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Abstract

How can policy-makers avoid large policy errors when they are uncertain about the true model of

the economy? The author discusses some recent approaches that can be used for that purpose

under two alternative scenarios: (i) the policy-maker has one reference model for choosing policy

but cannot take a stand as to how that model is misspecified, and (ii) the policy-maker, being

uncertain about the economy’s true structure, entertains multiple distinct models of the

economy. The author shows how these approaches can be implemented in practice using as

benchmark models simplified versions of Fuhrer and Moore (1995) and Christiano, Eichenbaum,

and Evans (2005).

JEL classification: E5, E58, D8, D81
Bank classification: Uncertainty and monetary policy

Résumé

Comment les autorités peuvent-elles éviter de grosses erreurs dans le choix de leur politique

monétaire lorsqu’elles ne savent pas quel modèle de l’économie est le plus indiqué? L’auteur

expose quelques-unes des méthodes avancées récemment à cette fin en distinguant deux cas de

figure : i) les décideurs se réfèrent à un seul modèle, mais ignorent lesquels de ses éléments ont

été mal spécifiés; ii) les décideurs retiennent plusieurs modèles différents parce qu’ils ne

connaissent pas la véritable structure de l’économie. En s’appuyant sur des versions simplifiées

des modèles proposés par Fuhrer et Moore (1995) et par Christiano, Eichenbaum et Evans (2005),

l’auteur montre comment les méthodes considérées peuvent être mises concrètement à profit.

Classification JEL : E5, E58, D8, D81
Classification de la Banque : Incertitude et politique monétaire



1. Introduction

Suppose that, as a policy-maker at the Bank of Canada, you are presented with Figure 1.

The solid line shows how inflation and the output gap respond to an unanticipated 1 per

cent increase in the nominal interest rate according to a simplified version of the Fuhrer and

Moore (1995) model (hereafter, FM model) estimated for Canada. The dotted line shows

the corresponding impulse responses according to a simplified version of the Christiano,

Eichenbaum, and Evans (2005) model (hereafter, CEE model)(see Dennis 2004), calibrated

for the Canadian economy.
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Figure 1: Different models imply differences in the policy transmission mechanism

Now suppose, for the sake of argument, that you are uncertain about which model is the most

relevant for the Canadian economy, but you need to set monetary policy by appropriately

choosing the nominal interest rate. Figure 1 illustrates that the decision problem in the

face of this uncertainty is likely to be non-trivial. On the one hand, both models seem

to be consistent with economic theory: an unanticipated increase in the interest rate has

downward effects on inflation and the output gap. However, the models generate markedly

different predictions as to how policy affects the policy-relevant variables, in terms of the
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magnitude of effects, the duration of the effects, and the dynamic path of those variables

after the change in policy. And because they have different implications about the policy

transmission mechanism, the models will, in general, lead to different policy implications.

Indeed, a policy-maker concerned with controlling inflation, who believes that the Canadian

economy is well represented by the CEE model, will presumably consider that increasing

the interest rate is an effective way of combatting inflation; a 1 per cent increase in the

interest rate reduces inflation by 0.72 per cent after 4 quarters, and inflation is stabilized

after about 16 quarters. If a policy-maker, however, views the FM model as the reference

model for Canada, then that policy-maker will presumably consider that the interest rate is

not a very effective instrument for controlling inflation; a 1 per cent increase in the interest

rate reduces inflation by 0.07 per cent after 14 quarters!

The root of the difficulty in choosing policy in the above example lies in the fact that

the policy-maker entertains two models of the economy that predict fairly different effects

of policy. In practice, it is not unusual to find different departments in central banks

using different models to help their policy analysis. At the Bank of Canada, the Research

Department uses TOTEM (Binette, Murchison, Perrier, and Rennison 2004) and policy

analysis, while the Monetary and Financial Analysis Department is currently developing a

model that emphasizes household sector financial frictions in the economy (Gammoudi and

Mendes 2005). But even if the policy-maker uses one reference model for policy analysis, it

does not mean that model uncertainty is not a concern. Indeed, any model is a simplification

of a more complex reality. So, what if the reference model is misspecified? What if the model

is built around an economic paradigm that is further than assumed from the economic

reality? Or what if it ignores economic relationships that are in fact relevant?

In this paper, we discuss some recent approaches to dealing with model uncertainty where

the policy-maker has one reference model for policy-making or has multiple reference models.

We present the theoretical ideas behind each approach, use simple examples to illustrate

what each approach does, and discuss when a particular approach may be preferable. But

we do not limit ourselves to a theoretical discussion. We show how to sensibly determine

the various parameters that a theoretical discussion takes for granted that are nonetheless

essential ingredients in practical applications. We also work through the implementation

using as a benchmark the simplified CEE and FM models (described in section 3.1).

The rest of this paper is organized as follows. Section 2 discusses the theory behind

robust control and other concepts that are necessary for implementing robust control in
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practice. Section 3 implements robust control in the CEE and FM models. Section 4

describes various multiple-model approaches (Bayesian, worst-case, and trade-off (Cateau

2005)), and implements the methods when the policy-maker is uncertain between the CEE

and FM models. Section 5 offers some conclusions.

2. Robust Control

2.1 The intuition behind robust control

Suppose, to start, that the policy-maker has one model of the economy. Suppose further

that the policy-maker considers it a good approximating model of the economy, but feels

that it may deviate from some unknown true model in possibly important ways. How should

the policy-maker make decisions in such a situation? Robust control is designed to work

well in this scenario.

The main feature of robust control is that it formally allows the decision-maker to rec-

ognize that data may not be generated by the approximating model but by an unknown

member of a set of models near the approximating model. Robust control provides a way

for the decision-maker to make decisions that would perform well over the set of nearby

models. Therefore, robust control aims to yield decisions that would work reasonably well

even if the approximating model does not coincide with the true data-generating model, as

opposed to decisions that would be the best if they do coincide but possibly very bad if they

do not.

r

rf0
f
©©©©*

S(ω) ≤ ξ

Figure 2: Robust decision making

In Figure 2, the decision-maker specifies a model, f , but suspects that the data are actually

generated by a nearby model, f0, which cannot be specified. In robust control, the decision-
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maker confronts the model uncertainty by first recognizing that there are specification errors

(say, ω) and then seeking a decision rule that will work well, not only for the approximating

model but for a set of models in the neighbourhood of f . To express the idea that f is

a good approximating model, the neighbourhood of f for which the decision-maker wants

a decision rule that works well is restricted to the set of models for which the size of the

specification errors (say, S(ω)) is bounded by a certain value, ξ. Thus, ξ represents how

much the decision-maker believes that f is a good approximating model. A larger ξ means

that the decision-maker believes the true model is further apart and therefore considers a

wider set of models around f , and vice versa. Finally, to ensure that the decisions made

perform well even when f 6= f0, robust control instructs the decision-maker to make decisions

according to the worst-case model in the set.

2.2 Robust control à la Hansen-Sargent

Since Hansen and Sargent (2004), the literature on robust control has expanded considerably,

and there are now different ways of implementing robust control versions of decision-making

problems. The discussion below follows the approach of Hansen and Sargent (2004) because

it can be more easily implemented than the other approaches suggested in the literature

(Giannoni 2002, Onatski and Williams 2003), is non-parametric, and is general.

Let Xt be a vector of state variables and Ut be the vector of controls to be chosen at

time t, and let the policy-maker’s model take the form of the linear transition law,

Xt+1 = AXt + BUt + Cε̌t+1, (1)

where {ε̌t} is an identically, independently distributed (i.i.d.) shock process with mean

0 and identity covariance matrix. Suppose that the policy-maker regards model (1) as

approximating another model that he cannot specify. How should the notion that model

(1) is misspecified be represented? The i.i.d. process {ε̌t}, by definition, can represent

only a very limited class of approximation errors and, in particular, it cannot represent

misspecified dynamics, since it does not influence the conditional mean of the state. To

represent dynamic misspecification, Hansen and Sargent (2004) suggest surrounding model

(1) by a set of models of the form

Xt+1 = AXt + BUt + C(εt+1 + ωt+1), (2)

where {εt} is another i.i.d. shock process with mean 0 and identity covariance matrix, ωt+1
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is a vector process that can feed back on the history of Xt in a possibly non-linear way,

ωt+1 = gt(Xt, Xt−1, ...),

and gt is a sequence of measurable functions. In what sense does augmenting model (1) to (2)

allow for dynamic misspecification? When model (2) generates the data, the errors {ε̌t} of

model (1) have conditional mean ωt+1, rather than 0. Thus, the idea that the approximating

model is misspecified is captured by allowing the conditional mean of the shock process of

model (2) that actually generates the data to feed back on the history of the state.

To express the idea that model (1) is a good approximation when model (2) generates

the data, the misspecification errors must not be unbounded. Hansen and Sargent (2004)

restrain the approximation errors by

E0

∞∑
t=0

βt+1ω′t+1ωt+1 ≤ η0, (3)

where Et denotes mathematical expectation conditioned on X t = (Xt, Xt−1, Xt−2, ...) calcu-

lated with model (2).

The policy-maker believes that the data are generated by model (2) with some unknown

process, ωt+1, satisfying (3). The policy-maker’s distrust of the approximating model leads

the policy-maker to want decision rules that perform well over a set of models (2) satisfying

(3). The robust decision rule is obtained by solving

min
{Ut}

max
{ωt+1}

E0

∞∑
t=0

βt {X ′
tQXt + U ′

tRUt} (4)

subject to (2), given (3) and X0. Therefore, robust control involves switching from a typical

minimization problem (the policy-maker minimizes the loss function) to an appropriately

specified min-max problem.1 The policy function that the policy-maker ultimately chooses is

best understood as the equilibrium outcome of a two-player game: the policy-maker chooses

the best possible policy, given that a fictitious evil agent whose purpose is to hurt the policy-

maker as much as possible chooses the worst model from the possible set of models. The

1In Appendix A, I work out the solution to the above robust control problem. For generality, I assume that
Xt includes both backward-looking state variables (i.e., states inherited from the past) and forward-looking
variables (i.e., state variables not inherited from the past but that need to be determined in equilibrium).
I work out the mechanics of the robust solution under two cases: (i) the policy-maker chooses the fully
optimal policy rule (Ramsey solution), and (ii) the policy-maker chooses policy according to a simple rule.
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evil agent is a metaphor for the policy-maker being cautious. The policy-maker’s cautious

behaviour implies that the policy-maker wants a policy function (i.e., a Ut) that would

perform well should the worst possible model generate the data.

