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Abstract

Fluctuations in the prices of various natural resource products are of concern in both policy and

business circles; hence, it is important to develop accurate price forecasts. Structural models

provide valuable insights into the causes of price movements, but they are not necessarily the best

suited for forecasting given the multiplicity of known and unknown factors that affect supply and

demand conditions in these markets. Parsimonious representations of price processes often prove

more useful for forecasting purposes. Central questions in such stochastic models often revolve

around the time-varying trend, the stochastic convenience yield and volatility, and mean

reversion. The authors seek to assess and compare alternative approaches to modelling these

effects, focusing on forecast performance. Three econometric specifications are considered that

cover the most up-to-date models in the recent literature on commodity prices: (i) random-walk

models with autoregressive conditional heteroscedasticity (ARCH) or generalized ARCH

(GARCH) effects, and with normal or student-t innovations, (ii) Poisson-based jump-diffusion

models with ARCH or GARCH effects, and with normal or student-t innovations, and (iii) mean-

reverting models that allow for uncertainty in equilibrium price.

The authors’ empirical application uses aluminium price series at daily, weekly, and monthly

frequencies. The authors use one-step-ahead out-of-sample forecasts, where parameter estimates

are repeatedly updated at every step of the procedure. In addition, in models with jumps, where

analytical formulae are not readily available for obtaining conditional expected forecast errors, the

authors devise a simple simulation-based procedure to approximate these errors. Their results are

as follows. The mean-reverting model with stochastic convenience yield outperforms, to a large

extent, all other competing models for all forecast horizons, with high-frequency (daily and

weekly) data; within the non-mean-reverting GARCH class of processes analyzed for these

frequencies, models with jumps or asymmetries fare best, yet the latter remain dominated by the

mean-reverting models. With monthly data, the mean-reverting model still fares well in

comparison with the random-walk GARCH class; nevertheless, depending on the forecast horizon

and evaluation criteria, non-mean-reverting models with GARCH-in-mean effects dominate to

some extent, suggesting that expected risk has a non-negligible effect on price behaviour.

JEL classification: C52, C53, E37
Bank classification: Econometric and statistical methods
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Résumé

Les fluctuations des prix des matières premières préoccupent tant les responsables des politiques

publiques que les entreprises; il importe donc de disposer de prévisions de bonne qualité à leur

sujet. Les modèles structurels fournissent de précieuses indications sur les causes de l’évolution

des prix, mais ils ne se prêtent pas nécessairement à la prévision compte tenu de la multiplicité

des facteurs, connus ou non, qui agissent sur les conditions de l’offre et de la demande sur les

marchés des produits de base. Les représentations parcimonieuses de la dynamique des prix

s’avèrent souvent mieux adaptées à la prévision. Dans les spécifications stochastiques de ce genre,

les principaux effets à modéliser concernent généralement la tendance (variable dans le temps), le

rendement d’opportunité et la volatilité stochastiques ainsi que la stationnarité. Les auteurs

évaluent et comparent différentes modélisations de ces effets sous l’angle de la qualité des

prévisions. Les trois spécifications qu’ils considèrent englobent les plus récents modèles utilisés

dans la littérature sur les prix des produits de base : i) les modèles de marche aléatoire intégrant

des effets ARCH ou GARCH et dans lesquels les chocs sont distribués selon la loi normale ou la

loi de Student; ii) les modèles basés sur un processus de Poisson, qui intègrent des effets ARCH

ou GARCH et dans lesquels les chocs sont également distribués selon l’une de ces deux lois; et

iii) les modèles stationnaires où le prix d’équilibre est incertain.

