basic multivariate HAR model (MHAR-RV-
BP). The coefficients on the first principal component of the lagged 5-day log-space
bi-power covariation are significant in both factors. The coefficient on the first principal
component of the lagged 20-day bi-power covariation is both positive and significant in
the first factor. The coefficient on the second principal component is positive in the first
factor, with a larger magnitude than the coefficient on the first principal component, and
negative in the second factor, suggesting that the factors are picking up different elements
of long-run volatility. The coefficients on the third principal component are both positive
and significant, but smaller in size.
It is difficult to say much more about the influence of the variables on realized volatil-

ity due to the highly non-linear nature of the model: the θ coefficients in the two factors
interact with each other as well as the β coefficients in (12). For example, it is not
necessarily true that the second principal component of the 20-day log-space bi-power

34 Only the results for the MHAR-RV-BPAX model are shown. The coefficients for the other models
are similar and are available by request.
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covariation (with a coefficient of 0.499 in the first factor) has a larger degree of explana-
tory power for realized volatilities than does the first principal component of the 5-day
volatility (with a coefficient of 0.153 on the first factor). The elasticities presented below
show the ultimate impact of any particular forecasting variable on the volatilities.
Panel B presents the coefficients for the model that includes the (asymmetric) effects of

past stock returns (MHAR-RV-BPA). The coefficients on the lagged principal components
of bi-power covariation are similar in size and significance to their values in the first
model. In addition, an interesting pattern in the asymmetric response of volatility to
past negative returns emerges. The coefficient on lagged negative returns on small stocks
is negative in the first factor and not significant in the second factor. The coefficient on
negative returns on large stocks has an opposite sign in the two factors. The elasticities
presented below will show how the effects net out.
The coefficients on the variables usually used to forecast stock returns, model ‘MHAR-

RV-X’, are presented in Panel C. The coefficients on the lagged short-term interest rate
and the lagged credit spread are large and significant in both factors. The coefficients on
the lagged term spread are insignificant. The coefficients on the scorecard and dividend
yield variables are negative and significant.
Panel D presents the coefficients for the model that includes both the lagged volatility

variables as well as the standard return forecasting variables (MHAR-RV-BPAX). The
result for this model illustrates an important point in determining the effects of various
economic factors on volatility: including lagged volatility as a variable to determine the
true influence of all variables on the volatility proves to be important. This can be
seen by examining the coefficient on the credit spread which shrinks in size and becomes
mostly insignificant in the first factor. In contrast, the term spread appears as significant
in the first factor while the scorecard becomes insignificant in the second factor. The
autoregressive nature of the realized volatility implies that care must be taken when
regressing volatility on lagged predictive variables which are themselves persistent.
In sum, a number of the coefficients on the variables that forecast stock returns remain

significant in the multivariate model of stock market volatility, even when accounting for
the effect of autoregressive volatility. The ability of these variables to forecast both
means and volatilities suggests that better conditional portfolio allocation polices could
be obtained than those based on return predictability alone. We return to this issue
below.
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4.3 Estimated elasticities

Table 6 presents the elasticities � (i, j, z, t) calculated using (16). We calculate the elastic-
ities for each day t in our sample and for each forecasting variable z. While we calculate
the elasticities for each element (i, j) of the estimated volatility matrix bVt, we present
only the results for the small stock variance (bV(1,1)), the covariance between small and
large stocks (bV(1,5)), and the variance of the large stock portfolio (bV(5,5)) for brevity. The
results for the other elements of bV are similar to those shown and are available on request.
Table 6 reports the average value of the elasticities as well as their Newey-West (1987)
standard errors.
Panel A of Table 6 gives the elasticities for the MHAR-RV-BP model. The first

principal components of the lagged weekly and monthly volatilities have a positive effect
on all of the realized volatilities. These components appear to capture the overall level
of volatility in the market. In contrast, the second principal factor has an asymmetric
effects on volatility. The elasticities change sign depending on the particular element ofbV . For example, changing the value of the second principal component by a one standard
deviation shock would cause tomorrow’s large stock volatility to decrease by 36.4 percent
while small stock volatility would increase by 8.4 percent. We find monotonic decreases
in the elasticities associated with this variable as we move from the small stock volatility
towards the large stock portfolio, including those portfolio results not reported. The
third principal component has a small influence on realized volatilities.
Panel B presents the results for the second model which includes the principal com-

ponents and the lagged stock returns (MHAR-RV-BPA). The elasticities on the principal
components do not change much from their values for the first model. The elasticities
on the two negative return variables (R1,t−1 < 0 and R5,t−1 < 0) are quite small and
negative showing that yesterday’s return shocks do not explain a large part of today’s
volatility. This is in contrast to Kroner and Ng (1998), who find that different models
give very different news impact surfaces showing the effects of past return shocks on
current volatility. Thus, the asymmetric response of volatility to past returns is quite
small in our data. We speculate that this may result from two reasons.
The first is that the response may only show up in longer (e.g., monthly) data so that

we would not capture it in our model of daily volatility. The second is that our Newey-
West type estimator of the realized volatility matrix Vt accounts for the interactions of
the volatility between large and small stock portfolios. If new information is incorporated
into the prices of large stocks first, then the returns and variances of large stocks would
lead the returns and variances of small stocks. Indeed, Lo and MacKinlay (1990) show
that the returns of large stocks lead those of small stocks, while Conrad, Gultekin and

25



Kaul (1991) show that volatilities of large stocks lead those of small stocks. However, this
latter effect would be captured by our estimator (18) of the realized covariance matrix as
lags of large stock volatility are used in constructing current small stock volatility. This
implies that there would be little return asymmetries to be captured by any right-hand-
side variable.
The elasticities on the variables usually used to model expected stock returns are

shown in Panel C. An increase in the short-term interest rate or the credit spread causes
the elements of the conditional covariance matrix to increase. An increase in the scorecard
or dividend yield causes the elements to decrease. The slope of the term structure has a
small effect.
Panel D presents the elasticities for the model that includes all of the variables. The

one large change from previous smaller models is that the elasticities on the variables
used in the MHAR-RV-X model greatly decrease in magnitude. For example, the impact
of a change in the short-term interest rate almost completely disappears. This, once
again, shows the importance of including lagged volatility in the models.
While the averages of the estimated elasticities reveal a large influence for certain

variables on volatility, we also find it instructive to examine the time series properties of
the elasticities. Figure 1a presents the estimated � (i, j, z, t) for the first six forecasting
variables in the MHAR-RV-BPAX model. Only the elasticities for (i, j) = (1, 1), the
volatility of the small stock portfolio, are shown. The graphs reveal considerable variation
over time in the elasticities. For example, the elasticity of the first factor on the lagged
5-day bi-power covariation rises from 0.25 near the start of the sample to 0.26 near the
end. The elasticity on the first factor of the 20-day bi-power covariation is around 0.40
for most of the sample but rises towards the end. The elasticity on the negative return on
large stocks (R5,t−1 < 0) is hovers just below 0 at the start of the sample before turning
more negative. Figure 1b shows the plots for the last five variables of the model. The
graphs show large swings in the elasticities of all of the variables towards the end of the
sample.
These plots show that our approach can help explain the volatility of volatility in the

size-sorted portfolios.35 Chernov et al. (2001) examine a number of volatility models.
They note that the main difficulty is in capturing the persistence of volatility and the
high degree of kurtosis found in daily stock index data. They find that a ‘feedback’
effect, where higher volatility causes the volatility of volatility to be higher, is important.
Consequently, modeling the state dependence of volatility as our approach does is crucial
to capturing stylized features of conditional variances.