The robust control problem described above is set up as a constraint game. The con-

straint game directly constrains the distortions that the evil agent can make to the ap-

proximating model through the constraint (3). In practical applications, it is often more

convenient to set up the robust control problem as a multiplier game:

min
{Ut}

max
{ωt+1}

E0

∞∑
t=0

βt
{
X ′

tQXt + U ′
tRUt − θβω′t+1ωt+1

}
, (5)

subject to (1), given X0. Thus, the multiplier game penalizes the distortions that the evil

agent can make. Hansen and Sargent (2004) show that the two formulations are equivalent

under conditions that allow the Lagrange multiplier theorem to apply. Then θ can be

interpreted as a Lagrange multiplier on the constraint measuring the size of the set of

models. It is related to η0 in (3). Hansen and Sargent (2004), in fact, show that there

is a positive relationship between η0 and θ−1. Because θ = ∞ corresponds to η0 = 0,

θ corresponds to the case where the set of models collapses to the approximating model;

there is no desire for robustness.2 On the other hand, lowering θ and thereby increasing η0

increases the preference for robustness.

2.3 The sense in which robust control yields robust decision rules

To determine how robust control yields robust decisions, let us analyze a simple static robust

control problem that can be solved using pen and paper. Let U, π, πe be the unemployment

rate, the inflation rate, and the public’s expected rate of inflation, respectively, and suppose

that the policy-maker’s model is:

U = U∗ − γ(π − πe) + ε̂, (6)

2Equivalently consider setting θ to ∞ in (5). Since the objective is to minimize loss, θ = ∞ sets the loss
function to −∞ irrespective of the value that ωt+1 takes. Therefore, θ = ∞ corresponds to the case where
there is no role for the evil agent; the agent can do nothing to harm the policy-maker. This corresponds to
the case where there is no desire for robustness. Lowering θ, however, reduces the shadow price of achieving
some robustness. Hansen and Sargent (2004) show that there is a lower bound on θ below which θ cannot be
set. For values of θ below that bound, the evil agent is penalized so little for distorting the approximating
model that the agent can find a distortion that sends the loss function of the policy-maker to +∞.
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where γ > 0 and ε̂ is N(0, 1). Thus, U∗ is the natural rate of unemployment that prevails on

average if π = πe. The policy-maker sets π, the public sets πe, and nature draws ε̂. Suppose

that the policy-maker believes that the model may be misspecified and, as a result, suppose

that the policy-maker views (6) as an approximation because of a suspicion that U may

actually be governed by

U = U∗ − γ(π − πe) + ε + w, (7)

where ε is another random variable distributed as N(0, 1) and w is an unknown distortion

to the mean. Thus, the policy-maker suspects that the natural rate of unemployment might

be U∗ + w for some unknown w. The policy-maker, however, knowing that (6) is a good

approximating model, knows that the distortion is not too big. To capture that notion,

suppose that the policy-maker considers distortions that fall in the set:

w2 ≤ ξ. (8)

Therefore, the policy-maker, although unable to determine the distortion to the mean, knows

that the squared deviation is bounded by ξ.

Assume that the policy-maker sets inflation, π, to minimize the loss function,

E(U2 + π2).

In robust control, given that the policy-maker believes that (7) generates U , the policy-maker

takes πe as given and chooses π so that:

min
π

max
w

E(U2 + π2)

subject to (7), (8).

In other words, the policy-maker chooses π such that it works well for the worst possible

distortion, w, that falls in the set given by (8). The above robust control problem can be

solved by writing the Lagrangian

L(π, w, θ) = (U∗ − γ(π − πe) + w)2 + π2 − θw2, (9)

where θ can be seen as the Lagrange multiplier3 for constraint (8), and ε and the expectation

operator are omitted without loss of generality, because of certainty equivalence. The first-

3As mentioned in section 2.2, there is a connection between θ and ξ. For now, we take this as given, but
in section 2.4 we describe how to pin down a reasonable θ using detection probabilities.
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order conditions are:

π : π = γ(U∗ − γ(π − πe) + w), (10)

w : θw = U∗ − γ(π − πe) + w. (11)

Using (10) and (11), we can solve for the optimal π and w. These yield

π(θ−1) =

(
γ

(1 + γ2)− θ−1

)
(U∗ + γπe), (12)

w(θ−1) =

(
θ−1

(1 + γ2)− θ−1

)
(U∗ + γπe). (13)

The solutions (12) and (13) for π and w, respectively, are in terms of the inverse of the

multiplier. Define σ = θ−1 and consider Figure 3.
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Figure 3: The sense in which robust control yields robustness

Figure 3 illustrates the sense in which robust control yields a robust decision for π. We
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assume that U∗ = 4, γ = 1, and take πe = 2 as given. The graph plots the value of

E(U2 + π2) associated with setting π = π(σ1) when w = w(σ2). The idea, therefore, is to

check how costly it is to make mistakes: inflation is set according to a certain assumption on

the size of the specification error, which may turn out to be wrong. σ2 is varied between 0

and 4.5, while σ1 is allowed to take two values: 0, and 5. The solid line is the value of the loss

criterion for σ1 = 0, while the dotted line refers to σ1 = 5. Notice how the two curves cross:

the σ1 = 0 curve minimizes loss when there is no specification error (i.e., σ2 = 0, which

implies w = 0), but its performance deteriorates rapidly as the specification error increases

along the σ2 axis. The robust rule, on the other hand, sacrifices performance when there is

no distortion to the mean. But its performance deteriorates less rapidly as the specification

error increases.

2.4 Choosing the degree of robustness, θ: detection-error

probabilities

So far, we have taken θ as given; thus, the policy-maker knows the size of the set of models

surrounding the approximating model to consider in the robust decision-making problem.

But how can the policy-maker determine the size of the set of surrounding models in practice?

This question is particularly important in a linear quadratic set-up, because the evil agent’s

constraint always binds.4 Therefore, a policy-maker who gets ready for the worst chooses

decision rules for policy tailored on a model lying on the boundary of the set of models from

which the evil agent can choose. The decision rules in a linear quadratic robust control

problem will hence depend on θ. It is therefore crucial to make a sensible choice for θ.

As a guide to choosing θ, Hansen and Sargent (2004) suggest a detection-error-probability

approach based on the idea that if it is difficult to statistically distinguish between the models

in the set, in a data sample of finite size, then there is a possibility of making the wrong

choice of models when determining the true data-generating model. Hansen and Sargent’s

detection-error-probability approach disciplines the choice of θ by linking it to the probability

of making the wrong choice of model. Essentially, this is how the approach works: (i) the

decision-maker takes an agnostic position on whether the true data-generating process is

given by the approximating model or the worst-case model, (ii) he computes the detection-

error probability, i.e., probability of making the wrong choice between the two models on

4Since first-order conditions are linear, the most the evil agent can hurt the policy-maker is by choosing
a model that deviates the most from the approximating model. Thus, the best choice the evil agent can
make is to choose a model on the boundary of the set of models.
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the basis of in-sample fit in a data-sample of finite size, (iii) he chooses θ on the basis of the

detection-error probability that he wants to achieve. In the sections below, we give a more

formal definition of the detection-error probabilities; we describe how to compute them and

how they can be related to θ.

2.4.1 Detection-error probabilities and the degree of robustness

Consider the approximating model (1) and the distorted model (2). For a given decision

rule Ut = FXt and a worst-case distortion ωt+1 = K(θ)Xt when the degree of robustness is

θ, define A0 = A + BF and Â = A + BF + CK(θ). The approximating model can then be

depicted as

Xt+1 = A0Xt + Cε̌t+1 (14)

and the distorted model can be represented as

Xt+1 = ÂXt + Cεt+1. (15)

Now assume that ε̌t+1 and εt+1 are both Gaussion vector process with mean 0 and

identity covariance matrices. Detection error probabilities are calculated from likelihood

ratios. Thus, consider our two alternative models. Model A is the approximating model

(14), and model B is the distorted model (15) associated with the context-specific worst-case

shock implied by θ. Consider a fixed sample of observations on the state xt, t = 0, ..., T − 1.

Let Lij be the likelihood of that sample for model j assuming that model i generates the

data. Define the log-likelihood ratio

ri ≡ log
Lii

Lij

, (16)

where j 6= i and i = A,B. When model i generates the data, ri should be positive. But in

a sample of finite size, we may mistakenly conclude that model j generates the data if Lij

turns out to be greater than Lii. So supposing that we replicated data a large number of

times and computed the likelihood ratio ri for each sample, the probability of mistakenly

concluding that model j generates the data when in fact model i is the true data-generating

model is

pi = freq(ri ≤ 0). (17)

Thus, pi is the frequency of negative log-likelihood ratios ri when model i is true. Hansen
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and Sargent (2004) call the probability of a detection error

p(θ) =
1

2
(pA + pB). (18)

The probability of a detection error is therefore the average of two kinds of mistakes: (i)

concluding that model B generates the data when it is in fact model A and (ii) concluding

that model A generates data when it is in fact model B. Here, θ is the robustness parameter

used to generate a particular distorted model B. In a given context, Hansen and Sargent

(2004) propose to choose θ by setting p(θ) to a reasonable number and then inverting p(θ).

In other words, if the decision-maker wanted to achieve a detection error probability of 10

per cent, he would pick the θ, say θ̂, that yields p(θ̂) = 0.1.

2.4.2 Computing detection-error probabilities

We now derive formulae for Lii and Ljj and provide a recipe for computing detection-error

probabilities under our assumption that ε̌t+1 and εt+1 are Gaussian processes with mean 0

and identity covariance matrix. First notice that we can relate the innovations under the

approximating model and worst-case model by

ε̌t+1 = ωt+1 + εt+1

= K(θ)Xt + εt+1.

Now suppose that the approximating model is the true data-generating model. Defining

XA
t as data generated from the approximating model and ωA

t+1 = K(θ)XA
t as the worst-

case distortion, the relationship between the innovations when the approximating model

generates data is

ε̌t+1 = ωA
t+1 + εt+1.

The log-likelihood under the approximating model is

logLAA = − 1

T

T−1∑
t=0

{
log
√

2π +
1

2
(ε̌t+1 · ε̌t+1)

}
. (19)
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The log-likelihood for the distorted model, given that the approximating model (14) is the

data-generating process, is

logLAB = − 1

T

T−1∑
t=0

{
log
√

2π +
1

2
(εt+1 · εt+1)

}
(20)

= − 1

T

T−1∑
t=0

{
log
√

2π +
1

2
(ε̌t+1 − wA

t+1)
′
(ε̌t+1 − wA

t+1)
}
. (21)

Hence, assuming that the approximating model is the data-generating process, the likelihood

ratio rA is

rA ≡ logLAA − logLAB, (22)

=
1

T

T−1∑
t=0

{1

2
wA

t+1

′
wA

t+1 − wA
t+1

′
ε̌t+1

}
. (23)

Suppose, on the other hand, that the distorted model (15) generates the data. Defining

ωB
t+1 = K(θ)XB

t as the worst-case distortion where XB
t is generated from the distorted

model, we can similarly show that

rB ≡ logLBB − logLBA, (24)

=
1

T

T−1∑
t=0

{1

2
wB

t+1

′
wB

t+1 + wB
t+1

′
εt+1

}
. (25)

Now that we know how to compute the likelihood ratios for a given sample of size T , we

compute the detection-error probability as follows:

(i) For a given θ, compute F and K(θ) given the distorted model (2) and the loss function

of the policy-maker.