À l’aide de données quotidiennes, hebdomadaires et mensuelles sur les prix de l’aluminium, les

auteurs effectuent une prévision hors échantillon à l’horizon d’une période, puis répètent

l’opération en actualisant chaque fois l’estimation des paramètres. Dans le cas des modèles avec

saut, où aucune formule analytique ne permet d’obtenir l’espérance conditionnelle des erreurs de

prévision, ils mettent au point une méthode de simulation simple pour générer ces erreurs. Les

auteurs obtiennent les résultats suivants. Le modèle stationnaire dans lequel le rendement

d’opportunité est stochastique l’emporte de loin sur tous les autres à tous les horizons de prévision

dans le cas des données de fréquences quotidienne et hebdomadaire; parmi les modèles non

stationnaires de type GARCH analysés pour ces deux fréquences, ceux comportant un processus

de saut ou des effets asymétriques prédominent, mais ils donnent de moins bons résultats que le

modèle stationnaire. Dans le cas des données mensuelles, ce dernier surpasse encore les modèles

de marche aléatoire intégrant des effets GARCH; toutefois, selon l’horizon de prévision et les

critères d’évaluation retenus, les modèles non stationnaires ayant des effets GARCH-M dominent

dans une mesure plus ou moins grande, ce qui laisse croire que l’espérance du risque a un effet

non négligeable sur le comportement des prix.

Classification JEL : C52, C53, E37
Classification de la Banque : Méthodes économétriques et statistiques



1. Introduction

Fluctuations in commodity prices are of interest because they affect the decisions taken by
producers and consumers; they play a crucial role in commodity-related investments, project
appraisals, and strategic planning; and they reflect and influence general economic activity.
The ability to accurately forecast the price of these various natural resource products is
therefore an important concern in both policy and business circles.

In general, structural models provide valuable insights into the determinants of commodity
price movements. Yet, given the multiplicity of known, and especially unknown, factors
that affect supply and demand conditions in these markets, such models are not necessarily
the best suited for forecasting purposes. Researchers often rely instead on parsimonious
representations of price processes for their forecasting needs.

In examining stochastic models for commodity prices, central issues include time-varying
trends, convenience yields and volatilities, and mean reversion; see, for example, Gibson
and Schwartz (1990), Schwartz (1997), Pindyck (1999), Schwartz and Smith (2000), Cor-
tazar and Schwartz (2003), Beck (2001), Saphores, Khalaf, and Pelletier (2002), Khalaf,
Saphores, and Bilodeau (2003), and the references cited therein. In this paper, we assess
various approaches that attempt to model these effects, focusing on forecast performance.
Three alternative econometric specifications (which cover the recent and popular models
in the published literature on commodity prices) are considered: (i) random-walk models
with (generalized) autoregressive conditional heteroscedasticity (GARCH) effects, and with
normal or student-t innovations, (ii) Poisson-based jump-diffusion models with (G)ARCH
effects, and with normal or student-t innovations, and (iii) mean-reverting models that allow
for uncertainty in the equilibrium to which prices revert.

Whereas market efficiency may motivate the analysis of stock prices as random walks,
demand and supply pressures and non-constant convenience yields in commodity markets
suggest mean reversion to long-run equilibrium prices. Intuitively, when prices are higher
(or lower) than some equilibrium level, high-cost producers will enter (or exit) the market,
which pushes prices downward (or upward). The convenience yield can be defined as the flow
of goods and services that accrues to the owner of a spot commodity (a physical inventory)
but not to the owner of a futures contract (a contract for future delivery). The random-walk
hypothesis is consistent with a constant convenience yield. In contrast, mean reversion and
the positive correlation between spot price and convenience yield changes is consistent with
the theory of storage: when inventories decrease (or increase), the spot price will increase (or
decrease) and the convenience yield will also increase (or decrease), because futures prices
will not increase (or decrease) as much as the spot prices. Studies such as Schwartz (1997),
Pindyck (1999), Schwartz and Smith (2000), and Cortazar and Schwartz (2003) refute the
hypothesis of a constant convenience yield and their results suggest mean reversion to a long-
run equilibrium that itself can change randomly over time. Note that Pindyck (1999) models
long-run prices, whereas Schwartz (1997), Schwartz and Smith (2000), and Cortazar and
Schwartz (2003) propose models that incorporate both short- and long-run considerations.