35 The plots in Figure 1b show time variation in expected volatility. In future versions of this paper,
we hope to show the influence of shocks to the forecasting variables on unexpected volatility.
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5 Global MinimumVariance and Tracking Portfolios

5.1 Motivation

The above analysis showed that it was difficult to differentiate among the models on the
basis of unconditional statistics. In this section, we calculate global minimum variance
portfolios and minimum tracking error portfolios to evaluate the conditional performance
of the various models. These tests will provide an economic metric for the alternative
information sets. They also provide a way to evaluate the importance of the factor
structure of our model.
The problem of distinguishing among alternative models of the covariance matrix

has been noted before. Green and Hollified (1992) show that portfolios can be poorly
diversified– in the sense of having large negative holdings to offset large positive holdings
– when the covariance matrix of stock returns is dominated by a single factor. They
note that in real data determining whether the extreme positions are due to the poor
sampling properties of the data or to the existence of a single factor in the population
covariance matrix is difficult.
Chan et. al (1999) introduce the idea of using tracking error portfolios to evaluate

alternative models. In their approach, the portfolio manager combines a number of
tracking portfolios or assets to closely follow the return on a benchmark asset. If the
volatilities of both the benchmark and tracking portfolios are exposed to the dominant
factor, then minimizing the variance of the difference in returns between the two port-
folios will allow most of the volatility driven by the dominant factor to be removed.
Consequently, incremental differences between the models will be magnified.
Jagannathan and Ma (2003) raise another issue related to evaluating models of the

covariance matrix. They note that practitioners often impose non-negativity constraints.
This could help subsequent portfolio performance if the constraints had the effect of off-
setting the sampling error in the estimates. Conversely, the constraints would diminish
subsequent performance if the sampling error was small and the true covariance matrix
was dominated by the single factor. Thus, whether imposing (possibly incorrect) con-
straints is better than unconstrained optimization depends on the degree to which the
principal factor dominates the estimated covariance matrix.
The matrix logarithmic factor model presented above can shed some light on this

trade-off. By using realized covariance matrixes, we can reduce the sampling errors that
are present when latent covariance matrix estimates are derived from monthly return
data. In addition, we can evaluate the importance of the factors along with the specific
variables that associate strongly with the factor. We can also evaluate the constraints to
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see if they augment or diminish subsequent portfolio performance.

5.2 Global minimum variance and tracking error portfolios

We construct two sets of global minimum variance portfolios, one set with unconstrained
portfolio weights and the other set with margin and shorting limits that are constrained
to be lower than 30 percent. Each week, we solve the following minimization problem,

min
w

³
w0tV̂twt

´
(21)

s.t. : −0.30 ≤ wi ≤ 1.30,

where the weight restrictions are ignored for the unconstrained optimization. We then
use these weights to form portfolios and evaluate the time-series properties of the mini-
mum variance portfolios.
For our tracking error exercise, we use the size-sorted portfolios to track the return on

a value portfolio, constructed following Fama and French (1992 and 1993). Specifically,
we construct book-to-market measures for each firm with Compustat and CRSP data and
divide stocks into ten deciles monthly based on their relative book-to-market measures.
Our tracking portfolio, high minus low (HML) is constructed by taking a long position
in the 20% of stocks with high book-to-market (value stocks) and taking a short position
in the 20% of stocks with the lowest book-to-market (growth stocks). We construct a
value-weighted portfolio and rebalance the positions monthly.36

Let Υt denote the realized covariance matrix at time t that includes the volatility on
the benchmark HML return and the five size-sorted portfolios:

Υt =

 Vt

σ1,HML,t

· · ·
σ5,HML,t

σ1,HML,t...σ5,HML,t σHML,HML,t

 .
Here, the upper-left quadrant is the realized volatility matrix of the five size sorted
portfolios, Vt, as used above. The lower-right element is the realized volatility of the
HML portfolio, σHML,HML,t.The lower-left and upper-right quadrants are the covariances
of the size sorted portfolios and HML (σ1,HML,t...σ5,HML,t).
We estimate the forecasted value of the augmented volatility matrix, bΥt, using the

same factor models as above. We can then use the elements of this matrix to solve for
36 Earlier versions of the paper used the S&P 500 SPDR as the tracking portfolio. However, we

found that given our portfolios were sorted on size and the fact that the S&P SPDR is essentially a
portfolio of large-cap stocks, our models performed very similar in tracking exercises.
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the following tracking error portfolio. We wish to minimize the variance of the difference
between the return on the HML portfolio, rHML

t , and the return on the portfolio of
size-sorted stock returns, w0trt :

min
w

var(rHML
t − w0trt),

where wt is a 5 × 1 vector of portfolio weights. Using the variance decomposition, the
problem can be written as

min
wt
{var(rHML

t ) + var(w0trt)− 2cov(rHML
t , w0trt)}.

Using matrix notation, this minimization problem can be rewritten as:

min
wt
{e06bΥte6 + w0tbVtwt − 2

5X
i=1

wi
t · e06bΥtei}, (22)

where ei is a 6 × 1 vector of zeros with a 1 in the ith position. We construct tracking
error portfolios following (22) along with imposing the constraints that margin limits are
30 percent of the portfolio and that portfolios can be shorted up to 30 percent as well.
To test overfitting of the data, we reestimate the models using only the data from 1988
- 2000 that allows us to construct out-of-sample statistics over the 2001-2002 period.

5.3 Results

Table 7 presents summary statistics of the global minimum variance portfolio and the
tracking error portfolios. We report the return averages and standard deviations for the
cases where the weights are constrained between −0.30 and 1.30 and unconstrained. We
also report portfolio return averages and standard deviations for an in-sample (1998 -
2000) and an out-of-sample (2001-2002) period.
A number of patterns emerge from Table 7. First, we find that placing constrains on

the portfolio weights in almost all cases reduces the standard deviations of the portfolios.
This occurs for both in-sample and out-of-sample tests over both the minimum vari-
ance and tracking error portfolio tests. These results are consistent with Jagannathan
and Ma’s (2003) conjecture that constraints may help (or at least not hurt) a portfolio
optimization exercise.
Second, we find, not unexpectedly, that portfolio standard deviations increase as

we move from in-sample tests to out-of-sample tests. This again holds across both the
minimum variance and tracking portfolio exercises.
Third, the average returns on both the minimum variance and tracking error portfolios

are small and variable. Out-of-sample returns are, in general, smaller than in-sample
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returns. Imposing the constraints appears to have little effect. However, the returns are
so small and we have not accounted for transactions costs in this exercise so it is hard to
say anything definitive about them.
Fourth, performance improves when we use a model to calculate the minimum vari-

ance portfolio. The in and out-of-sample standard deviations on the equally-weighted
portfolio are presented at the bottom of the table. We use this portfolio as it is the
simplest passive portfolio that could be constructed. In sample, the minimum variance
portfolios constructed using the two models containing the return forecasting variables
(MHAR-RV-X and MHAR-RV-BPAX) and imposing the constraints on the portfolio
weights have standard deviations that are lower than that on the equally weighted port-
folio. Out of sample, only the portfolio constructed using the basic GARCH type model
(MHAR-RV-BP) without any constraints yields a standard deviation that is greater than
that of the equally-weighted portfolio. In other words, most of the models with or without
constraints yield lower volatilities out of sample. Including the conditioning information
improves the estimates of the covariance matrix out of sample.
Fifth, using the conditioning information in our two-factor model also leads to better

performance using the tracking error portfolio metric. The in-sample standard deviations
of the tracking error portfolios constructed using (22) are lower than when the equally-
weighted portfolio is used to track the index. In the out-of-sample tests, only the standard
deviation of the fourth model (MHAR-RV-BPAX) is higher than that on the equally
weighted tracking portfolio. Once again, we conclude that including the conditioning
information in our two factor model improves portfolio performance.
Finally, we find interesting variations across the models that are fairly consistent

across the two exercises. Adding asymmetric return shocks to the base model, MHAR-
RV-BP, decreases the portfolio standard deviations for the minimum variance portfolios
and has a mixed impact on the tracking error portfolios. The third model, MHAR-RV-X,
that includes only the economic variables, often has the lowest return standard deviation
of the four models. The economic variables included in this model have long been used to
predict returns. Here we show that they forecast portfolio standard deviations. Including
both past volatilities and the economic variables in the fourth model (MHAR-RV-BPAX)
rarely leads to the best result.