(ii) For a given θ, use F and K(θ) to pin down matrices A0 and Â for the approximating

model (14) and distorted model (15), respectively. Generate a sample j, {XA
j,t : t =

0, 1, ..., T} according to the approximating model and a sample {XB
j,t : t = 0, 1, ..., T}

according to the distorted model. Compute the likelihood ratios rA and rB for sample

j according to (23) and (25) respectively.

(iii) Repeat steps 2 and 3 above for samples j = 1, ..., J . Compute pi = freq(ri < 0), i =

A,B and compute the detection-error probability p(θ) = 1
2
(pA + pB).

(iv) Repeat steps 1, 2, and 3 for different θs. This will give us a profile linking p(θ) and θ.

12



(v) Supposing that the decision-maker wants to achieve a detection-error probability of

p∗, determine the degree of robustness that will yield a detection-error probability of

p∗ as p(θ∗) = p∗.

3. Implementing Robust Control

We now consider a policy-maker whose problem is to set monetary policy according to the

following simple rule

it = ρiit−1 + ρππt + ρxxt. (26)

The policy-maker has a well-defined reference model for carrying policy analysis but is,

however, concerned that the reference model may depart from the economic reality in some

unknown but potentially important way. As a result, the policy-maker uses robust control

to allow for those unknown deviations. In the analysis that follows, we will apply robust

control in turn to two candidate reference models: a simplified version of Fuhrer and Moore

(1995) and a simplified version of Christiano, Eichenbaum, and Evans (2005). Our objective

is to compute the theoretical objects defined in section 2 and provide a practical example

of how robust control affects policy choice under different models.

3.1 The models

The first model we consider is a simplified version of Fuhrer and Moore (1995) which we

estimate for Canada over the period 1962Q1-2005Q1 by full information maximum likeli-

hood.5 The version of Fuhrer and Moore (1995) that we estimate assumes a world where

agents negotiate nominal-wage contracts that remain in effect for three quarters. Inflation

is defined as

πt = 4(pt − pt−1) (27)

and the price index, pt, is defined as a moving average of current and past nominal contract

prices, wt:

pt =
3∑

i=0

fiwt−i, (28)

5We use the AIM algorithm to implement this. See Anderson and Moore (1985).
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where the weight, fi, is given by fi = 1/3 + (1 − i)s. The real contract price index, vt, is

defined as the weighted average of current and past real contract prices, wt − pt:

vt =
2∑

i=0

fi(wt−i − pt−i). (29)

Agents determine the current real contract price as a function of the real contract prices

that are expected to prevail over the duration of the contract, adjusted for excess demand

conditions and an identically, independently distributed (i.i.d.) shock,

wt − pt =
2∑

i=0

fiEt(vt+i + cx xt+i) + εw,t. (30)

The aggregate demand relation makes the output gap a function of its own lags and the ex

ante long-term real interest rate, ρt:

xt = a1xt−1 + a2xt−2 − aρρt−1 + εx,t. (31)

ρt is defined, according to the pure expectations’ hypothesis, as a weighted average of the

future short-term real interest rate,

ρt = d Etρt+1 + (1− d)(it − Etπt+1). (32)

We set d to 40/41, or an average bond-holding period of 40 quarters (see Fuhrer and Moore

1995). Therefore, in the FM model, the short-term nominal interest rate it - the policy-

maker’s policy instrument - influences the output gap only through its effect on the long-term

interest rate.

The second model we consider follows Dennis (2003) to derive a simplified version of

Christiano, Eichenbaum, and Evans (2005). The model assumes that a fixed proportion

of firms 1 − ξp re-optimize their price every period (Calvo 1983). The remaining propor-

tion of firms, ξp, indexes their price change to last period’s inflation rate following Chris-

tiano, Eichenbaum, and Evans (2005). The first-order condition for optimal price-setting,

combined with price-indexation by non-optimizing firms and log-linearized around a non-

stochastic steady state, yields the transition equation for inflation:

πt =
1

1 + β
πt−1 +

β

1 + β
Etπt+1 +

(1− βξp)(1− ξp)

(1 + β)ξp

(xt + ut) (33)
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where β is the discount rate and ut is an i.i.d. shock.6 Dennis (2003) assumes household pref-

erences to exhibit habit formation. The log-linearized first-order condition for the household

consumption decision yields the transition equation for the output gap:

xt =
γ

1 + γ
xt−1 +

1

1 + γ
Etxt+11 − 1− γ

σ(1 + γ)
Et(it − πt+1 − gt) (34)

where γ is the parameter indexing the degree of habit formation, σ is the parameter deter-

mining the curvature of the household’s utility function with respect to consumption relative

to habit, and gt is an i.i.d. shock. Following Murchison, Rennison, and Zhu (2004), we set

β = 0.99, γ = 0.85, σ = 1/0.92, and ξp = 0.5. We then calibrate the standard errors of ut

and gt so that the long-run variances of inflation, output gap, and interest rate match those

estimated from a VAR (see Appendix D).

The policy-maker is assumed to set it according to the simple rule (26) to minimize a

weighted average of the squared deviations of inflation, output gap, and the change in the

interest rate:

E0

∞∑
t=0

{
π2

t + ωx2
t + ν∆i2t

}
. (35)

Both the FM and CEE models can be put in state space form to fit equation (1) once we

determine the forward-looking and predetermined state variables. Once the state vector is

determined, we can similarly write (35) in the quadratic form given in (4). The solution

methods described in Appendixes A and B can therefore be applied. To implement robust

control, it is necessary to choose θ; i.e., the size of the set of models surrounding the reference

model. In the next section, we compute detection probabilities to discipline the choice of θ.

3.2 Detection probabilities

We follow the steps in section 2.4.2 to compute detection probabilities for each model and

make a suitable choice of θ, which dictates the size of the set of models the policy-maker

considers when developing policy. Figure 4 plots the detection-error probabilities for distin-

guishing the FM model from the worst-case models associated with various choices of θ−1.

Notice that when θ−1 = 0, the detection-error probability is 0.5. This is what it should

be since, when θ−1 = 0, the approximating and the worst-case model are the same. When

θ−1 increases, we admit more models in the set of models surrounding the approximating

model. As a result, the probability of distinguishing the approximating model from the

6The i.i.d. shock appears because the f.o.c. relates inflation to the firm’s marginal cost, mct, which is
assumed to be related to the output gap by mct = xt + ut.
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Figure 4: Detection-error probabilities for the FM model

worst-case model declines. Hansen and Sargent (2004) recommend choosing values of θ−1

that correspond to detection-error probabilities from 10 to 25 per cent, on a case-by-case

basis. For the FM model, this range suggest values of θ−1 from 0.66 to 0.55.
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Figure 5: Detection-error probabilities for the CEE model

Figure 5 similarly plots the detection-error probabilities for the CEE model. The values of

θ−1 corresponding to detection-error probabilities of 10 and 25 per cent are 0.2 and 0.11,

respectively.
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3.3 Effects of concerns for robustness on monetary policy

Table 1: FM Model: how coefficients of the simple rule vary with θ−1

θ−1 ρi ρπ ρx

0 0.8629 0.9594 0.5316
0.1000 0.8524 1.0238 0.4962
0.2000 0.8390 1.1059 0.4581
0.3000 0.8222 1.2114 0.4161
0.4000 0.7993 1.3605 0.3696
0.5000 0.7666 1.5883 0.3162

Table 1 shows how the coefficients of the rule change as we increase θ−1 from 0 to 0.5 when

the reference model is the FM model. Recall that when θ−1 = 0, there is no concern for

robustness. The optimal rule in that case requires the policy-maker to put a weight of 0.86

on interest rate inertia and weights of 0.96 and 0.53 on contemporaneous inflation and the

output gap, respectively. But as θ−1 increases, optimal policy changes in three ways: first,

the policy-maker gives less and less importance to interest rate inertia; second, the policy-

maker responds with a smaller weight to contemporaneous output gap; and third, the policy-

maker responds more aggressively to contemporaneous inflation. Why does that happen?

Figure 6 shows how the dynamic responses of inflation, the output gap, and interest rate

vary with respect to the two shocks in the FM model: εw,t, the real contract price shock, and

εx,t, the output gap shock. We see that in contrast to the approximating model, the worst-

case model when θ−1 = 0.5 makes the effect of a real contract price shock and output gap

shock on inflation and output more persistent. Indeed, in the worst-case model, a contract

price shock increases inflation more importantly than the approximating model, and its

effect takes 25 quarters to die out (relative to 17 quarters in the approximating model). On

the other hand, a real contract price shock yields a more pronounced decline in the output

gap, and the effect dies out after more than 30 quarters (relative to 28 in the approximating

model). Similarly, the worst-case model also makes the effects of an output gap shock on

inflation and the output gap bigger and more persistent. By virtue of those more important

and persistent positive effects on inflation and more important persistent declines in the

output gap, the optimal policy rule in the worst-case model is to respond more aggressively

to contemporaneous inflation and less aggressively to the contemporaneous output gap.

Note that although the policy-maker chooses a lower degree of inertia, the worst-case model

prescribes more important positive effects on the interest rate. The worst-case model also

makes the effects of an output gap shock bigger and more persistent.
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Figure 6: FM model: Approximating model vs worst-case model (θ = 0.5)

Table 2 displays the coefficients of the policy rule for various choices of θ−1 for the

Dennis model. When there is no concern for robustness, the optimal policy rule requires a

high degree of inertia in the interest rate (0.95), a relatively high weight to contemporaneous

inflation (1.89), and a moderate response to the output gap (0.66). When we increase θ−1, we

first notice that for θ−1 = 0.22 (the size of θ−1) corresponding to a detection-error probability

of 25 per cent, the optimal policy rule remains virtually unchanged. Even for very high values

of θ−1, which according to the detection-error probability criterion is too high, we end up

with policy rules that are quantitatively quite close to the θ−1 = 0 rule. Figure 7 confirms

why this is the case. The dotted lines are the impulse responses of the worst-case model

when θ−1 = 10. We see that even for a high value of θ−1, the worst-case model predicts

that inflation and the output gap respond to the output gap shock and inflation shock with

almost the same magnitude and the same persistence as the approximating model. As a

result, the optimal policy rule that works best in the worst-case model also works well in
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Table 2: How coefficients of the simple rule vary with θ−1

θ−1 ρi ρπ ρx

0 0.9502 1.8859 0.6607
0.22 0.9501 1.8862 0.6604
1.00 0.9498 1.8870 0.6596
5.00 0.9482 1.8912 0.6552
10.00 0.9461 1.8966 0.6497
30.00 0.9367 1.9191 0.6262
50.00 0.9255 1.9432 0.6008
70.00 0.9122 1.9691 0.5729
100.00 0.8878 2.0115 0.5250

the approximating model.