Alternatively, Beck (2001) argues that given the storability of commodities, random-walk
specifications that allow for conditional heteroscedasticity are compatible with rational ex-
pectations and risk aversion. Accordingly, she suggests that ARCH-in-mean type frameworks
present a good modelling choice for these commodity prices.
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Furthermore, processes with random jumps, and which account for unobservable surprises,
have also been considered in the recent literature; Saphores, Khalaf, and Pelletier (2002)
and Khalaf, Saphores, and Bilodeau (2003) document evidence of jumps in commodity and
natural resource prices.1

In this paper, we compare all of these commodity price modelling approaches. The models
we consider are non-nested, highly non-linear, and include parameters that, in some cases,
are difficult to identify from observable data. Yet the implications of such problems on
model evaluation extend far beyond numerical estimation burdens. Indeed, assessing the
models’ relative empirical fit gives rise to non-standard econometric set-ups. For example,
confronting mean-reverting models with random walks raises the well-known unit-root test
difficulties in the presence of breaks (Perron 1989, 1993). Another example relates to assess-
ing the significance of jumps; in this case, the parameters that describe the jump process
under consideration are not identified under the null (no-jumps) hypothesis (Andrews 2001).
In addition, jumps are quite difficult to disentangle from conditional non-normalities and het-
eroscedasticity (Aı̈t-Sahalia 2004; Drost, Nijman, and Werker 1998). Consequently, while the
estimation challenges for each model we consider can be tackled with manageable ease, com-
paring and contrasting them statistically and with reliable precision remains at the frontier of
econometrics. We thus focus on forecast performance for model appraisal. Following notably
the arguments of Pindyck (1999), forecasting performance offers further useful practical and
economic insights for model selection.

Our empirical analysis focuses on the price of aluminium. The market for metals has
features that set it apart from other types of goods, even compared with other natural resource
products. In the case of aluminium, price determination is driven mostly by industrial
structure (Bird 1990). In fact, transformation, and not extraction, accounts for most of
the cost. For all practical purposes, this renders the long-run supply curve essentially flat.2

Indeed, the slope of the marginal cost curve has been estimated to have a very small negative
value (Schwartz 1997).

Since 1979, a futures market has been operating at the London Metal Exchange, and
the price of the metal has been quite volatile. Moore and Cullen (1995) explain that metal
prices are generally subject to a lot of speculative trade, which accentuates the volatility of
the price series. In turn, this generates more speculation, and therefore even more volatility,
which is why time-varying volatility, particularly ARCH, has been used by some authors to
model the dynamic behaviour of the price of aluminium.3

Metal prices go through cycles that feature flat lows and spikes, suggesting that they
are prone to business-cycle-type shocks, to which they react in a non-linear fashion (Gilbert
1995). Evidence of this cyclicity is provided by Labys, Lesourd, and Badillo (1998), who
show links between economic conditions and the behaviour of precious metal prices. Their

1The relevant literature is vast; see Merton (1976), Ball and Torous (1985), Jarrow and Rosenfeld (1984),
Ahn and Thompson (1988), Akgiray and Booth (1988), Jorion (1988), Brorsen and Yang (1994), Bates
(1996a,b, 2000), Bakshi, Cao, and Chen (1997, 2000), Drost, Nijman, and Werker (1998), Bates (2000), Pan
(2002), Das (2002), Chernov, Gallant, Ghysels, and Tauchen (2003), and the references cited therein.

2The principal cost, beyond alumina of course, is electricity. Current technology requires 15 MWH per 1
ton of aluminium; at current aluminium prices, this constitutes around 25 per cent of the final price. The
underlying technological process has remained fundamentally unchanged, with continuous minor upgrades.