6 Conclusions

This paper has introduced a new model for the realized covariance matrix of returns.
The model is parsimonious, guarantees a positive-definite covariance matrix, and does
not require parameter constraints to be imposed. The model allows a number of variables
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to forecast the covariance matrix, yet restricts the number of factors in the estimation
process. In addition, time-varying elasticities can be calculated that show the extent to
which a percent shock to the forecasting variable influences any particular element of the
realized covariance matrix.
The model is applied to the covariance matrix of realized stock returns over the 1988

to 2002 period. Four alternative sets of forecasting variables are tested. The alternative
sets of forecasting variables produce results that are roughly similar according to standard
unconditional tests. However, there are differences between the fitted values from the
alternative models. We evaluate these differences using minimum variance and minimum
tracking error portfolios. These results highlight the importance of including return
forecasting variables in models of conditional volatility.
We hope to extend this analysis in other papers. In particular, we would like to include

variables related to the volume of trading and order flow in the size-sorted portfolios given
the links that have been found in past work.

31



A Construction of the Data

Since Epps (1979), it has been realized that measuring correlations using high-frequency
data can be problematic. In particular, estimated correlations can be substantially lower
when using high-frequency data (intra-day TAQ) as opposed to low-frequency data (daily
and monthly CRSP). We were particularly sensitive to this issue given our finding that
small stock return standard deviations being smaller than large stock return standard
deviations using the TAQ data. We conducted data checks to ensure our methodology
on the TAQ database was not creating data that was materially different in standard
deviations and correlations than one would obtain is lower frequency data sets were
used.
Table A1 provides an analysis of the portfolio return standard deviations using a

number of different approaches. The first column reports the average portfolio return
standard deviations (annualized) using in our analysis and corresponds to numbers found
in Table 1A. The second column reports monthly portfolio return standard deviations
(annualized) using daily returns following a similar methodology as our 20-minute high
frequency approach where we only construct one price per stock each day based on the
final quotes. The final two columns report portfolio return standard deviations con-
structed using daily and monthly CRSP returns representing a low frequency approach.
Table A1 provides two interesting results. First, we find that our high frequency approach
leads to portfolio return standard deviations that are lower than all of the alternatives,
including daily TAQ returns. While our high frequency approach leads to lower stan-
dard deviations, the differences are quite small and likely due to our methods inability
to capture information from the close of markets on one day to the open of markets on
the following day. This likely leads to the daily TAQ results matching up so closely with
the daily CRSP results.
Second, we note that small stock return variances are smaller than large stock coun-

terparts for all of the approaches other than monthly CRSP, suggesting that our finding
of this result in the high-frequency TAQ returns is not driven by the particular methodol-
ogy we employ. We interpret the results of Table A1 as positive, that our high-frequency
approach captures most of the return volatility as captures in lower-frequency returns but
should do so with more precision relying on the sampling results of quadratic variation.
One could account for overnight return information by adopting methods such as Hansen
and Lunde (2005) that would likely increase the first column of Table A1 towards the
results in the other three columns.
We also investigated the realized correlations to assess the impact of the Epps (1979)

effect in our data. Table A2 provides results of these investigations. In this table, we
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compare the correlations that results from our high-frequency approach to those con-
structed using lower-frequency daily CRSP returns. The first three columns of Table A2
summarizes correlation information taken from daily CRSP returns, where we estimated
monthly correlations each month from January 1988 through December 2002. The ten
unique portfolio correlations correspond to the rows of the table and the time-series mean
of the monthly estimated correlations is found in first column, the time series standard
deviations in second, and the volatility ratio (standard deviation divided by mean) in the
third column. Corresponding results for the high-frequency correlations are found in
columns four through six. Comparing columns one and six we find that the low frequency
approach leads to higher average correlations in all cases although the differences in cor-
relations does not appear to be large. In fact, the final column reports a t-statistic on
the differences of the two means where the correlations are transformed using the Fisher
transformation so that the distribution of the resulting t-statistic is well-behaved. We
see that at standard levels only two of the ten correlations are found to have statistically
different means. Comparison of columns two and five allow one to see the time variation
in correlations of the two approaches. We find that the low-frequency leads to greater
time variation in monthly correlations for some pairs of portfolios but the high-frequency
approach leads to greater time variation for others. In particular pairs of smaller stock
portfolios have greater time-variation using the low-frequency approach while pairs of
large stock portfolios have greater variation using the high-frequency approach. In any
respect, our high-frequency approach does not seem to lose a substantial amount of time
variation in correlations as compared to low-frequency approaches.

B Bias Correction

Our estimator bVt will be biased as the estimation is done in the log-volatility space:
E
³bVt´ = expm³cAt

´
6= E (V )

In this section we present two simple bias correction methods for the estimator, depending
on the maintained assumption of the distribution and functional form of the Zt−1 and εt
in (12).

B.1 Normally distributed variables

In the first correction, we assume that the Zt−1and εt are jointly Normally distributed
and that a standard linear regression model (10) has been estimated. We can thus also
assume that the P × P matrix of fitted values cAt and the P × P matrix of estimated
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residuals bεt are both distributed matrix Normal and are independent of each other (Gupta
and Nagar (2000), p. 55). Also, by definition, V = expm

³ bA+bε´.
Now consider using the definition of the matrix exponential function in (1) to expand

the expected value of expm
³ bA+bε´ up to the fourth power. Using Theorem 2.3.3 Gupta

and Nagar (2000), a number of expectations of the products will vanish:

E( bAbε) = 0,
E(bεbεbε) = 0,

E( bA bAbε) = E( bAbε bA) = E(bε bA bA) = 0,
E( bA bA bAbε) and permutations = 0,
E(bεbεbε bA) and permutations = 0.

Using these results and collecting like terms, the expansion becomes:

E (V ) = E

 I +
³ bA+ A2

2!
+ A3

3!
+ A4

4!

´
+
³
ε2

2!
+ ε4

4!

´
+
³
εεA+εAε+Aεε

3!

´
+
³
AAεε+εεAA+AεAε+εAεA+AεεA+εAAε

4!

´
+ ...

 (23)

Now we note from (1) that the first five terms on the right-hand-side of (23) are the
leading terms of the matrix exponential of bA. Thus, we have the approximation:

E (V ) ≈ E
³
expm

³ bA´´+ bc1 (24)

where the bias correction term is

bc1 = E

 ³
ε2

2!
+ ε4

4!

´
+
³
εεA+εAε+Aεε

3!

´
+
³
AAεε+εεAA+AεAε+εAεA+AεεA+εAAε

4!

´  . (25)

In simulated data (not reported), this bias correction works well. We speculate that
it would also work well in models of multivariate volatility such as ours if the original
realized covariance matrix was estimated at a lower frequency (e.g. a monthly matrix
could be constructed from daily data). Unfortunately, in our high-frequency application,
the estimated bA matrix is too far from being Normally distributed with many outliers
for this bias correction to work.