The above result illustrates one stand on which the robust control approach to dealing

with model uncertainty has been criticized. Robust control assumes that the policy-maker’s

approximating model is a good reference model. The reference model posits the structural

features of the economy and robust control constructs a set of models in the neighbourhood

of that model for decision making. A sensible degree of robustness (a sensible θ−1), however,

may yield a set of models that do not differ much from the approximating model. While

this may be suitable when the policy-maker is confident that the reference model captures

the main features of the economy, it may not as suitable when the policy-maker has more

than one reference model that behaves differently.

From a practical point of view, it is in fact not unusual for policy-makers in central banks

to be willing to consider predictions from different models that emphasize different economic

paradigms to reduce the risk of policy errors (Engert and Selody 1998). Indeed, central banks

are often composed of different departments, each of which uses a particular model to inform

their policy judgment. At the Bank of Canada, for instance, although QPM has been the

main model used for policy analysis over the past decade, the MFA Department has used

the M1-VECM model - a model based on the paradigm that there is a unique cointegrating

relationship between M1, real GDP, the consumer price index, and the interest rate - to

produce the Blue Book. Perhaps more importantly, significant resources are currently being

devoted to developing new DSGE models for policy analysis. MFA, for instance, is currently

developing a model that will emphasize household sector financial frictions in the economy

(Gammoudi and Mendes 2005). The Research Department is currently developing TOTEM
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(Binette, Murchison, Perrier, and Rennison 2004) - a new model that will be used for both

economic projections and policy analysis. Since these models will be non-nested models, it is

probably not far-fetched to imagine that they will have different predictions along different

economic dimensions.7 So, how should the Bank deal with model uncertainty when it does

not have one but two or more reference models that it considers relevant for policy making?

In the next section, we present various approaches for making decisions when the policy-

maker considers more than one model for policy-making.
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Figure 7: CEE model: Approximating model vs worst-case model (θ = 10)

4. Multiple-Model Approaches

Suppose that the true data-generating model is G, but that the policy-maker does not know

it. Suppose also that, being faced with competing theories suggesting different models, the

7The models cited in this paragraph are not an exhaustive list of the models that can be used for policy
analysis at the Bank of Canada. Ortega and Rebei (2005), for instance, can analyze optimal policy in the
context of a multi-sector small open-economy model estimated for the Canadian economy.
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policy-maker finds it difficult to settle on a particular model. As a result, suppose that the

policy-maker considers {Gk, k = 1, ..., n} as the set of distinct plausible models, albeit with

varying degrees of belief. Assume that πk is the weight that the policy-maker attaches to

the relevance of model k such that
∑

k πk = 1.

Moreover, suppose that the policy-maker is given a set of feasible rules,

{K(γ), γ ∈ Γ}, (36)

and a loss function,

vk(γ) = V (Gk, K(γ)),

which measures the loss of applying the rule K(γ) when the model is Gk. The policy-maker’s

objective is to find one rule, say K(γ̂), that minimizes the loss given the policy-maker’s

inability to decide between the competing models.

4.1 Bayesian approach

One possible method of designing a rule that works reasonably well is to minimize the

Bayesian criterion function with respect to γ:

av(γ) =
n∑

k=1

πkvk(γ). (37)

What the Bayesian criterion says is that in the face of various plausible models, the policy-

maker, believing in each model, should simply try to do well on average. This approach

has the advantage that the least plausible models are given the least weight in the decision

process. Therefore, it is consistent with the idea that a rule that does not perform very

well in a particular model is permissible if that particular model is not very plausible; what

matters most is that the rule performs reasonably well in the models that are more likely

to be relevant. A disadvantage, however, is that there is no notion that the agent may care

about something more than the average performance. In particular, there is no notion that

the policy-maker may be unwilling to accept rules that yield very bad performances in some

models even though they may perform well on average. Therefore, there is no notion that

the agent may, per se, want to achieve some robustness.

To see how this can be pertinent, consider Figure 8. Figure 8 considers a policy-maker

who seeks to control the variability of inflation by changing the policy instrument, the
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Figure 8: The Bayesian approach

interest rate, with respect to changes in inflation. The policy-maker has two competing

reference models for policy-making. Model 1 requires that the policy-maker change the

interest rate by 1.9 per cent with respect to a 1 per cent change in inflation, while Model 2

requires that the policy-maker change the interest rate by 0.4 per cent, thus less aggressively.

Notice, however, that Model 2 is much more sensitive to policy changes than Model 1: small

increases in the interest rate above 0.4 per cent lead to relatively large increases in the

variance of inflation. In a situation like this, one can ask: should a policy-maker care only

about average performance, or should they also care about preventing those policy choices

that can lead to extreme performances in Model 2? If the policy-maker values robustness,

then the dotted curve illustrates that the Bayesian approach may not be appropriate. The

dotted curve corresponds to a case where the policy-maker assigns a weight of 0.9 to Model

1. The optimal Bayesian policy in that case is to change the interest rate by 1.4 per cent in

response to a 1 per cent change in inflation. This performs well on average given the beliefs

of the policy-maker, but it leads to very variable inflation in Model 2.
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4.2 Worst-case approach

An alternative approach that can yield robustness in the context of distinct models is the

worst-case approach. In the worst-case approach, the policy-maker chooses policy according

to the following criterion:

wc(γ) = max {v1(γ), v2(γ), ..., vn(γ)} . (38)

What the criterion above entails can again be illustrated by way of an example. Consider
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Figure 9: The worst-case approach

again the policy-maker with Model 1 and Model 2 as competing reference models for the

economy. With the worst-case approach, the policy-maker’s objective is to ensure that

the policy decision rule works reasonably well no matter which of the two models is true.

To do that, the policy-maker contemplates the policy choices and determines which model

fares the worst under each of these choices. Therefore, for the example in Figure 9, the

policy-maker determines that, for changes in the interest rate of less than 0.55 per cent,

the highest variability of inflation that can arise is given by Model 1 (thicker section of the

dotted curve) and conversely, for changes in the interest rate of more than 0.55 per cent,
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the highest variability of inflation that can arise is given by Model 2 (thicker section of the

solid curve). Therefore, the policy choice that would minimize the variability of inflation,

irrespective of Model 1 or Model 2 being the true model, is a change in the interest rate of

0.55 per cent.

The main advantage of the worst-case approach is that it does not require the decision-

maker to have beliefs about the plausibility of each model for decision making. Although

there are techniques for assigning weights to competing models, it may not always be easy

for the policy-maker to formulate priorities over a set of models. Therefore, a nice feature

of the worst-case approach is that it can be applied even when the decision-maker cannot

determine a reliable priority over a set of models. This property, however, turns out to

be a drawback when the policy-maker does have information that can help discriminate

between models. In that case, by neglecting information that may be relevant for assessing

the plausibility of each model, the worst-case approach can lead to corner solutions (as in

our example) that are much more restrictive than necessary, especially if the model leading

to the corner solution is not very plausible.

4.3 Trade-off between average performance and robustness

The worst-case approach can lead to robust decision rules that may be too conservative,

whereas the Bayesian approach yields decision rules that may not be sufficiently robust

although they perform well on average. An approach that balances the desire for good

average performance and a concern for robustness is suggested in Cateau (2005). Cateau

(2005) adapts the decision theory literature (see Klibanoff, Marinacci, and Mukerji 2002;

Segal 1990; and Ergin and Gul 2004) to suggest the criterion:

h(γ) =
n∑

k=1

πkφ( vk(γ) ). (39)

The main feature of criterion (39) is that: (i) it incorporates the beliefs that the decision-

maker may have about each model, as in the Bayesian approach, and (ii) it allows the

decision-maker to distinguish between the within-model risk (the risk which arises naturally

because the model is stochastic) and the across-model risk (the risk which is associated

with the multiplicity of models). The decision-maker allows for the across-model risk by

evaluating the performance of a model not only by its loss (e.g. how much variability

of inflation it leads to) but by a transform of that loss. That transform, as motivated by

Klibanoff, Marinacci, and Mukerji (2002), reflects the attitude of the decision-maker towards
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the across-model risk; basically, its curvature will represent the degree of aversion towards

the across-model risk.

The decision-maker’s care about the across-model risk leads them to decide to achieve a

balance between average performance and robustness. Indeed, Cateau (2005) shows that his

framework nests both the Bayesian approach and the worst-case approach as special cases:

the Bayesian approach is the special case where the decision-maker is neutral to the across-

model risk (the decision-maker’s degree of aversion towards the across-model risk is 0), and

the worst-case approach is the special case where the decision-maker’s degree of aversion

towards the across-model risk is infinite. Therefore, the degree of aversion towards the

across-model risk which reflects the attitude of the decision-maker towards model uncertainty

determines the extent to which the decision-maker wants to trade-off average performance

for robustness.
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Figure 10: Aversion to across-model risk

Figure 10 shows how accounting for the across-model risk helps the policy-maker to balance
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performance and robustness. I assume that the policy-maker re-evaluates the performance

of a particular model by transforming the variability of inflation it leads to, say x, according

to a function, φ(x), which exhibits constant absolute across-model risk aversion,8 η. When

η = 0, the policy-maker is neutral to the across-model risk and therefore adopts a Bayesian

approach for dealing with indecision between Model 1 and Model 2. The solid curves in the

upper panel, as before, show how much variability of inflation, Model 1 and Model 2, lead

to under each policy choice. As in Figure 8, when the policy-maker assigns a weight of 0.9

to Model 1, the optimal policy choice is to change the interest rate by 1.4 per cent with

respect to a 1 per cent change in inflation (the solid curve in the lower panel). When the

policy-maker is averse to the across-model risk, the aversion forces the policy-maker to add

a risk premium to the cost of each model under each policy choice. The upper panel shows

that increasing the degree of aversion to the across-model risk shifts the loss profile of Model

2 upwards in a quantitatively more important way than that of Model 1. As a result, even

after giving a weight of 0.9 to Model 1, the more averse the policy-maker becomes, the more

the policy-maker prefers less aggressive policy to avoid bad performances in Model 2 (the

dotted and dashed curves reach their minimum at smaller changes in the interest rate). It

is in this sense that accounting for the across-model risk induces the policy-maker to search

for more robust policy.

4.3.1 Implementing the trade-off approach

The trade-off approach described above assumes that (i) the policy-maker can assign weights

to the models in the decision set, and (ii), the policy-maker knows their own degree of

aversion towards the across-model risk. To implement the approach, it is therefore important

to determine those parameters. Section 4.3.1 shows how one can use Bayes law to calculate

model weights from the data starting from a certain prior on the set of models. Section 4.3.1

shows how one can proceed to give economic meaning to the degree of aversion towards the

across-model risk.