3See, for example, Akgiray, Booth, Hatem, and Chowdhury (1991), Labys, Achouch, and Terraza (1999),
and Beck (2001).
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tests reveal the presence of two cycles for metal prices: one short, which lasts less than a
year, and one longer.

Not surprisingly, one aspect of aluminium prices on which there has been no consensus is
whether such series are mean reverting.4 Ahrens and Sharma (1997) indicate that 50 per cent
of studies reject the presence of a unit root, while the other 50 per cent do not. For instance,
Labys, Achouch, and Terraza (1999) conclude that almost all of the metal price series that
they consider have unit roots. Similarly, Beck (2001) concludes that commodity prices are
nonstationary, and Moore and Cullen (1995) find a unit root in the futures prices of metals.
On the other hand, Schwartz (1997), Schwartz and Smith (2000), and Khalaf, Saphores, and
Bilodeau (2003) conclude in favour of mean reversion in these metal price series.

Khalaf, Saphores, and Bilodeau (2003) also provide evidence of jumps in weekly alu-
minium price series when these are added to (G)ARCH and conditionally normal fundamen-
tals. Furthermore, another feature that metal prices manifest, and that is in common with
other financial assets, is conditional non-normality in the fundamental shocks that impact
the series. Student-t distributions for the evolution of fundamental shocks, over and above
jumps and/or (G)ARCH, have therefore also been suggested in the literature.

Our objective in this paper is to statistically compare the various classes of the foregoing
empirical models for the price of aluminium, based on the mean-square forecast errors and
non-parametric prediction error statistics, for daily, weekly, and monthly frequencies, and for
various forecast horizons. We use one-step-ahead out-of-sample forecasts, where parameter
estimates are updated at every step of the procedure. Of course, updating estimates raises an
extra burden, yet we argue that it is a worthy effort given our focus on time-varying parameter
models. In addition, in models with jumps, where analytical formulae are not readily avail-
able for obtaining conditional expected forecast errors, we devise a simple simulation-based
procedure to approximate these errors.

Our results reveal the following. First, although unit-root tests favour the random-walk
specification, for daily and weekly data, the mean-reverting model with stochastic conve-
nience yield outperforms all other competing models, and for all forecast horizons. Although
largely inferior to the mean-reverting model, random-walk models with GARCH and jumps
or asymmetries seem the second-best specification for the high-frequency data. The mean-
reverting model still performs relatively well with monthly data. Nonetheless, depending
on the forecast horizon or the forecast evaluation criteria, the random walk with GARCH-
in-mean effects dominates at the monthly frequency, suggesting that expected risk has a
non-negligible effect on price behaviour.

This paper is organized as follows. In section 2, we present the various models under
consideration. Data and forecasting results are discussed in section 3. In section 4 we offer
some conclusions.

2. The Competing Models

Following the models analyzed in the literature and reviewed in section 1, we first consider
random-walk-based specifications, with conditional heteroscedasticity and jumps.5 We con-

4This holds true for commodity prices in general.
5We performed the standard battery of unit-root tests (the augmented Dickey-Fuller, the Phillips-Perron,

and KPSS tests); as expected (and indeed, as reported in the literature), these tests do yield conflicting
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sider a number of models that feature ARCH effects, varying from the most basic formulation
to ones that allow asymmetric effects of shocks of different sign on conditional variance, even
with non-normal fundamentals. Specifically, defining yt = ln(Yt) − ln(Yt−1), we consider the
GARCH(1,1) model:

yt = µ +
√

htzt,

ht = α0 + α1(yt−1 − µ)2 + φht−1,

where Yt is the nominal price level. Two distributional hypotheses are considered for zt:

zt∼N(0, 1), or zt ∼ student-t with τ degrees of freedom,

where the degrees-of-freedom parameter is unknown and needs to be estimated from the
data. Given its preponderance in the literature, we also consider the ARCH(1) case in our
analyses (which is obtained when the φ parameter is set to zero in the GARCH model).