B.2 Non-Normally Distributed Data

With bA and bε not being Normally distributed, there is no obvious closed-form bias
correction. Thus, we do a simple numerical bias correction on the individual volatility
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series. The realized volatility matrix Vt can be decomposed into a matrix of standard
deviations and correlations:

Vt = SDt ∗ Ct ∗ SD0
t,

where SDt is a P × P diagonal matrix of the standard deviations and Ct is a P × P

symmetric matrix of the correlations. A similar decomposition can be done for the fitted
value bVt to yield thedSDt and bCt matrixes. We then estimate a bias correction factor as
the ratio of the median values of the two standard deviation series:

bc2 =
med (SDt(i, i))

med
³dSDt(i, i)

´ , i = 1, ..., 5

We then bias correct the standard deviations while leaving the correlations intact. This
simple method works well in that the fitted values are of the approximate magnitude of
the actual realized volatility series and the statistical and economic tests presented in
the paper support its use. We recognize that other, more sophisticated bias-correction
methods could produce better results.
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Table 1a 
Summary Statistics of the Realized Covariance Matrix of Size-Sorted Stock Returns  

 
The table shows summary statistics of the realized one-day covariance matrix of stock returns on the five size-
sorted NYSE portfolios. All stocks on the exchange are sorted by market value at the beginning of each calendar 
year. The data are spaced into 30 minute observations and the price at the end of the observation is recorded. The 
log change in the prices are squared and summed over each day resulting in a total of 3,778 daily observations. 
The covariances are labeled V(1)i,j, where i=1 contains the smallest and i=5 contains the largest stocks. The 
summary statistics of the upper triangular elements of the resulting matrix are shown here. The table shows the: 
mean; median; standard deviation; the first-order autoregressive coefficient; the Geweke-Porter-Hudack (GPH) 
statistic of long memory; and the skewness and kurtosis statistics. Also shown is the asymptotic marginal 
significance level (P-value) for the Jarque-Bera test of Normality. The bottom of the table presents the QQ test 
statistic of multivariate normality, multivariate skewness and multivariate kurtosis test statistics as well as their 
marginal significance levels. The sources of the data are the Institute for the Study of Securities Markets' (ISSM) 
database (January, 1988 to December, 1992) and the Trades and Quotes database (January, 1993 to December, 
2002). 
 

      Normality Test 

  
Mean 

 
Median 

Std.  
Dev. 

 
AR(1) 

 
GPH 

 
Skewness 

 
Kurtosis 

Jarque-
Bera 

V(1) i,j (%) (%) (% ) statistic statistic statistic statistic P-value 
         
V (1)1,1 0.0061 0.0245 0.0129 0.390 0.464 8.779 132.325 <0.001 
V (1)1,2 0.0048 0.0143 0.0127 0.406 0.395 9.697 143.401 <0.001 
V (1)1,3 0.0048 0.0141 0.0132 0.390 0.376 10.048 154.365 <0.001 
V (1)1,4 0.0047 0.0144 0.0133 0.378 0.370 10.540 167.278 <0.001 
V (1)1,5 0.0047 0.0148 0.0145 0.301 0.361 12.153 214.203 <0.001 
V (1)2,2 0.0059 0.0196 0.0144 0.457 0.437 9.418 134.210 <0.001 
V (1)2,3 0.0057 0.0168 0.0150 0.442 0.423 10.189 160.920 <0.001 
V (1)2,4 0.0056 0.0172 0.0154 0.425 0.402 11.215 195.515 <0.001 
V (1)2,5 0.0057 0.0175 0.0165 0.352 0.372 12.583 231.825 <0.001 
V (1)3,3 0.0067 0.0225 0.0168 0.429 0.424 10.674 182.335 <0.001 
V (1)3,4 0.0065 0.0209 0.0174 0.409 0.398 11.719 220.234 <0.001 
V (1)3,5 0.0068 0.0218 0.0188 0.354 0.355 12.903 249.432 <0.001 
V (1)4,4 0.0074 0.0272 0.0189 0.395 0.384 12.029 234.751 <0.001 
V (1)4,5 0.0078 0.0283 0.0206 0.343 0.336 12.907 252.537 <0.001 
V (1)5,5 0.0107 0.0450 0.0251 0.324 0.438 12.198 219.257 <0.001 
         

Multivariate Normality Test QQ Skewness Kurtosis    
   791 1,011,336 5,220    
      (<0.001) (<0.001) (<0.001)       
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Table 1b 
Summary Statistics of the Log-Space Realized Covariance Matrix of Size-Sorted Stock Returns  

 
The table shows summary statistics of the log-space one-day realized covariance of stock returns on the five size-
sorted NYSE portfolios. For each day in the series, the matrix logarithm of the realized volatility matrix is 
calculated. Because of the non-linear nature of the matrix logarithm function, the element A(1)i,j is not the 
logarithm of V(1)i,j from Table 1a. The summary statistics of the upper triangular elements of the resulting matrix 
are shown here. The table shows the: mean; median; standard deviation; the first-order autoregressive coefficient; 
the Geweke-Porter-Hudack (GPH) statistic of long memory; and the skewness and kurtosis statistics. Also shown 
is the asymptotic marginal significance level (P-value) for the Jarque-Bera test of Normality. The bottom of the 
table presents the QQ test statistic of multivariate normality, multivariate skewness and multivariate kurtosis test 
statistics as well as their marginal significance levels. The sources of the data are given in Table 1a. 

 
      Normality Tests 

  
Mean 

 
Median 

Std. 
Dev. 

 
AR(1) 

 
GPH 

 
Skewness 

 
Kurtosis 

Jarque-
Bera 

A(1) i,j (%) (%) (% ) statistic statistic statistic statistic P-value 
         
A (1)1,1 -11.880 -11.907 1.228 0.452 0.722 0.093 2.746 <0.001 
A (1)1,2 0.715 0.721 0.701 0.123 0.417 -0.064 2.894 0.110 
A (1)1,3 0.536 0.550 0.648 0.085 0.309 -0.051 2.712 0.001 
A (1)1,4 0.429 0.441 0.631 0.069 0.309 -0.125 3.047 0.0061 
A (1)1,5 0.301 0.313 0.608 -0.006 0.120 -0.163 2.835 <0.001 
A (1)2,2 -12.793 -12.817 1.133 0.399 0.767 0.107 2.812 0.002 
A (1)2,3 0.987 0.994 0.737 0.172 0.569 -0.066 2.914 0.137 
A (1)2,4 0.708 0.724 0.638 0.079 0.236 -0.117 2.862 0.0029 
A (1)2,5 0.454 0.477 0.598 -0.007 0.211 -0.147 2.857 <0.001 
A (1)3,3 -13.099 -13.139 1.157 0.450 0.766 0.111 2.678 <0.001 
A (1)3,4 1.160 1.191 0.684 0.111 0.332 -0.182 2.952 <0.001 
A (1)3,5 0.752 0.778 0.615 0.029 0.384 -0.185 2.802 <0.001 
A (1)4,4 -13.068 -13.114 1.109 0.415 0.665 0.245 3.062 <0.001 
A (1)4,5 1.406 1.441 0.652 0.074 0.408 -0.198 2.800 <0.001 
A (1)5,5 -11.450 -11.511 1.187 0.420 0.620 0.212 2.924 <0.001 
         

Multivariate Normality Test QQ Skewness Kurtosis    
   158 1,748 -6    

      <0.001 <0.001 0.001       
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Table 1c 
Principal Components of the Log-Space Bi-power Covariation Matrixes  

 
The table shows the loadings for the first three principal components aBP(d,i), i = 1,…,3 of the log-space bi-power covariation matrixes  
ABP(d) for d = 1, 5 and 20 days. The proportion of volatility explained by the component is given at the bottom of the table. 