Determining weights for models

Suppose that model i implies the transition equation9

xi
t+1 = axi

t + ciεi
t+1, (40)

8Figure 10 assumes that φ(x) = exp(ηx)−1
η such that η denotes the degree of aversion towards the across-

model risk.
9Think of this transition equation as resulting from the policy-maker’s linear-quadratic control problem

if the model is i.
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where xi
t is a vector of state variables that may be completely or only partially observed, and

εi
t+1 is a vector of Gaussian random variables with mean 0 and identity covariance matrix,

and let

yt+1 = hixi
t+1 (41)

be the vector of observable state variables.

Now suppose that πi,0 = P (mi) is the initial probability that the policy-maker assigns

to model i as time 0. The policy-maker can revise that probability at time t after observing

yt = (y0, y1, ..., yt) using Bayes law to derive:

πi,t = P (mi|yt)

=
P (yt|mi)P (mi)∑
j P (yt|mj)P (mj)

∝ P (yt|mi)P (mi)

= αi,t. (42)

Therefore, the posterior probability, πi,t, for model i is proportional to the marginalized

likelihood of the data according to model i weighted by the initial prior for model i. To

develop a recursion for πi,t, it is in fact easier to first develop a recursion for αi,t and then

normalize αi,t to relate it to πi,t. Consider the ratio

αi,t+1

αi,t

=
P (yt+1|mi)

P (yt|mi)
. (43)

Under the state space form (40) for model i and the assumption of normality for εi
t+1, we

can use the Kalman filter to construct the marginalized likelihood in the numerator and

denominator. In fact, if εi
t+1 is independent across time, since

P (yt+1|mi) =
t∏

τ=0

P (yτ+1|yτ ,mi), (44)

we can further simplify (43) to

αi,t+1

αi,t

= P (yt+1|yt,mi). (45)

Therefore, αi,t+1 gets updated every period according to the contribution that the time t+1

piece of data, yt+1, makes to the marginalized likelihood. With normality, given data yt,
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yt+1 is normally distributed with mean yt+1|yt and variance ∆t+1.
10 So, given a starting

value αi,0 at time 0, we can use (45) to update αi,t every period. We can then calculate the

posterior probability for each model by normalizing αi,t as follows:

πi,t =
αi,t∑

j

αj,t

. (46)

Figure 11 uses quarterly data on inflation and the output gap from 2000Q1 to update
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Figure 11: Updating probability weights of model

weights to the CEE and FM model. Initially, the models are assigned equal weights, but as

new data arrived, the weights to each model are recalculated using equations (45) and (46).

The weight to the FM model initially declines, but we see that after 6 quarters of data have

been accumulated, the statistical evidence in favour of the FM model causes its weight to

converge to 1.

10Appendix C explains how we can use the Kalman filter to construct yt+1|yt and ∆t+1.
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Determining the degree of aversion towards the across-model risk

To pin down the degree of across-model risk aversion, we proceed in analogy to risk the-

ory. In risk theory, to interpret the size of the risk-aversion parameter, it is related to the

risk premium that the decision maker would be prepared to pay to be indifferent between

accepting a small risk or obtaining a non-random amount for sure.

So suppose that the policy-maker wants to achieve a loss of v∗. However, the policy-

maker faces N models that suggest losses vi, with probability πi, i = 1, ..., N . In an analogy

to risk theory, we can ask: how much of a premium, δ, would the policy-maker be ready

to pay to be indifferent between achieving v∗ for sure or else face model uncertainty and,

hence, N possible different losses with probability πi. That is,

φ(v∗ + δ) =
N∑

i=1

πiφ(vi). (47)

Now suppose that φ(x) is the exponential function given by φ(x) = eηx−1
η

such that η = φ′′(x)
φ′(x)

is the degree of aversion to the across-model risk. Substituting for φ into (47) yields

N∑
i=1

πie
η(vi−v∗−δ) = 1. (48)

Equation (48) denotes the relationship between η and δ. Given the set of probabilities

attached to the models, the loss, v∗, and the premium, δ, that the policy-maker is ready to

pay to achieve v∗, we can solve numerically for η as a function of these parameters. Two

caveats are in order: first, there need not be a unique η that solves (48). This follows since

the left-hand side of (48) need not be monotonic in η. Second, if we take the total derivative

of η with respect to δ, we obtain:

dη

dρ
=

η
N∑

i=1

πieη(vi−v∗−δ)(vi − v∗ − δ)

. (49)

Therefore, dη
dρ

can in general be positive or negative depending on the πi’s, v∗, η and δ. These

concerns appear in the risk literature and it should not come as a surprise that they appear

here as well. Indeed, just as it is known that agents do not necessarily react to a bet on $10

as they would to a bet on $1 million, the policy-maker need not react in the same way in

situations where models exhibit small or big losses. Equation (48) is nevertheless useful if
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we want to characterize how the degree of aversion to across-model risk behaves when the

risk in question can potentially be large.

Conversely, we may be interested to know how η behaves with respect to slight across-

model risk. Rewrite (47) as

φ(v∗ + δ) = Eφ(ṽ) (50)

where v∗ is the non-stochastic loss that the policy-maker wants to achieve, E denotes expec-

tation with respect to the prior over models, and ṽ is the random variable representing the

loss of each model. Taking a first-order approximation of the left-hand side of (50) around

v∗, we obtain

φ(v∗ + δ) = φ(v∗) + φ′(v∗)δ. (51)

Taking a second-order approximation of the right-hand side of (50) around v∗, we obtain

Eφ(ṽ) = φ(v∗) + φ′(v∗)E(ṽ − v∗) +
1

2
φ′′(v∗)E(ṽ − v∗)2. (52)

Equating (51) and (52) and noting that φ′′(v∗)
φ′(v∗) = η, we obtain

δ = η
1

2
E(ṽ − v∗)2 + Eṽ − v∗, (53)

such that

η =
δ + v∗ − Eṽ
1
2
E(ṽ − v∗)2

. (54)

Therefore, in the neighbourhood of a given non-stochastic v∗, dη
dρ

> 0. Hence, the larger the

premium that the policy-maker is willing to pay to achieve v∗, the more the policy-maker is

averse to the across-model risk.

Equation (54) tells us how to calculate the local degree of across-model risk aversion,

while (48) tells us how to obtain a measure of the degree of aversion in the large. Both

equations yield a relationship of η as a function of δ. So (54) and (48) can help us determine

a sensible η provided that we can sensibly pin down δ, the premium that the policy-maker

is willing to pay in the face of model uncertainty. This is not without difficulty; however, it

should be far easier to determine such a premium than to directly determine the degree of

across-model risk aversion. Why this is the case can be illustrated by the following example.

Suppose that the policy-maker considers two models of the economy and cares only about

controlling inflation. Prior to choosing monetary policy, suppose that Model 1 predicts that
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a particular policy choice will yield a squared deviation of inflation from target of 0.1 per

cent, while Model 2 predicts that the same policy choice will yield a squared deviation of 10

per cent. Suppose further that the policy-maker’s objective is to achieve a squared deviation

of 3 per cent. To deduce the premium that the policy-maker would be willing to pay to

eliminate model uncertainty, we can ask the following question: Given that the squared

deviation of inflation from target can be either 0.1 or 10 per cent tomorrow, what is the

maximum squared deviation you would tolerate today if we could guarantee that tomorrow

we will have a single model that tells us how to achieve the 3 per cent squared deviation?

Suppose that the policy-maker would tolerate a squared deviation of 5 per cent. Then the

premium that the policy-maker would be ready to pay to eliminate model uncertainty and

achieve 3 per cent squared deviation for sure is 5 - 3 = 2 per cent. Once we know the

premium that the policy-maker is willing to pay, we can then determine the policy maker’s

degree of across-model risk aversion from (54) or (48).

A different strategy for implementing the trade-off approach to work is to assume a

particular degree of aversion and work backwards from (53) to determine the across-model

risk premium that corresponds to the assumed degree of aversion. When repeated for various

degrees of aversion, that exercise will lead to a profile linking each degree of aversion to the

corresponding premium that the policy-maker would tolerate to eliminate model uncertainty.

That profile is likely to be more useful from a policy-making perspective because, instead of

being asked to quote a particular across-model risk premium, the policy-maker can directly

see the effect of increasing or decreasing the across-model degree of risk aversion on the

premium.

4.4 Trade-off between the CEE and FM model

We now implement the trade-off approach for the policy-maker that views the CEE model

and the FM model as two plausible models of the Canadian economy. We assume that the

policy-maker values both models equally and assigns equal weight to them. The policy-

maker’s across-model risk aversion is captured by the function φ(x) = eηx−1
η

. The policy-

maker’s decision problem is to choose policy according to the simple rule (26) given the

two models considered plausible and across-model risk aversion. Table 3 displays how the

coefficients of the policy rule vary with η. The last two columns display the losses that

the optimal policy rule lead to in each model. When η = 0, the policy-maker uses the

Bayesian criterion to choose policy. The optimal policy rule arrived at leads to a loss of

0.12 in the CEE model, while it leads to a loss of 0.49 in the FM model. Since the policy
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Table 3: Simple rule coefficients, the degree of across-model risk aversion and model losses

η ρi ρπ ρx loss CEE loss FM
0 0.785 1.337 0.496 0.1138 0.4932

0.5 0.794 1.292 0.502 0.1144 0.4926
1 0.803 1.250 0.507 0.1152 0.4920

1.5 0.811 1.210 0.511 0.1159 0.4916
2 0.818 1.173 0.514 0.1167 0.4912
3 0.831 1.112 0.517 0.1181 0.4906
5 0.847 1.031 0.520 0.1203 0.4901
7 0.855 0.989 0.520 0.1217 0.4899
10 0.861 0.961 0.520 0.1226 0.4899
15 0.863 0.950 0.520 0.1230 0.4899
20 0.864 0.948 0.520 0.1231 0.4899
25 0.864 0.947 0.520 0.1231 0.4899
30 0.864 0.947 0.520 0.1231 0.4899

rule is more restrictive for the FM model than for the CEE model, increasing the degree

of aversion makes the policy-maker more worried about improving the performance of the

rule in the FM model. As a result, as we increase η, the policy-maker chooses rules that

exhibit more inertia, a slightly higher contemporaneous response to the output gap but a

lower contemporaneous response to inflation. These rules perform better in the FM model

but worse in the CEE model. It is in this sense that increasing η makes the policy-maker

more conservative and gradually convinces the policy-maker to act on a worst-case scenario.

Now that we know the effect of different degrees of across-model risk aversion on the

optimal policy rule, it is important to interpret their economic significance. We do that by

computing the implied premium that each degree of aversion leads to. We use (54) and

(48) to compute the local premium (δl) and the global premium (δg), respectively. Table

4 assumes that v∗ = E (̃v). Therefore Table 4 computes the premium that the policy-

maker would be willing to pay ex ante (before resolving model uncertainty) to be certain of

achieving the average of the model losses ex post (after resolving model uncertainty). First

we see that δg, the global premium, increases with η for the range of values considered.