Often, the current conditional variance of a series affects its mean. The GARCH-M(1,1)
incorporates this feature by including ht in the mean equation, as follows:

yt = µ +
√

htzt + βht,

ht = α0 + α1(yt−1 − µ)2 + φht−1.

In addition, we consider the exponential GARCH (EGARCH) model that allows a differing
impact of past positive and negative shocks on conditional volatility:

yt = µ +
√

htzt,

ln(ht) = α0 + φln(ht−1) + γ

(
yt−1 − µ√

ht−1

)
+ η

[
|yt−1 − µ|√

ht−1

−
√

2√
π

]
.

The latter two models are considered by Beck (2001), motivated by various theoretical argu-
ments.

To integrate discontinuities into an ARCH or GARCH process or to account for fatter
tails, we add a Poisson process to these formulations, as follows:

yt = µ +
√

htzt +
nt∑
i=1

lnPit,

ht = α0 + α1(yt−1 − µ)2 + φht−1,

where nt is the number of jumps that occur between t and t− 1, and Pit (i = 1, ..., nt) is the
size of the ith jump in the time interval (t − 1; t). We assume that jumps follow a Poisson
process with arrival rate λ (i.e., there is a jump, on average, every 1/λ periods), and that the
Pit’s are (independently) lognormally distributed with mean θ and variance δ2. Note that
nt is an integer random variable; if nt = 0, there are no jumps. The latter specification is

results (available upon request). Interestingly, we note that the KPSS test rejected stationarity of the data
at all the frequencies considered. In addition, Akaike and Bayesian-Schwartz model-selection criteria selected
the random-walk model, with no further lags in the mean.
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designed to account for unanticipated surprises or large moves attributable to the arrival of
unexpected information. The ARCH(1) model with jumps follows from this model by setting
φ to zero.6

We next turn to the mean-reverting class of models. First, we consider the two-factor
model of Schwartz and Smith (2000) that formally allows for a time-varying long-run mean
and integrates both short- and long-run movements by construction: the long-run equilibrium
component follows a Brownian motion, whereas the short-run deviations follow an Ornstein-
Uhlenbeck process that reverts towards zero. The model can be written in continuous time
for the log level of the spot price as:

ln(Yt) = χt + ξt, (1)

dχt = −κχtdt + σχdzχ,

dξt = µξ + σξdzξ,

dzχdzξ = ρχξdt,

where ξt is the log equilibrium price of aluminium at time t, χt is the deviation of the log price
at time t with respect to the equilibrium price, and dzχ and dzξ are correlated increments
of Brownian motions. The mean-reversion coefficient κ represents the rate of speed at which
the price reverts to its equilibrium (i.e., the rate at which short-run deviations disappear),
µξ is the mean of the equilibrium price, and σχ and σξ are the short-run and equilibrium
volatilities of the process, respectively. For estimation purposes, (1) can be discretized as
follows:

ln(Yt) = χt + ξt,

χt = e−κχt−1 + εχ
t ,

ξt = µξ + ξt−1 + εξ
t .

Besides its intuitive appeal, the latter model formally includes a stochastic convenience
yield, and has been recently advocated on empirical and theoretical grounds for commodities
and metal prices;7 see Gibson and Schwartz (1990), Schwartz (1997), Pindyck (1999), and
Schwartz and Smith (2000). To explain how a stochastic convenience yield intervenes in this
model, Schwartz and Smith (2000) relate (1) to the following model from Schwartz (1997):

dXt = (µ − δt − 1

2
σ2

1)dt + σ1dz1, (2)

dδt = κ(α − δt)dt + σ2dz2,

dz1dz2 = ρdt,

where Xt = ln(Yt) (in our notation, Xt gives the log of the current spot price), dz1 and
dz2 are correlated increments of Brownian motions, and δt is the convenience yield, which

6For expressions of likelihood functions and further references regarding these models, see Khalaf,
Saphores, and Bilodeau (2003).