 
          
 d = 1 day d = 5 days d = 20 days 

ABP(d)i,j aBP(1,1) aBP(1,2) aBP(1,3) aBP(5,1) aBP(5,2) aBP(5,3) aBP(20,1) aBP(20,2) aBP(20,3) 
          
ABP(d)1,1 0.420 0.218 0.234 0.447 0.446 0.413 0.454 0.499 0.542 
ABP(d)1,2 -0.001 -0.033 -0.121 0.027 -0.181 0.033 0.024 -0.190 -0.174 
ABP(d)1,3 -0.016 -0.054 -0.062 0.012 -0.122 0.033 0.010 -0.119 -0.146 
ABP(d)1,4 -0.011 0.028 0.023 0.008 -0.040 -0.029 0.002 -0.031 -0.122 
ABP(d)1,5 -0.010 -0.008 -0.048 -0.004 -0.019 0.021 -0.004 -0.018 -0.014 
ABP(d)2,2 0.409 0.217 0.219 0.457 0.147 0.205 0.464 0.166 -0.270 
ABP(d)2,3 0.046 -0.095 -0.223 0.066 -0.253 0.080 0.064 -0.239 -0.180 
ABP(d)2,4 0.021 0.053 -0.078 0.034 -0.065 0.005 0.033 -0.056 -0.189 
ABP(d)2,5 -0.028 -0.033 0.007 0.012 -0.037 0.006 0.011 -0.041 -0.018 
ABP(d)3,3 0.465 0.573 -0.103 0.488 0.104 -0.021 0.486 0.075 -0.142 
ABP(d)3,4 0.070 -0.019 -0.553 0.079 -0.227 0.403 0.073 -0.159 -0.096 
ABP(d)3,5 -0.046 -0.154 0.353 0.011 -0.015 -0.097 0.017 -0.021 -0.126 
ABP(d)4,4 0.567 -0.627 0.176 0.468 -0.019 -0.711 0.457 -0.094 -0.433 
ABP(d)4,5 -0.137 0.341 -0.015 -0.002 -0.142 0.305 0.007 -0.098 -0.033 
ABP(d)5,5 0.299 -0.161 -0.590 0.348 -0.760 0.082 0.349 -0.749 0.514 
          
variance (%) 25.518 13.245 9.811 67.731 12.519 5.08 79.769 12.807 1.623 
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Table 1d 
Summary Statistics of the Forecasting Variables 

 
The table shows the summary statistics of the variables used to forecast the realized log-space volatilities. The principal component aBP(5,1) is the first 
principal component of the 5-day log-space bi-power covariation matrix. The principal components (aBP(20,i) i=1,…,3) are the first three principal 
components of the 20 day log-space bi-power covariation matrixes. The daily returns when the returns are negative on the small and large stock 
portfolios are represented by R1 < 0 and  R5< 0 , respectively. The return on 30-day Treasury Bill is the measure of the risk-free rate, TBt. The difference 
between the end of month yield-to-maturity on BAA bonds and AAA bonds as provided by Moody's Corporate Bond Indices are the measure of the 
credit spread, CSt. The term spread, TSt, is the difference between the yield-to-maturity on Ibbotson's Long-Term Government bond portfolio and the 
yield-to-maturity on 3-month Treasury Bills. The dividend yield, DYt, is the trailing 12 months' dividends divided by the price at the end of month t from 
the CRSP value-weighted total returns and the monthly CRSP value-weighted capital gains returns. The scorecard, SCt, is a measure of the sensitivity of 
the market news and is constructed using CRSP value-weighted daily market returns following the procedure in McQueen and Vorkink (2004). The 
table shows the: mean; median; standard deviation; the first-order autoregressive coefficient; the Geweke-Porter-Hudack (GPH) statistic of long 
memory; and the skewness and kurtosis statistics. Also shown is the asymptotic marginal significance level (P-value) for the Jarque-Bera test of 
Normality.  

 
      Normality Tests 

  
Mean 

 
Median 

Std.  
Dev. 

 
AR(1) 

 
GPH 

 
Skewness 

 
Kurtosis 

Jarque-
Bera 

 (%) (%) (% ) statistic statistic statistic statistic P-value 
         
aBP(5,1) 0.0005 0.4288 1.6470 0.9791 0.8622 -0.8079 3.0087 <0.001 
aBP(20,1) 0.0007 0.4551 1.5836 0.9986 0.8856 -0.8564 2.9607 <0.001 
aBP(20,2) 0.0001 -0.0950 0.6347 0.9965 0.7401 0.5485 2.4721 <0.001 
aBP(20,3) 0.0001 0.0033 0.2259 0.9871 0.5586 0.3066 3.5090 <0.001 
R1 < 0 -0.0057 0.0000 0.0111 0.8772 0.3158 -3.4799 21.5785 <0.001 
R5< 0 -0.0058 0.0000 0.0099 0.7025 0.1840 -3.1471 21.2562 <0.001 
TB 0.0494 0.0502 0.0172 0.9996 0.9918 0.0165 2.7101 0.001 
CS 0.0084 0.0080 0.0022 0.9960 0.9111 0.8794 2.9791 <0.001 
TS -3.7216 -3.6562 0.3434 0.9964 0.9805 0.0149 1.6225 <0.001 
SC -0.0140 0.0097 0.3272 0.9985 1.1437 -1.1776 5.1466 <0.001 
DY 0.0170 0.0154 0.0112 0.9995 0.9901 0.1567 1.8919 <0.001 
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Table 1e 
Correlation Coefficients of the Forecasting Variables 

 
The table shows the correlation coefficients of the variables used to forecast the realized log-space volatilities. The principal component aBP(5,1) is 
the first principal component of the 5-day log-space bi-power covariation matrix. The principal components (aBP(20,i) i=1,…,3) are the first three 
principal components of the 20 day log-space bi-power covariation matrixes. The daily returns when the returns are negative on the small and 
large stock portfolios are represented by R1 < 0 and  R5< 0 , respectively. The return on 30-day Treasury Bill is the measure of the risk-free rate, 
TBt. The difference between the end of month yield-to-maturity on BAA bonds and AAA bonds as provided by Moody's Corporate Bond Indices 
are the measure of the credit spread, CSt. The term spread, TSt, is the difference between the yield-to-maturity on Ibbotson's Long-Term 
Government bond portfolio and the yield-to-maturity on 3-month Treasury Bills. The dividend yield, DYt, is the trailing 12 months' dividends 
divided by the price at the end of month t from the CRSP value-weighted total returns and the monthly CRSP value-weighted capital gains returns. 
The scorecard, SCt, is a measure of the sensitivity of the market news and is constructed using CRSP value-weighted daily market returns 
following the procedure in McQueen and Vorkink (2004). 

 
 aBP(5,1) aBP(20,1) aBP(20,2) aBP(20,3) R1 < 0 R5< 0 TB CS TS SC DY 
            

aBP(5,1) 1           
aBP(20,1) 0.948 1          
aBP(20,2) 0.035 0.000 1         
aBP(20,3) 0.002 -0.001 0.000 1        
R1 < 0 0.196 0.121 -0.213 -0.017 1       
R5< 0 0.212 0.167 -0.157 0.009 0.557 1      

TB 0.310 0.329 -0.006 0.332 0.000 0.038 1     
CS -0.533 -0.549 -0.351 -0.184 -0.042 -0.078 -0.051 1    
TS 0.370 0.395 -0.442 -0.010 0.003 0.075 0.484 0.290 1   
SC 0.569 0.575 0.370 0.283 0.096 0.119 0.419 -0.570 -0.101 1  
DY 0.008 0.009 -0.338 -0.361 0.041 0.019 -0.621 0.263 0.273 -0.425 1 
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Table 2 
Summary Statistics from and Tests of the Latent Factor Models  

 
The table presents summary statistics from and tests of the two latent factor MHAR-RV models of the cross 
section of realized stock market volatility. Panel A shows the value of the J-statistics associated with the Wald 
tests of the over-identifying restrictions of the latent factor model. The statistics are distributed as χ2 and are 
presented along with their degrees of freedom and asymptotic marginal significance levels (P-values). Panel B 
shows the eigenvalue, magnitude and direction statistics from Moskowitz (2003). The eigenvalue statistic is the 
ratio of the eigenvalue from the fitted value of the model to the eigenvalue of the realized covariance matrix. The 
statistic measures how well the fitted values of the model capture the total variation in the real volatility matrix. 
The numerator of the magnitude statistic is the sum of the absolute values of the difference between the fitted and 
true volatility matrix. The denominator is the sum of the absolute values of  the true volatility matrix. The statistic 
measures the per cent error of the fitted values of the model. The direction statistic is the ratio of the sum of the 
signed fitted values of the model to the squared rank of the true volatility matrix. It is designed to capture how 
well the model predicts the correct direction of volatility. Also shown are multivariate measures of root means 
square error (RMSE) and mean absolute deviation (MAD), both multiplied by 1000. The forecasting variables 
used in each model are described in Table 5. The model is estimated separately for each set of forecasting 
variables by Generalized Method of Moments. The Newey-West standard errors (in parentheses) are 
asymptotically robust to general forms of heteroskedasticity and autocorrelation. 