Therefore, in our case, increasing the degree of across-model risk aversion implies that the

policy-maker is willing to pay a higher premium ex ante to resolve the model uncertainty.

From (54), the same holds for the local premium δl. Second, we notice that δl and δg are

almost the same for small degrees of aversion. But at higher degrees of aversion (η >= 10),

the local premium grows much faster than the global premium. Therefore, the local premium
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Table 4: Implied premiums and the degree of across-model risk aversion

η average loss δl δg

0.5 0.3035 0.009 0.009
1 0.3036 0.018 0.018

1.5 0.3037 0.027 0.026
2 0.3039 0.035 0.034
3 0.3043 0.052 0.050
5 0.3052 0.086 0.076
7 0.3058 0.119 0.096
10 0.3062 0.169 0.117
15 0.3065 0.252 0.138
20 0.3065 0.336 0.149
25 0.3065 0.420 0.156
30 0.3065 0.504 0.160

is less reliable at higher degrees of aversion. This is not surprising. Higher η’s imply that

φ(x), the function that the policy-maker uses to re-evaluate models because of across-model

risk aversion has much more curvature to it. Therefore, local linear approximations are less

accurate.

How can Table 4 be used for policy analysis? Recall that the loss function in the calcu-

lations above is a weighted average of the squared deviations of inflation, output gap, and

the change in the interest rate. Column 2 in the table shows the average of the model losses

which we assume the policy-maker would be happy to achieve. By adding the average loss

and δg (or δl, which is less accurate but easier to compute), we obtain the maximum loss

that the policy-maker would tolerate to resolve model uncertainty ex ante. So once we have

the profile linking η to the maximum tolerable loss, the policy-maker can select the value

of η, say η∗ that yields a reasonable maximum tolerable loss. We can then compute the

optimal policy rule that η∗ leads to.

5. Conclusion

In this paper, we have discussed some recent methods for dealing with model uncertainty.

We presented the theoretical ideas behind each method, illustrated what each method does

through simple examples but also discussed why and when a particular method may be

more appropriate than the other. But we did not limit ourselves to a theoretical discussion.

We also showed how to compute the various parameters that a theoretical discussion takes
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for granted and we have also worked through the implementation using as benchmark two

models of the Canadian economy. Now we summarize the key points of our discussion and

also suggest some ways, which we believe can be implemented in the short and medium term,

in which our analysis can be used to help the Bank of Canada deal with model uncertainty.

Dealing with Model Uncertainty:

• Robust control is most useful when the policy-maker has one good model of the econ-

omy; by definition, it is designed to choose decision rules that work well in a neigh-

bourhood of a particular model.

• When the policy-maker has competing reference models of the economy, the Bayesian

approach, worst-case model approach, and the trade-off approach of Cateau (2005)

are likely to perform better than robust control since they take into account that the

policy-maker may, in fact, use models that are arbitrarily far from each other.

• The critical distinction between the Bayesian approach, worst-case approach, and

Cateau’s approach is that they make different assumptions about the attitude of the

policy-maker towards model uncertainty. The Bayesian approach assumes that the

policy-maker is neutral to the across-model risk, only caring about average perfor-

mance; the worst-case model approach assumes that the policy-maker is infinitely

averse to the across-model risk, only caring about how robust the policy choice is;

Cateau (2005) allows the aversion of the policy-maker to vary between zero (Bayesian)

and infinity (worst-case) - the policy-maker’s degree of aversion determines how much

the policy-maker trades off average performance for robustness.

Some Proposals:

• Robust control for TOTEM. TOTEM will be the main model used by Bank staff

for policy exercises. Depending on how reasonable it is to consider TOTEM as the

reference model for policy-making at the Bank of Canada, robust control will provide

policy rules that are robust to misspecification within a certain distance of TOTEM.

To put this in practice, we will need to specify the size of the set of models surrounding

TOTEM for which we want robust rules (i.e., ξ in Figure 2). We show in section 2.4

how we can compute that parameter.
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• Robust control for sensitivity analysis. At the FAD meetings, representatives of de-

partments at the Bank are often asked not only for their perspective on the current and

future state of the Canadian economy but also about the confidence of their assess-

ment. Robust control can be used for sensitivity analysis relative to misspecification.

If the department, for instance, uses a model for predicting how inflation would re-

spond to a cost-push shock, the department can also calculate how inflation would

respond if its model is subject to misspecification. That response can be calculated

for various degrees of misspecification to get an idea of how robust the prediction is.

• Optimal policy rule with competing models. With the development of TOTEM and

MFA’s financial frictions model, for example, the Bank will soon have different mod-

els providing different pictures of the Canadian economy that can be used for policy

analysis. What kind of policy rules should the Bank use when there is model uncer-

tainty? Côté, Kuszczak, Lam, Liu, and St-Amant (2002) analyze the performance

and robustness of some simple policy rules in twelve models of the Canadian economy.

While their analysis shows that Taylor-type rules, interest rate smoothing rules, and

open economy rules are not robust (at least in the set of models that they consider),

their approach is not useful to answer the question asked above. Indeed, they consider

simple policy rules optimized for a particular model and evaluate how it performs in

the other models. A more useful way to derive a policy rule that works well across

various models is to start with a general type of policy rule and evaluate how it per-

forms relative to a criterion that involves all the models in the decision set of the

policy-maker. In fact, if we use the criterion that Cateau (2005) suggests, we can seek

to answer a more interesting question: what kind of policy rules should the bank use

to achieve a certain trade-off between average performance and robustness when it

faces model uncertainty? Of course, the trade-off will depend on the policy-maker’s

aversion to model uncertainty, so it will be important to estimate the policy-maker’s

degree of aversion. We suggest two approaches in section 4.3.1 to determine the degree

of across-model risk aversion.

35



References

Anderson, G. and G. Moore. 1985. “A Linear Algebraic Procedure for Solving Linear Perfect

Foresight Models.” Economic Letters 17(3): 247–52.

Binette, A., S. Murchison, P. Perrier, and A. Rennison. 2004. “An Introduction To

TOTEM.” Work in Progress, Bank of Canada.

Calvo, G. 1983. “Staggered Prices in a Utility Maximizing Framework.” Journal of Monetary

Economics 12: 383–98.

Cateau, G. 2005. “Monetary Policy Under Model and Data-Parameter Uncertainty.” Bank

of Canada Working Paper No. 2005-6.

Christiano, L., M. Eichenbaum, and C. Evans. 2005. “Nominal Rigidities and the Dynamic

Effects of a Shock to Monetary Policy.” Journal of Political Economy 113(1): 1–45.
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Appendix A: Robustness in Forward-Looking Models

Forward-looking models differ from backward-looking ones (also known as the linear regu-

lator problem in the literature) in that part of the state is not inherited from the past but

are jump variables; i.e., variables that need to adjust for a solution to a stabilizing solution

to exist. To solve a forward-looking problem, however, knowing how to solve a backward-

looking problem is still very useful because many of the objects that appear in the solution

to the backward-looking problem are the same ones that we need to construct the solution

to the forward-looking problem. So below, we introduce the forward-looking problem and in

section A.1, solve the problem just as if it was a linear regulator problem. In section A.1.2,

however, we show how to obtain the solution to the forward-looking problem.

A.1 The Ramsey problem

Let Xt =

[
Yt

Zt

]
be the state vector at time t. The Yt are natural state variables in the

sense that they are inherited from the past. The Zt are forward-looking state variables (such

as those coming from the Euler equations of the private sector in a Ramsey problem, for

example) that need to be determined by the model at time t. Suppose that the policy-

maker’s approximating model is given by

Xt+1 = AXt + BUt + Cεt+1 (A1)

where the Ut are the policy-maker’s control and εt is an i.i.d. shock process with mean 0

and identity covariance matrix and let the loss function be given by

E0

∞∑
t=0

βt {X ′
tQXt + U ′

tRUt} . (A2)

As before, without a concern for robustness, the objective of the policy-maker is to minimize

(A2) subject to (A1) and given Y0.
1 The policy-maker, however, doubts the model. As a

result, the policy-maker considers the approximating model to be a good approximation of

the data-generating model that falls in the set of models given by

Xt+1 = AXt + BUt + C(εt+1 + ωt+1), (A3)

1Notice, that since the Zt are forward-looking variables and not inherited from the past, there are no
initial conditions Z0.
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where εt is an i.i.d. shock process with mean 0 and identity covariance matrix. Robust

policy choices are then obtained by solving

min
{Ut}

max
{ωt+1}

E0

∞∑
t=0

βt
{
X ′

tQXt + U ′
tRUt − θβω′t+1ωt+1

}
(A4)

subject to (A3) and given Y0.

The Lagrangian associated to the extremization2 problem above is

L =
∞∑

t=0

βt
{
X ′

tQXt + U ′
tRUt − θβω′t+1ωt+1 + 2βµ′t+1(AXt + BUt + Cωt+1 −Xt+1)

}
. (A5)

Notice, that we have dropped the expectation sign and εt from the problem above. This is

because, a version of certainty equivalence continues to apply owing to the linear quadratic

nature of the robust control problem. The first-order conditions with respect to Ut, Xt, and

ωt+1 are given by:

0 = RUt + βB′µt+1

µt = QXt + βA′µt+1

0 = βθωt+1 − βC ′µt+1.

Solving the f.o.c.’s for Ut and ωt+1 and substituting in (A3) yields

Xt+1 = AXt − β(BR−1B′ − β−1θ−1CC ′)µt+1. (A6)

Now, define B̃ = [B C] and R̃ =

[
R 0

0 −βθIω

]
. We can rewrite (A6) as

Xt+1 = AXt − βB̃R̃−1B̃′µt+1. (A7)

Collecting (A7) and (A6), we have the system of difference equations:

[
I βB̃R̃−1B̃′

0 βA′

][
Xt+1

µt+1

]
=

[
A 0

−Q I

] [
Xt

µt

]
, (A8)

2Extremization is the term used for the optimization problem where we both minimize and maximize
the objective function with respect to some arguments.
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or

L

[
Xt+1

µt+1

]
= N

[
Xt

µt

]
. (A9)

Solving the model therefore boils down to finding a stabilizing solution to (A9) i.e., one

which satisfies ∞∑
t=0

βtX ′
tXt < +∞.

The stabilizing solution is attained for a P such that µ0 = PX0 where P solves the Riccati

equation connected to the system of difference equations (A9). The solution µ0 = PX0

replicates itself over time in the sense that

µt = PXt. (A10)

A.1.1 Riccati equation

We mention above that finding a solution to (A9) involves finding a P which solves the

Riccati equation connected to (A9). What is the Riccati equation and how do we find P?