7Schwartz and Smith (2000) note that their short-term/long-term model can be estimated from spot
and/or futures prices, and that the accuracy of the estimated state variables depends on the latter choice. In
this case, even when state variable estimates are based on spot price observations only, the uncertainty has
very little impact on forecasts and on futures prices.
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intervenes as a reduction in the drift term of (2). Formally, Schwartz and Smith (2000) show
that processes (1) and (2) are equivalent, in the sense that factors of (1) can be written as a
linear combination of the factors in (2). In particular, χt = 1

κ
(δt − α); note that κ gives the

short-term mean-reversion rate in both versions of the model, which justifies the overlap in
notation. Since ξt and χt are not observable, the model is rewritten in state-space form and
estimated using the Kalman filter.

3. Forecast Results

Daily spot prices (in U.S. dollars) are obtained from the London Metal Exchange, over the
period January 1989 to December 2003, for one ton of aluminium. From these, we construct
weekly and monthly prices, the former using Wednesday values and the latter using the price
on the Wednesday that is closest to the 15th day of that month. For the few cases where the
Wednesday value is not available, the Tuesday value closest to the 15th day of that month
is used.

Prices are analyzed in logarithms for the mean-reverting models, or in log-difference for
the random-walk based models. Following our notation in section 2, Yt is the nominal price
of one ton of aluminium, and the differenced series is given by yt = ln(Yt) − ln(Yt−1).

Although many statistical goodness-of-fit measures exist to evaluate the relative merits
of econometric models, forecasting provides another avenue for judging a model’s ability to
adequately describe a given set of data. In this section, we present the summary statistics
that are used in this paper and that are based on one-step-ahead forecasts for each different
model and frequency. We first rely on the usual mean absolute prediction error (MAPE) and
the mean square prediction error (MSPE). We supplement the latter with a sign test on the
difference between the forecast error of the model that yields the smallest MAPE or MSPE,
and, in turn, the forecast error from each of the remaining available models. The sign test
informs us whether the two forecast errors are statistically distinguishable from one another,
and is given by:

S =
2√
K

K∑
k=1

(I[dk > 0] − 1

2
)

asy∼ N(0, 1),

where dk is the difference in forecast errors at the kth forecasting point, and K is the forecast
horizon. Underlying parameter estimation may distort the size of the latter test; hence,
results are interpreted with caution.8

The out-of-sample one-step-ahead prediction errors are obtained as follows: given a sample
of size T +K, we first remove K observations at the end of the sample and that correspond to
the forecast horizon considered. The model is then estimated on the remaining sample (i.e.,
until T ); the dependent variable’s value is forecast for period T + 1 and denoted ln(ŶT+1|T ).

The T+1 forecast error resulting from the comparison of ln(ŶT+1|T ) and ln(YT+1) is computed.
Next, the T + 1 observed value of the dependent variable is added to our sample, and the
model is re-estimated. The T + 2 observation is then forecast and denoted ln(ŶT+2|T+1), the

8Alternative tests for forecasting accuracy, such as Diebold and Mariano’s procedure, are not immune
to size problems in our context. Given the statistical complications of the models we consider, conducting
formal statistical tests on forecasts is beyond the scope of this paper.
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T +2 forecast error is computed, and so on, until all K observations are covered. The MAPE
and the MSPE are then defined as:

MAPE =
1

K

K∑
k=1

|ln(ŶT+k|T+k−1) − ln(YT+k)|,

MSPE =
1

K

K∑
k=1

[
ln(ŶT+k|T+k−1) − ln(YT+k)

]2

.