 
     
 
Model: 

 
MHAR- 
RV-BP 

 

 
MHAR- 
RV-BPA 

 

 
MHAR- 
RV-X 

 
MHAR- 

RV-BPAX 

     
     
(A) J statistics from overidentifying restrictions   
     
χ2 statistic 84.63 126.28 153.64 319.74 
df 26 52 39 117 
P-value <0.001 <0.001 <0.001 <0.001 
     
     
(B) Measures of fit    
    
Eigenvalue statistic    
average 
(std. err.) 

0.934 
(0.016) 

0.911 
(0.016) 

1.007 
(0.021) 

0.929 
(0.017) 

     
Magnitude statistic    
average 
(std. err.) 

0.998 
(0.016) 

0.977 
(0.015) 

1.094 
(0.021) 

1.006 
(0.017) 

     
Direction statistic    
average 
(std. err.) 

0.958 
(0.002) 

0.958 
(0.002) 

0.958 
(0.002) 

0.959 
(0.002) 

     
     
RMSE x 1000 2.586 2.529 2.634 2.546 
MAD x 1000 12.623 12.477 13.020 12.672 
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Table 3 
Variance Ratios 

The table presents variance ratio measures of the statistical fit of the two latent factor MHAR-RV models 
of the cross section of realized stock market volatility. The ratio shows how the latent factor model captures 
the variation in the data. In panel (A), the numerator is the variance of the fitted values of the (i,j)th element 
of the log-space volatilities A (1) from the latent factor model, while the denominator is the variance of the 
fitted values of the log-space volatilities from an OLS regression of the volatility on the variables used in 
that model. In panel (B), the numerator is the variance of the fitted values of the (i,j)th element of the 
realized volatilities V from the latent factor model, while the denominator is the variance of the (bias-
corrected) fitted values of the realized volatilities from an OLS regression of the volatility on the variables 
used in that model. For this panel, the off-diagonal elements are the Fisher transforms of the fitted  
correlation in the numerator and the actual correlation in the denominator. The average value of the ratios 
for the realized volatilities (avg. vol.) and realized correlations (avg. cor.) are shown at the bottom. The 
model is estimated separately for each set of forecasting variables by Generalized Method of Moments.   

 
     
 
Model: 

 
MHAR- 
RV-BP 

 

 
MHAR- 
RV-BPA 

 

 
MHAR- 
RV-X 

 
MHAR- 

RV-BPAX 

     
(A) Log-space volatilities    
A (1)1,1 0.964 0.944 1.183 0.978 
A (1)1,2 0.902 0.552 0.648 0.536 
A (1)1,3 0.708 0.401 0.012 0.220 
A (1)1,4 0.126 0.014 0.504 0.004 
A (1)1,5 0.738 0.507 1.067 0.300 
A (1)2,2 1.028 1.010 1.162 1.066 
A (1)2,3 0.919 0.884 1.036 1.073 
A (1)2,4 0.953 0.475 0.441 0.366 
A (1)2,5 1.454 0.876 0.461 0.313 
A (1)3,3 1.039 1.005 1.137 0.994 
A (1)3,4 1.027 0.948 1.265 0.924 
A (1)3,5 1.987 1.010 0.846 0.529 
A (1)4,4 1.008 1.012 1.198 1.046 
A (1)4,5 0.186 0.101 0.929 0.236 
A (1)5,5 0.983 0.950 0.938 0.975 
     
(B) Realized Volatilities    
V (1)1,1 1.136 1.088 1.311 1.107 
V (1)1,2 1.177 0.837 0.818 0.685 
V (1)1,3 1.006 0.743 0.203 0.511 
V (1)1,4 0.750 0.520 0.045 0.328 
V (1)1,5 0.584 0.527 0.353 0.076 
V (1)2,2 1.246 1.184 1.357 1.246 
V (1)2,3 1.251 1.139 1.428 1.284 
V (1)2,4 1.212 0.911 0.920 0.736 
V (1)2,5 0.961 0.887 0.707 0.303 
V (1)3,3 1.209 1.162 1.320 1.195 
V (1)3,4 1.027 0.885 1.099 0.554 
V (1)3,5 3.008 1.493 1.094 0.438 
V (1)4,4 1.114 1.070 1.267 1.064 
V (1)4,5 0.555 0.325 1.131 0.363 
V (1)5,5 1.038 1.001 0.978 0.894 
     
avg. vol. 1.149 1.101 1.247 1.101 
avg. cor. 1.153 0.827 0.780 0.528 
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 Table 4 
Beta Coefficients on the Implied Volatility Factors  

 
The table shows the β coefficients from the two latent factor MHAR-RV models of the cross section of realized 
stock market volatility. The latent volatility factors are the linear combination of the variables given in Table 5. 
The beta coefficients for the first two elements of the log-space volatility matrix have been normalized for 
identification. The model is estimated separately for each set of forecasting variables by Generalized Method of 
Moments. The coefficients for the MHAR-RV-BPAX model described in Table 5 are presented here. The 
coefficients for the models using other variables are similar to the values shown here. The Newey-West standard 
errors (in parentheses) are asymptotically robust to general forms of heteroskedasticity and autocorrelation. The t 
statistics  are shown below the standard errors. 

 
      
 A(1) i,1 A(1) i,2 A(1) i,3 A(1) i,4 A(1) i,5 
      
      
 First Factor    
      
A(1)1,j 1.000     
      
A(1)2,j 0.000 

 
 

0.742 
(0.045) 
16.55 

   

      
A(1)3,j -0.043 

(0.015) 
-2.99 

-0.004 
(0.032) 
-0.13 

0.660 
(0.062) 
10.64 

  

      
A(1)4,j -0.009 

(0.015) 
-0.58 

0.068 
(0.014) 

4.78 

0.074 
(0.021) 

3.45 

0.515 
(0.068) 

7.58 

 

      
A(1)5,j -0.016 

(0.013) 
-1.26 

0.034 
(0.013) 

2.57 

0.080 
(0.017) 

4.83 

0.059 
(0.020) 

2.93 

0.066 
(0.091) 

0.72 
      
 Second Factor   
      
A(1)1,j 0.000     
      
A(1)2,j 1.000 2.310 

(0.288) 
8.01 

   

      
A(1)3,j 0.451 

(0.086) 
5.22 

2.040 
(0.208) 

9.83 

3.492 
(0.390) 

8.94 

  

      
A(1)4,j 0.021 

(0.088) 
0.24 

0.179 
(0.089) 

2.01 

1.021 
(0.133) 

7.66 

3.980 
(0.448) 

8.89 

 

      
A(1)5,j -0.267 

(0.075) 
-3.54 

-0.120 
(0.076) 
-1.58 

-0.596 
(0.097) 
-6.16 

-0.753 
(0.121) 
-6.23 

5.754 
(0.593) 

9.70 
      
      



 

 

Table 5 
Coefficients on the Forecasting Variables 

 
The table shows the θ coefficients on the forecasting variables in the two latent factor MHAR-RV models of the 
cross section of realized stock market volatility. The variables for the MHAR-RV-BP model (Panel A) are: the 
lagged value of the first principal component of the 5 day log-space bi-power variation matrix (aBP(5,1)) and the 
lagged values of the first three principal components of the 20 day log-space bi-power variation matrixes 
(aBP(20,1), aBP(20,2), and aBP(20,3)). In the MHAR-RV-BPA model (Panel B) the variables are those in the 
MHAR-RV-BP model plus the lagged values of the negative returns on the small and large stock portfolios (R1 < 
0  and R5< 0 ). The coefficients on the constant terms are not shown. The model is estimated separately for each 
set of forecasting variables by Generalized Method of Moments.  The Newey-West standard errors (in 
parentheses) are asymptotically robust to general forms of heteroskedasticity and autocorrelation. The t statistics 
are reported below the standard errors.  