In practice, we can find P by using one of the invariant subspace methods documented in

Hansen and Sargent (2004). This involves locating the stable invariant subspace of the

matrix pencil λL−N of system (A9). We do this by first taking the matrices L and N and

computing the generalized Schur decomposition of the pencil λL−N . We can then construct

P from the matrix of right Schur eigenvectors after carefully reordering the eigenvectors in

terms of the stable and unstable eigenvalues.

Another approach for computing P is to solve the Riccati equation connected to (A9).

The Riccati equation is more easily derived by writing down the Bellman equation of the

dynamic problem. The Bellman equation associated to the dynamic problem (A4) is

V (X) = min
U

max
ω
{X ′QX + U ′RU − θβω′ω + βV (X∗)}, (A11)

subject to

X∗ = AX + BU + Cw. (A12)

Since the objective is quadratic, and the constraint linear, we conjecture that the value
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function is also quadratic3:

V (X) = X ′PX. (A13)

Consider the inner maximization with respect to ω. Substituing (A13) for V (X∗) and

collecting terms in ω, the value of the inner maximization is:

(AX+BU)′D(P )(AX+BU) = max
ω
{−θω′ω+(AX+BU+Cw)′P (AX+BU+Cw)}. (A14)

The first-order condition for ω yields

ω = θ−1C ′PX∗, (A15)

or

ω = (θIω − C ′PC)−1C ′P (AX + BU). (A16)

Substituting (A15) in (A12), we get

X∗ = (I − θ−1CC ′P )(AX + BU). (A17)

Using (A17) and (A15) and some algebraic manipulations, we can solve for D(P ). The

result is

D(P ) = (I − θ−1PCC ′)−1P

= P + θ−1PC(I − θ−1C ′PC)−1C ′P. (A18)

Having solved for the inner maximization, we can now solve the outer minimization problem.

The problem reduces to

X ′PX = min
U
{X ′QX + U ′RU + β(AX + BU)′D(P )(AX + BU)}. (A19)

Equation (A19) illustrates how a concern for robustness modifies the problem of the policy-

maker. Basically, it modifies the Bellman equation of the policy-maker by distorting the

continuation value of the value function according to D. The f.o.c. for U implies that

U = −(R + βB′D(P )B)−1B′D(P )AX (A20)

3We rely on certainty equivalence to solve the non-stochastic version of the robust control problem. The
same P solves both the stochastic and non-stochastic problem. The stochastic problem, however, adds a
scalar to the value function i.e., V (X) = X ′PX + p. We can easily show that p = β

1−β trace(CC ′P ).
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So, defining F = −(R+βB′D(P )B)−1B′D(P )A and substituting U = FX in (A19), we get

a recursion for P :

P = Q + F ′RF + β(A + BF )′D(P )(A + BF )

= Q + βA′D(P )A− β2A′D(P )B(R + βB′D(P )B)−1B′D(P )A. (A21)

Denote T (v) as the operator

T (v) = Q + βA′vA− β2A′vB(R + βB′vB)−1B′vA. (A22)

Those familiar with solving dynamic linear quadratic control problems will recognize that

the operator above appears in typical dynamic linear quadratic problems where there is no

concern for robustness. Indeed, we solve for the value function by finding the fixed point

of T (v) = v, the so-called Riccati equation. The usefulness of defining the operator above

is that it illustrates how a desire for robustness affects the ordinary Bellman equation. A

concern for robustness modifies the ordinary Riccati equation by finding the fixed point of

T (D(P )) = P with D given by (A18) rather than T (P ) = P .

The P that solves the Riccati equation (A21) is the same P that will result from using

the invariant subspace methods (again, see Hansen and Sargent 2004) to solve the system

(A9). These different solution methods determine different solution algorithms, and the

one we pick usually depends on the degree of accuracy or efficiency we require. Whichever

method we use, once we obtain P we obtain the solutions U = FX and ω = KX where

F = −(R + βB′D(P )B)−1B′D(P )A, (A23)

K = (θIω − C ′PC)−1C ′P (A + BF ). (A24)

A.1.2 Constructing the solution to the forward-looking problem

In a typical linear regulator problem, Xt is a state vector inherited from the past at time t,

meaning that at time 0, X0 is given. Here, however, Xt =

[
Yt

Zt

]
and only Yt are inherited

from the past. Zt, on the other hand, are jump state variables that need to adjust for

a solution to exist. Suppose that the dimension of Yt and Zt are ny and nz, respectively.

Consider the system of difference equations given by (A9). Since µt =

[
µy

t

µz
t

]
are the co-state

variables associated with the state variables Xt, the system is of order 2(ny +nz). Therefore,
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for a solution to exist, we need 2(ny + nz) boundary conditions. Since the dynamic problem

is of infinite horizon, the terminal states are unspecified. We obtain ny + nz boundary

conditions by imposing the transversality conditions

lim
t→∞

βtµt = 0.

At time 0, Y0 is given. This gives us ny initial conditions. However, because the Zt are

forward-looking variables, at time 0, we cannot take Z0 as given. We obtain the missing

nz boundary conditions by imposing initial conditions for the co-state variables associated

with Zt; i.e., µz
t . But now, what initial conditions do we impose for µz

0? Following Currie

and Levine (1993), it can be shown that the value function is decreasing in µz
t . Therefore,

it is optimal to set µz
0 = 0.4

Recall that the solution to (A9) is

µt = PXt,

which we rewrite as [
µy

t

µz
t

]
=

[
Pyy Pyz

Pzy Pzz

] [
Yt

Zt

]
. (A25)

Using (A25) to solve for Zt in terms of µz
t , we get

Zt = −P−1
zz PzyYt + P−1

zz µz
t . (A26)

The objective is to find the transition equation for the backward-looking state vector

[
Yt

µz
t

]

Since µz
t+1 = PzyYt+1 + PzzZt+1,

[
Yt+1

µz
t+1

]
=

[
I 0

Pzy Pzz

][
Yt+1

Zt+1

]
. (A27)

Now, since Ut = FXt and ωt+1 = KXt with F and K given by (A23) and (A24), respectively,

4This pinpoints why there is a time-consistency problem in forward-looking problems. The policy-maker’s
loss function is decreasing in µz

t . At time 0, since µz
0 must be non-negative, it is optimal to set it equal to

0. But from (A9) and µt = PXt, starting from µz
0 = 0, µz

t is non-zero forever after. Therefore, there is an
incentive for the policy-maker to reset µz

τ = 0 for any τ > 0. This is the time-consistency problem.
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the evolution of the state vector Xt is

[
Yt+1

Zt+1

]
= (A + BF + CK)

[
Yt

Zt

]
+ Cεt+1. (A28)

Therefore,

[
Yt+1

µz
t+1

]
=

[
I 0

Pzy Pzz

]
(A + BF + CK)

[
I 0

−P−1
zz Pzy P−

zz1

][
Yt

µz
t

]

+

[
I 0

Pzy Pzz

]
Cεt+1. (A29)

We can also express Ut and ωt+1 in terms of

[
Yt

µz
t

]
:

[
Ut

ωt+1

]
=

[
F

K

][
Yt

Zt

]
=

[
F

K

][
I 0

−P−1
zz Pzy P−

zz1

][
Yt

µz
t

]
. (A30)

Finally, for the stochastic problem, we can show that the value function in terms of the

predetermined variables is [
Y0

µz
0

]′
P̃

[
Y0

µz
0

]
+ p̃, (A31)

where

P̃ =

[
I 0

Pzy Pzz

]′
P

[
I 0

Pzy Pzz

]
(A32)

and

p̃ = trace(P̃CC ′). (A33)

A.2 A simple rule

Suppose that instead of pursuing the Ramsey solution, the policy-maker chooses to set policy

according to a simple rule:

Ut = FXt. (A34)

Hence, the policy-maker’s problem is to minimize the loss function (A2) subject to the

simple rule (A34) and the set of models (A3). The robust control problem with a simple
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rule is found by solving

min
{F}

max
{ωt+1}

E0

∞∑
t=0

βt
{
X ′

tQXt + U ′
tRUt − θβω′t+1ωt+1

}
. (A35)

For a given F , we can focus on determining the worst-case perturbation by solving the

associated non-stochastic problem. The Lagrangian for the inner maximization becomes

L =
∞∑

t=0

βt
{
X ′

tQ
∗Xt − θβω′t+1ωt+1 + 2βµ′t+1(A

∗Xt + Cωt+1 −Xt+1)
}

, (A36)

where Q∗ = Q + F ′RF and A∗ = A + BF . The first order conditions with respect to ωt+1,

µt, and Xt are given by:

ωt+1 = θ−1C ′µt+1 (A37)

µt = Q∗Xt + βA∗′µt+1 (A38)

Xt+1 = A∗Xt + Cωt+1. (A39)

By substituting the f.o.c. for ωt+1 into that for Xt+1, we get

Xt+1 = A∗Xt + θ−1C ′Cµt+1. (A40)

Finally, collecting (A40) and the f.o.c. for µt yields the recursive system in Xt+1 and µt+1:

[
I −θCC ′

0 βA∗′

][
Xt+1

µt+1

]
=

[
A∗ 0

−Q∗ I

][
Xt

µt

]
. (A41)

The stabilizing solution is attained by finding a P that solves the Riccati equation con-

nected to the system of difference equations (A41). Since µt = PXt is true in all periods,

substituting this condition into (A40) yields

Xt+1 =
[
I − θ−1CC ′P

]−1
A∗Xt. (A42)

From the f.o.c. for µt and (A42), we get

P = Q∗ + βA∗′P
[
I − θ−1CC ′P

]−1
A∗. (A43)
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As before, it is instructive to derive the Riccati equation via the Bellman equation associated

with the dynamic problem

V (X) = min
F

max
ω
{X ′Q∗X − θβω′ω + βV (X∗)}, (A44)

subject to

X∗ = A∗X + Cω. (A45)

For a given F , we conjecture a quadratic value function V (X) = X ′PX. The first-order

condition with respect to ω for the inner maximization is

ω = θ−1C ′PX∗. (A46)

Using the above in (A45) gives us

X∗ = (I − θ−1CC ′P )−1A∗X. (A47)

Restricting our consideration to the inner maximization with respect to ω, we find the

continuation value

(A∗X)′D(P )(A∗X) = max
ω
{−θω′ω + X∗′PX∗} (A48)

= −θX∗′PCθ−1θ−1C ′PX∗ + βX∗′PX∗ (A49)

= X∗′ [−θ−1PCC ′P + P
]
X∗ (A50)

= (A∗X)′(I − θ−1CC ′P )−1P (A∗X), (A51)

and, hence,

D(P ) = (I − θ−1CC ′P )−1P. (A52)

Given our previous conjecture on the form of the value function, the Bellman equation can

be restated in terms of X, X∗, and D(P ):

X ′PX = X ′Q∗X + β(A∗X)′D(P )(A∗X). (A53)

By substituting (A52) into (A53), the solution for P is

P = Q∗ + βA∗′(I − θ−1CC ′P )−1PA∗. (A54)
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Having determined the worst-case pertubation for a given simple rule F , we can then find

the rule that will minimize the loss function of the policy-maker. For the problem at hand,

the loss function is the value function expressed in terms of predetermined variables:

L(F ) =

[
Y0

µz
0

]′
P̃

[
Y0

µz
0

]
+ p̃, (A55)

where

P̃ =

[
I 0

Pzy Pzz

]′
P

[
I 0

Pzy Pzz

]
, (A56)

and

p̃ = trace(P̃CC ′), (A57)

and P and its submatrices solve (A54).
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Appendix B: An Alternative Algorithm for Solving

Forward-Looking Linear Quadratic

Robust Control

The solution methods presented above proceed by first finding a P that stabilizes the system

given by full state and co-state of the economy (that is, including backward- and forward-

looking variables and their associated co-states). We then use P to characterize the law

of motion of the predetermined state variables, which is the solution we are ultimately

after. An alternative algorithm is to directly find the solution of a system composed of

only predetermined state variables. The next section outlines how this can be done. The

algorithm was more efficient in solving the FM model for our parametrization of the model.