For the models that include jump features, it is not possible to obtain forecast errors in a
straightforward manner: there is no analytical form for the forecast equation in such cases.
As in Khalaf, Saphores, and Bilodeau (2003), our solution is to rely on simulation (see also
Bilodeau 1998). Thus, for a given model with jumps, we first estimate the parameters of
the conditional mean, the conditional variance, and the jump parameters (λ, θ, δ), over the
sample of size T . Then, drawing from a normal or t-distribution for the residuals, a Poisson
distribution with estimated mean λ̂ for the arrivals of the jumps, and a normal distribution
with mean θ̂ and variance σ̂2 for the amplitude of each jump, we generate 1,000 simulated
values of the dependent variable ỸT+1. The forecast value of YT+1 is then taken to be the
average value of these 1,000 ỸT+1, and the T + 1 forecast error is computed. At this point,
the observed value of the dependent variable, YT+1, is added to the sample, the model is
re-estimated, and the entire simulation process is repeated. Thus, ỸT+2 is obtained, as well
as the forecast error for T + 2. The above steps are repeated until T + K forecast errors are
obtained, which are then used to construct the MAPE, MSPE, and sign statistics.

For each frequency, we conduct out-of-sample one-step-ahead dynamic forecasts for three
forecast horizons: one, three, and five years. The corresponding results on spot prices are
reported in Tables 1, 2, and 3. The minimum MAPE and MSPE are shown in bold. The
sign statistic is significant in all cases, although we reiterate the need to interpret this result
with caution, given that recursive parameter estimation may distort the test’s asymptotic
null distribution.
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Table 1: Daily Frequency, spot prices

Forecast horizon One year Three years Five years
MSPE MAPE MSPE MAPE MSPE MAPE

ARCH(1) 0.0088 0.0799 0.0072 0.0716 0.0560 0.2218
GARCH(1,1) 0.0095 0.0831 0.0065 0.0679 0.0605 0.2306

GARCH-M(1,1) 0.0087 0.0799 0.008 0.0759 0.0611 0.2321
EGARCH(1,1) 0.0102 0.0866 0.0061 0.0659 0.0738 0.2553
GARCH-T(1,1) 0.0144 0.0144 0.0080 0.0716 0.1170 0.3195

ARCH(1) with jumps 0.0095 0.0831 0.0061 0.0658 0.0756 0.2588
GARCH(1,1) with jumps 0.0086 0.0796 0.0083 0.0784 0.0535 0.2166

GARCH-T(1,1) with jumps 0.0150 0.1049 0.0096 0.0753 0.1316 0.1537
Schwartz and Smith 0.0001∗ 0.0067∗ 0.0001∗ 0.0072∗ 0.0001∗ 0.0083∗

Table 2: Weekly Frequency, spot prices

Forecast horizon One year Three years Five years
MSPE MAPE MSPE MAPE MSPE MAPE

ARCH(1) 0.0056 0.0605 0.0058 0.0643 0.1166 0.3218
GARCH(1,1) 0.0047 0.0555 0.0062 0.0658 0.1078 0.3101

GARCH-M(1,1) 0.0030 0.0464 0.0101 0.0866 0.0544 0.2198
EGARCH(1,1) 0.0027 0.0419 0.0137 0.1040 0.0466 0.2009
GARCH-T(1,1) 0.0061 0.0635 0.0063 0.0668 0.1097 0.3113

ARCH(1) with jumps 0.0047 0.0553 0.0071 0.0703 0.0894 0.2811
GARCH(1,1) with jumps 0.0041 0.0515 0.0086 0.0786 0.0777 0.2630

GARCH-T(1,1) with jumps 0.0056 0.0607 0.0064 0.0675 0.1036 0.3027
Schwartz and Smith 0.0003∗ 0.0152∗ 0.0005∗ 0.0163∗ 0.0005∗ 0.0165∗

Our results for estimation with spot prices can be summarized as follows. For daily
and weekly frequencies (Tables 1 and 2, respectively), the mean-reverting model of Schwartz
and Smith (2000), with stochastic convenience yield, emerges as the best model for all of the
forecast horizons considered.9 Random-walk models with GARCH and jumps or asymmetries
seem the second-best specification for the high-frequency data, where allowing for student-t
innovations seems to pay off only at longer horizons. Nevertheless, these second-best models
perform dramatically worse than the mean-reverting one.