 
       
 aBP(5,1) aBP(20,1) aBP(20,2) aBP(20,3) R1 < 0 R5< 0 
       
(A) MHAR-RV-BP     
       
θ 
(std err) 
t-stat 

0.153 
(0.028) 

5.41 

0.256 
(0.028) 

9.08 

0.499 
(0.032) 
15.68 

0.176 
(0.053) 

3.31 

  

       
θ 
(std err) 
t-stat 

0.050 
(0.009) 

5.49 

-0.003 
(0.008) 
-0.31 

-0.171 
(0.021) 
-8.29 

0.037 
(0.015) 

2.52 

  

       
(B) MHAR-RV-BPA      
       
θ 
(std err) 
t-stat 

0.116 
(0.028) 

4.21 

0.284 
(0.027) 
10.36 

0537 
(0.029) 
18.66 

0.170 
(0.052) 

3.27 

-7.324 
(1.239) 
-5.91 

2.663 
(1.332) 

2.00 
       
θ 
(std err) 
t-stat 

0.037 
(0.007) 

5.02 

0.008 
(0.007) 

1.12 

-0.133 
(0.019) 
-6.92 

0.033 
(0.011) 

2.97 

0.400 
(0.315) 

1.27 

-2.229 
(0.399) 
-5.58 

       
       

 



 

 

Table 5, continued 
Coefficients on the Forecasting Variables 

 
The table shows the θ coefficients on the forecasting variables in the two latent factor MHAR-RV models of the cross section of realized stock market 
volatility. The variables in the MHAR-RV-X model (Panel C) are: the lagged interest rate on a short-term Treasury bill (TB); the lagged credit spread 
(CS); the lagged ‘scorecard’ measure of the sensitivity of the market to news (SC); the lagged dividend yield (DY); and the lagged spread between the 
long Government bond and the 3 month Treasury bill (TS). The MHAR-RV-BPAX model (Panel D) includes all of the variables in the other models, The 
coefficients on the constant terms are not shown. The model is estimated separately for each set of forecasting variables by Generalized Method of 
Moments. The Newey-West standard errors (in parentheses) are asymptotically robust to general forms of heteroskedasticity and autocorrelation. The t 
statistics are reported below the standard errors.   

 
            
 aBP(5,1) aBP(20,1) aBP(20,2) aBP(20,3) R1 < 0 R5< 0 TB CS TS SC DY 
            
(C) MHAR-RV-X           
            
θ 
(std err) 
t-stat       

11.821 
(2.742) 

4.31 

183.94 
(10.857) 

16.94 

-0.269 
(3.586) 
-0.08 

-1.202 
(0.078) 
-15.49 

-0.856 
(0.126) 
-6.80 

            
θ 
(std err) 
t-stat       

0.868 
(0.388) 

2.24 

16.329 
(3.444) 

4.74 

-0.690 
(0.447) 
-1.54 

-0.069 
(0.025) 
-2.79 

-0.243 
(0.040) 
-6.06 

            
            
(D) MHAR-RV-BPAX           
            
θ 
(std err) 
t-stat 

0.154 
(0.027) 

5.65 

0.257 
(0.029) 

8.77 

0.413 
(0.026) 
15.66 

0.243 
(0.059) 

4.16 

-4.517 
(1.304) 
-3.46 

2.463 
(1.323) 

1.86 

5.170 
(1.886) 

2.74 

9.889 
(8.454) 

1.17 

6.580 
(2.345) 

2.81 

-0.161 
(0.062) 
-2.58 

0.133 
(0.088) 

1.50 
            
θ 
(std err) 
t-stat 

0.009 
(0.006) 

1.65 

0.014 
(0.007) 

2.07 

-0.061 
(0.011) 
-5.45 

0.023 
(0.012) 

1.87 

-1.368 
(0.281) 
-4.87 

-1.895 
(0.344) 
-5.51 

0.205 
(0.370) 

0.56 

9.729 
(1.858) 

5.24 

-0.803 
(0.491) 
-1.64 

0.011 
(0.013) 

0.83 

-0.213 
(0.028) 
-7.54 

            
            



 

 

Table 6 
Elasticities of the Forecasting Variables 

 
The table shows the estimated means and standard errors of the time series of elasticities 
ε(i,j,z,t) associated with the forecasting variables in the two latent factors model of the cross 
section of realized stock market volatility. The elasticity for the (i,j)th  element of the 
realized volatility matrix V are presented. The variables (z) for the four models are described 
in Table 5. The model is estimated separately by Generalized Method of Moments for each 
set of forecasting variables. The Newey-West standard errors (in parentheses) are 
asymptotically robust to general forms of heteroskedasticity and autocorrelation.  

 
 

       
 aBP(5,1) aBP(20,1) aBP(20,2) aBP(20,3) R1 < 0 R5< 0 
       
(A) MHAR-RV-BP     
       

V (1)1,1 
0.369 

(0.001) 
0.350 

(<0.001) 
0.084 

(0.002) 
0.050 

(<0.001) 
  

       

V (1)1,5 
0.298 

(0.001) 
0.156 

(<0.001) 
-0.128 
(0.001) 

0.036 
(<0.001) 

  

       

V (1)5,5 
0.463 

(<0.001) 
0.134 

(0.001) 
-0.364 
(0.001) 

0.052 
(<0.001) 

  

       
       
(B) MHAR-RV-BPA     
       

V (1)1,1 
0.292 

(0.001) 
0.421 

(<0.001) 
0.128 

(0.002) 
0.049 

(<0.001) 
-0.076 

(<0.001) 
-0.026 
(0.001) 

       
V (1)1,5 0.244 

(0.001) 
0.208 

(<0.001) 
-0.108 
(0.001) 

0.036 
(<0.001) 

-0.023 
(<0.001) 

-0.061 
(<0.001) 

       

V (1)5,5 
0.379 

(<0.001) 
0.199 

(0.001) 
-0.350 
(0.001) 

0.051 
(<0.001) 

0.001 
(<0.001) 

-0.126 
(<0.001) 

       
 
 
 
 



 

 

Table 6, continued 
Elasticities of the Forecasting Variables 

 
The table shows the estimated means and standard errors of the time series of elasticities ε(i,j,z,t) associated with the forecasting variables in the two 
latent factors model of the cross section of realized stock market volatility. The elasticity for the (i,j)th  element of the realized volatility matrix V are 
presented. The variables (z) for the four models are described in Table 5. The model is estimated separately by Generalized Method of Moments for 
each set of forecasting variables. The Newey-West standard errors (in parentheses) are asymptotically robust to general forms of heteroskedasticity 
and autocorrelation.   