To derive the alternative algorithm, we specify the robust control problem as follows:

min
Ut

max
ωt+1

∞∑
t=0

βt
{
X ′

tQXt + U ′
tRUt − θβω′t+1ωt+1

}
, (B1)

subject to our approximating model, written in the form of a difference quation with one

lead and one lag:

H1Xt−1 + H2Xt + H3Xt+1 + BUt + Cωt+1 = 0. (B2)

The Lagrangian for this problem is

L =
∞∑

t=0

βt
{
X ′

tQXt + U ′
tRUt − θβω′t+1ωt+1

}

+2λt

{
H1Xt−1 + H2Xt + H3Xt+1 + BUt + Cωt+1

}
. (B3)

The first-order conditions are

Ut : βtRUt + B′λt = 0 (B4)

ωt+1 : −θβωt+1β
t + C ′λt = 0 (B5)

Xt : βtQXt + H ′
1λt+1 + H ′

2λt + H ′
3λt−1 = 0. (B6)

Defining µt = λt

βt , we can rewrite the first-order conditions as

Ut = −R−1B′µt (B7)

ωt+1 = θ−1β−1C ′µt (B8)

QXt + H ′
1βµt+1 + H ′

2µt + H ′
3β

−1µt−1 = 0. (B9)

48



By substituting the f.o.c.’s for Ut and ωt+1 into the constraint (B2), we obtain

H1Xt−1 + H2Xt + H3Xt+1 + BR−1B′µt + θ−1β−1CC ′µt. (B10)

From (B10) and the f.o.c. for Xt, we can construct a system of difference equations in Xt

and µt :

[
H1 0

0 H ′
3B

−1

][
Xt−1

µt−1

]
+

[
H2 (θ−1β−1CC ′ −BR−1B′)

Q H ′
2

][
Xt

µt

]

+

[
H3 0

0 H ′
1β

][
Xt+1

µt+1

]
= 0, (B11)

which can be rewritten as

A1

[
Xt−1

µt−1

]
+ A2

[
Xt

µt

]
+ A3

[
Xt+1

µt+1

]
= 0. (B12)

We are searching for a solution for

[
Xt

µt

]
in terms of what is predetermined at time t.

At time t, Xt−1 is inherited from the past; µt−1 is the discounted t − 1 shadow price of Xt

and thus known at t (at time 0 it is optimal to initialize µ−1 = 0). So we are looking for a

solution characterized by

Yt = NYt−1, (B13)

where Ys =

[
Xs

µs

]
. For the system

A1Yt−1 + A2Yt + A3Yt+1 = 0, (B14)

let Yt = NtYt−1. Substituing this into (B14), the solution becomes

Nt = −(A2 + A3Nt+1)
−1A1. (B15)

To find a N that satisfies (B13), we start with a guess for Nt+1 and iterate on (B15) until

convergence.
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Once we have solved the system of difference equations and obtained

Yt = NYt−1, (B16)[
Xt

µt

]
= N

[
Xt−1

µt−1

]
, (B17)

we need to back out decision rules for Ut and ωt+1. We obtain from the respective first-order

conditions for Ut and ωt+1. From (B17),

µt =
[

0 I
]
N

[
Xt−1

µt−1

]
. (B18)

Hence,

Ut = F

[
Xt−1

µt−1

]
, (B19)

where F = −R−1B′
[

0 I
]
N , and

ωt+1 = K

[
Xt−1

µt−1

]
, (B20)

where K = θ−1β−1C ′
[

0 I
]
N .

B.1 Dynamics in a stochastic system

In this section we consider the problem recast as a stochastic system. Beginning with

H1Xt−1 + H2Xt + H3Xt+1 + BUt + Cωt+1 + Cεt+1 = 0, (B21)

and performing similar substitutions and manipulations, we obtain the difference system

A1

[
Xt−1

µt−1

]
+ A2

[
Xt

µt

]
+ A3

[
Xt+1

µt+1

]
+ Cεt+1 = 0. (B22)

Using the fact that Yt+1 = NYt, we set

A1Yt−1 + (A2 + A3N)Yt + Cεt+1 = 0, (B23)
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and therefore

Yt = −(A2 + A3N)−1A1Yt−1 − (A2 + A3N)−1Cεt+1 (B24)

= NYt−1 + CNεt+1. (B25)

A1, A2, and A3 are exactly as in the non-stochastic case because of certainty equivalence.

If we take expectations at time t, εt+1 = 0 and the last term drops out. Therefore, our

solutions to the non-stochastic and stochastic problems are equivalent.
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Appendix C: The Kalman Filter

Suppose that the state of the economy evolves according to

Xt+1 = AXt + Cεt+1, (C1)

but assume that we observe only a subset of the state variables, possibly with some mea-

surement error

Yt+1 = h̃Xt+1 + D̃εt+1

= h̃AXt + (h̃C + D̃)εt+1 (C2)

= hXt + Dεt+1. (C3)

Let yt = [yt, yt−1, yt−2, ..., y0] be information available at time t. The best prediction of the

state at t + 1 given information at time t is:

Xt+1|yt = AXt|yt , (C4)

and the forecast error for Xt+1 is:

Xt+1 −Xt+1|yt = A(Xt −Xt|yt) + Cεt+1.

The mean squared error of our forecast is:

Ωt+1|yt = E[(Xt+1 −Xt+1|yt)(Xt+1 −Xt+1|yt)′] (C5)

= AΩt|ytA′ + CC ′. (C6)

Conversely, the best prediction of Yt+1 at time t is:

Yt+1|yt = hXt|yt . (C7)

The forecast error is

vt+1 = Yt+1 − Yt+1|yt = h(Xt −Xt|yt) + Dεt+1.
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The MSE of vt+1 is

∆t+1|yt = E(vt+1v
′
t+1|yt) (C8)

= E[(h(Xt −Xt|yt) + Dεt+1)(h(Xt −Xt|yt) + Dεt+1)
′|yt] (C9)

= hΩt|yth′ + DD′. (C10)

Now, note that from linear projection theory,

Xt+1 = Xt+1|yt + κt+1vt+1 + ξt+1. (C11)

We are interested in deriving κt+1. Take expectation given yt to obtain,

κt+1 = E[(Xt+1 −Xt+1|yt)v′t+1]E(vt+1v
′
t+1|yt)−1 (C12)

= = [AΩt|yth′ + CD′]∆−1
t+1. (C13)

Given κt+1 and (C11), we can then develop a recursion for updating our estimates of the

state and its mean square error. We do this by taking expectations of (C11) given yt+1. We

obtain

Xt+1|yt+1 = Xt+1|yt + κt+1vt + 1. (C14)

Using (C11) and (C14), we can similarly obtain

Ωt+1|yt+1 = Ωt+1|yt − κt+1∆t+1κ
′
t+1. (C15)

(C14) and (C15) are the updating equations of the Kalman filter. They tell us how to

update our estimates of the state and the associated MSE once a new piece of data arrives.

The Kalman filter is useful in constructing the likelihood function. Recall that,

Yt+1 = Yt+1|yt + vt+1.

So the conditional distribution of Yt+1|yt is N(Yt+1|yt , ∆t+1). Therefore, we can use the

Kalman filter to write down the contribution of each piece of data to the likelihood function.
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Appendix D: Impulse Responses from a VAR

To estimate the historical impulse responses of inflation, interest rates, and the output gap to

an interest rate shock, output gap shock, and inflation shock, we estimate a restricted VAR

using data from 1980Q1 to 2005Q1. Our VAR is ordered as follows: inflation, consumption

growth, log of real investment, output gap, log of nominal foreign exchange rate, and the 90-

day commercial paper rate. We also include the following exogenous variables: U.S. output

gap, U.S. inflation, log of world commodity prices, and the federal funds rate. Finally, we

include a dummy variable that takes the value 1 from 1991Q1 to 2005Q1 to indicate the

period of explicit inflation targeting in Canada.

We use historical data from the Bank of Canada’s Quarterly Projection Model database.

Real variables are based on the GDP deflator. Quarter-over-quarter inflation and quarter-

over-quarter consumption growth are calculated as the first-difference of the log of GDP

deflator and log of real consumption, respectively. We calculate the output-gap variables

as deviations of the log of real GDP from a linear quadratic trend. Finally, the foreign

exchange rate used is the log of the trade-weighted G6 nominal exchange rate. To illustrate,

an appreciation of the Canadian dollar relative to a basket of foreign currencies translates

to a decrease in the nominal exchange rate.

We estimate our restricted VAR by forcing some coefficients to be zero and excluding

non-significant variables from the regression. Table D1 presents the equations we estimate

and the lag order of the included variables. A ‘0’ indicates that the variable enters the

equation contemporaneously, a ‘1’ indicates the first lag of the variable, and so on. Our

methodology and results are comparable to those in Murchison, Rennison, and Zhu (2004).

Figure D1 shows the impulse responses of inflation, the output gap, and interest rates to an

interest rate shock, output gap shock, and inflation shock.
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Figure D1: Historical impulse responses vs model-based impulse responses

Table D1: Benchmark VAR

Equations
inf grcons lrinv ogap lforexn r1n

inf 1 1 1 1 1
grcons 1 1 to 2 1
lrinv 1 to 2
ogap 1 to 2 1 1 1 to 2 1 to 2

Variables lforexn 1 2 1 1 to 2
r1n 1 1 1 1 to 2 1

ogapUS 0 0 to 1 0 to 1 0 to 1
infUS 0 0 0
lpcom 0 to 1 0 0 to 1 0

ffr 0 to 1 1
dummy 0 0
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