Evidence in favour of mean reversion is less conclusive at the monthly frequency (Table
3). The mean-reverting model still dominates for the three-year horizon. However, given a
one-year forecast horizon, the GARCH-in-mean random-walk model outperforms Schwartz
and Smith’s (2000) specification. For the five-year forecast horizon, the mean-reverting model
minimizes the MSPE criterion, while the random walk with GARCH-in-mean minimizes the

9Recall that the classical unit-root tests we ran all rejected mean reversion. These results agree with
Pindyck’s (1999) arguments, which advocate time-varying parameter models as an alternative to unit-root
testing in models of commodity prices.
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Table 3: Monthly Frequency, spot prices

Forecast horizon One year Three years Five years
MSPE MAPE MSPE MAPE MSPE MAPE

ARCH(1) 0.0030 0.0438 0.0149 0.1103 0.0299 0.1586
GARCH(1,1) 0.0041 0.0516 0.0099 0.0869 0.0304 0.1599

GARCH-M(1,1) 0.0008∗ 0.0215∗ 0.0508 0.2123 0.0291 0.1560∗

EGARCH(1,1) 0.0033 0.0461 0.0127 0.1006 0.0301 0.1592
GARCH-T(1,1) 0.0055 0.0599 0.0068 0.0694 0.0309 0.1615

ARCH(1) with jumps 0.0028 0.0419 0.0154 0.1115 0.0299 0.1585
GARCH(1,1) with jumps 0.0042 0.0521 0.0164 0.1161 0.0298 0.1583

GARCH-T(1,1) with jumps 0.0056 0.0612 0.0063 0.0663 0.0311 0.1619
Schwartz and Smith 0.0008∗ 0.0242 0.0009∗ 0.0255∗ 0.0017∗ 0.1638

MAPE. Interestingly, Beck (2001), using yearly data on a large sample of commodities, fails to
identify ARCH-M effects, despite the fact that her underlying theoretical model links ARCH-
in-mean effects in storable commodities to risk aversion and rational expectation. Beck’s
self-acknowledged counterintuitive empirical results can therefore perhaps be explained by
her particular choice of sample frequency and span. We find support for Beck’s theoretical
arguments for the case of aluminium with monthly data, suggesting that expected price risk
does indeed seem to affect price behaviour.

Note that these results were obtained using forecasts with model estimates being updated
at every step. In its short-run/long-run form, and because of its well-defined state-space form
(where forecast errors are easily obtained from the Kalman filter), Schwartz and Smith’s
(2000) model is straightforward to interpret and to use for forecasting purposes with high-
frequency data. Our comparative analysis underscores the merit of this model, and motivates
further improvements to it. As Schwartz and Smith (2000) outline, these include improving
the long-run equation (incorporating, for example, formulations as in Pindyck 1999), or the
short-run one, by adding discrete jumps.

4. Conclusion

In this paper, we compare several stochastic models for aluminium prices, focusing on fore-
cast performance. The models differ regarding the assumptions related to mean reversion
and structural discontinuities (time-varying first and second moments). Three empirical
results emerge from our work: (i) there are both jump and (G)ARCH effects in random-
walk specifications estimated with high-frequency data, (ii) random-walk formulations with
(G)ARCH-M effects dominate to some extent at monthly frequencies, and (iii) the mean-
reverting short-run/long-run model of Schwartz and Smith (2000) performs markedly better
than all of the other models at daily and weekly frequencies. With respect to the latter
category of models, we concur with Cortazar and Schwartz (2003) that it is unfortunate that
practitioners have been slow to adopt such specifications. Indeed, our results provide clear
motivation for increased practical and theoretical work regarding these kinds of multifactor
time-varying parameter models.
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