 
            
 aBP(5,1) aBP(20,1) aBP(20,2) aBP(20,3) R1 < 0 R5< 0 TB CS TS SC DY 
            
(C) MHAR-RV-X           
            

V (1)1,1       
0.208 

(<0.001) 
0.426 

(<0.001) 
-0.011 

(<0.001) 
-0.394 

(<0.001) 
-0.367 
(0.001) 

            

V (1)1,5       
0.121 

(<0.001) 
0.253 

(<0.001) 
-0.013 

(<0.001) 
-0.224 

(<0.001) 
-0.263 

(<0.001) 
            

V (1)5,5       
0.140 

(<0.001) 
0.307 

(<0.001) 
-0.033 

(<0.001) 
-0.244 

(<0.001) 
-0.454 

(<0.001) 
            
            
(D) MHAR-RV-BPAX           
            

V (1)1,1 
0.253 

(<0.001) 
0.402 

(<0.001) 
0.158 

(0.001) 
0.058 

(<0.001) 
-0.091 

(<0.001) 
-0.018 
(0.001) 

0.085 
(<0.001) 

0.061 
(<0.001) 

0.048 
(<0.001) 

-0.039 
(<0.001) 

-0.099 
(0.001) 

            

V (1)1,5 
0.140 

(<0.001) 
0.219 

(0.001) 
0.014 

(<0.001) 
0.035 

(<0.001) 
-0.070 

(<0.001) 
-0.040 

(<0.001) 
0.045 

(<0.001) 
0.061 

(<0.001) 
0.008 

(<0.001) 
-0.013 

(<0.001) 
-0.157 
(0.001) 

            

V (1)5,5 
0.157 

(<0.001) 
0.242 

(<0.001) 
-0.090 

(<0.001) 
0.042 

(<0.001) 
-0.107 

(<0.001) 
-0.090 

(<0.001) 
0.046 

(<0.001) 
0.108 

(<0.001) 
-0.017 

(<0.001) 
-0.001 

(<0.001) 
-0.323 

(<0.001) 
            



 

 

Table 7 
Global Minimum Variance and Tracking Error Portfolio Statistics 

The table presents statistics on the performance of the global minimum variance and tracking error portfolios. The 
global minimum variance portfolio is the weighted sum of the five size-sorted stock portfolios with the smallest 
expected volatility. The table shows the return and standard deviation of the portfolio. The tracking error portfolio is 
designed to minimize the volatility of the difference between the weighted sum of the five size-sorted stock portfolios 
and the HML “value” portfolio (which takes a long position in value (high book-to-market) stocks and a short 
position in growth (low book-to-market) stocks). The table shows the average difference in returns between the two 
portfolios (Ex. Return), and the standard deviation of the difference. Also shown are the statistics for the equally-
weighted portfolio and the equally-weighted less HML tracking error portfolio, both in and out-of-sample. The 
models of the conditional covariance matrix are estimated using the first 13 years of the data (1988–2000) and tested 
in-sample. In addition, the models are estimated and the portfolios evaluated out-of-sample (2001–2002) as noted in 
the first column. Weights in both the minimum-variance and tracking portfolio exercises are either constrained to be -
0.30≤wi≤1.30 or are left unconstrained as noted in the second column.  
 

       

   
Minimum Variance 

Portfolio 
HML Tracking 
Error Portfolio 

Sample Constraints Model 
Return 
 (%) 

Std Dev 
(%) 

Ex. Return 
(%) 

Std Dev 
(%) 

       
In Yes MHAR-RV-BP 0.0461 0.8298 0.0562 1.3048 
  MHAR-RV-BPA 0.0461 0.8244 0.0571 1.3067 
  MHAR-RV-X 0.0547 0.8165 0.0642 1.3017 
  MHAR-RV-BPAX 0.0527 0.8238 0.0636 1.3090 
       
Out Yes MHAR-RV-BP -0.0256 1.3548 -0.0993 2.0679 
  MHAR-RV-BPA -0.0423 1.3297 -0.1094 2.0602 

  MHAR-RV-X 0.0180 1.3457 -0.0813 2.0403 
    MHAR-RV-BPAX -0.0139 1.3536 -0.0941 2.1281 
       
In No MHAR-RV-BP 0.0447 0.8674 0.0552 1.3259 
  MHAR-RV-BPA 0.0450 0.8538 0.0576 1.3168 
  MHAR-RV-X 0.0544 0.8482 0.0644 1.3240 
  MHAR-RV-BPAX 0.0534 0.8540 0.0600 1.3206 
       
Out No MHAR-RV-BP -0.0303 1.3769 -0.0993 2.0822 
  MHAR-RV-BPA -0.0489 1.3514 -0.1020 2.0842 
  MHAR-RV-X 0.0235 1.3487 -0.0682 2.0456 
    MHAR-RV-BPAX -0.0165 1.3500 -0.0911 2.1562 
       

   
Equally-weighted 

portfolio 
(Equally-weighted 
- HML) portfolio 

In   0.0515 0.8243 0.0555 1.3278 
Out   -0.0250 1.3630 -0.0865 2.0749 
       



 

 

Appendix Table A1 
Summary Statistics of Volatility Estimates 

 
The table presents estimates of annualized return standard deviations for the five size-
sorted portfolios using both TAQ and CRSP data.  The first column of data reports the 
annualized return standard deviation constructed from the average daily realized 
volatility values provided in Table 1a.  The second column reports the annualized return 
standard deviation constructed from daily portfolio returns using end of day prices 
constructed following a similar procedure used to construct the 20-minute prices.  The 
last two columns report annualized return standard deviations constructed from CRSP 
daily and monthly returns respectively. 

 
 TAQ CRSP  
 20-Min Daily Daily Monthly 
      
 1 (Small) 0.0926 0.1228 0.1232 0.2098 
2 0.0939 0.1265 0.1492 0.1933 
3 0.0991 0.1332 0.1560 0.1767 
4 0.1041 0.1376 0.1556 0.1662 
5 (Large) 0.1240 0.1567 0.1642 0.1497 
          



 

 

Appendix Table A2 
Summary Statistics of Estimated Monthly Correlations 

 
The table presents summary statistics of monthly correlations between all pairs of the five size-sorted stock 
portfolios. The correlations are labeled C(m)i,j, where i=1 contains the smallest and i=5 contains the largest 
stocks and m is the method used to produce the correlations. The two methods for constructing the 
correlations are: (i) using daily CRSP data on the five size-sorted stock returns to estimate the correlations 
each month (“daily data”); and, (ii) using the realized volatility data from Table 1 to estimate a correlation 
each day and then average the correlations across the month (“realized volatility”). The table shows the: 
mean, standard deviation, and a volatility ratio (i.e., the ratio of the standard deviation to the mean of the 
Fisher transform of the monthly correlation). The final column shows an average of the monthly t-statistics 
on the equivalence between the two ways of measuring the correlations, applied to the Fisher transforms of 
the monthly correlations. 

 
        
 m = daily data m = realized volatility  
 
 

mean std.  
dev. 

vol. 
ratio 

mean std.  
dev. 

vol. 
ratio 

mean 
t-stat. 

        
        
C (m)1,2 0.737 0.173 0.379 0.649 0.133 0.304 1.645 
C (m)1,3 0.685 0.194 0.410 0.610 0.148 0.329 1.562 
C (m)1,4 0.647 0.212 0.440 0.570 0.144 0.324 1.454 
C (m)1,5 0.560 0.216 0.479 0.479 0.138 0.340 1.271 
        
C (m)2,3 0.880 0.089 0.262 0.791 0.094 0.246 1.871 
C (m)2,4 0.837 0.119 0.283 0.735 0.101 0.242 1.685 
C (m)2,5 0.729 0.150 0.315 0.612 0.122 0.276 1.433 
        
C (m)3,4 0.923 0.056 0.211 0.840 0.076 0.215 2.083 
C (m)3,5 0.802 0.113 0.251 0.712 0.115 0.255 1.338 
        
C (m)4,5 0.882 0.085 0.229 0.819 0.094 0.238 1.466 
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