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Abstract

A new consistent test is proposed for the parametric specification of the diffusion function in a
diffusion process without any restrictions on the functional form of the drift function. The data are
assumed to be sampled discretely in atimeinterval that can be fixed or lengthened to infinity. The
test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that
the parametric diffusion function is correctly specified. Monte Carlo simulations are conducted to
examine the finite-sampl e performance of the test, revealing that the test has good size and power.

JEL classification: C12, C14
Bank classification: Econometric and statistical methods; Interest rates

Résume
L’auteur propose un nouveau test convergent pour vérifier la validité de la spécification
paramétrique de la fonction de diffusion d’un processus ou la forme fonctionnelle de la dérive
N’ est soumise a aucune contrainte. Les données sont tirées par hypothése d’ un échantillon discret
constitué sur un intervalle de temps qui peut étre fixe ou infini. L’ auteur montre que la statistique
du test admet pour loi asymptotique la loi normale si | hypothése nulle que les paramétres de la
fonction de diffusion sont spécifiés correctement est vraie. Il fait appel a des simulations de

Monte-Carlo pour analyser la performance du test en échantillon fini. Le niveau et la puissance du
test se révélent satisfai sants.

Classification JEL : C12, C14
Classification de la Banque : Méthodes économétriques et statistiques; Taux d’ intérét



1. Introduction

In economics and finance, continuous-time models have been widely used to
study the dynamics of underlying state variables, such as asset prices, exchange rates, or
spot interest rates. The modelling approach in this literature is to assume that the

underlying state variables follow a stochastic differential equation.

In the parametric specification of a stochastic differential equation, it is assumed
that the functional forms of the drift and diffusion functions are known, apart from a
finite number of unknown parameters. Given the parametric specification of a stochastic
differential equation, researchers have proposed many different methods to estimate the
unknown parameters and to derive the statistical inferences from the discrete

observations.

The validity of these estimation and inference procedures, however, is conditional
on the hypothesis that the continuous-time model described by a stochastic differential
equation is correctly specified. Unfortunately, economic theory typically does not suggest
functional forms for the continuous-time model. Model misspecification may lead to
misleading conclusions in inference and hypothesis testing. This motivates the

development of model specification tests for continuous-time models.

Gallant and Tauchen (1996) propose a minimum chi-square specification test for
continuous-time models using the efficient method of moments. Ait-Sahalia (1996b)
proposes two specification tests by comparing the model-implied parametric density
with the same density estimated nonparametrically. Diebold, Gunther, and Tay (1998),
Thompson (2001), and Hong and Li (2005) propose transition density-based specification

tests based on the fact that the probability integral transform of the model-implied
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transition density would be distributed as an independent and identical uniform
distribution under the correct model specification. Li and Tkacz (2004) propose a
parametric bootstrap procedure to approximate the finite sample distribution of a
goodness-of-fit test statistic of a parametric transition density. Corradi and Swanson
(2004) propose a Kolmogorov-type conditional distribution test. Because the limiting
distribution of their test statistic is nuisance parameters free, Corradi and Swanson (2004)

use a nonparametric bootstrap procedure to construct the critical values.

The null hypothesis of all the above-noted tests is that both the drift and diffusion
functions are specified correctly. Under such a null hypothesis, while these tests can
detect a wide range of model misspecifications, they cannot reveal possible sources of
model misspecifications. However, for the specification analysis of the continuous-time
model, when a misspecified model is rejected, one would like to explore the possible
reasons for the rejection. Specifically, is the rejection due to misspecification from the drift
function or the diffusion function? When economic theory provides little guidance about
the specification of the drift and diffusion functions, it is advantageous to be able to
develop a reliable test that can detect whether the model misspecification comes from the
drift function or the diffusion function. Note that transition density-based tests can be
used to test the specification of the diffusion function (drift function) only by
presupposing both the correct specification of the drift function (diffusion function) and
the availability of the closed-form expression of the model-implied transition density.
Unfortunately, even if the drift function (diffusion function) is specified correctly, the
closed-form expression of a transition density still cannot be available for most

continuous-time models (Wong 1964).



These limitations of the above-mentioned tests and the recent developments in
nonparametric estimation techniques of a continuous-time model prompt us to use
nonparametric estimation techniques to develop tests for a parametric form of a
continuous-time model by directly testing the specifications of its drift and diffusion
functions, without relying on the model-implied density function or model-implied
moment condition. Corradi and White (1999) provide a first step in this direction. With
knowledge of the functional form of the drift function not being required, they propose a

specification test for the diffusion function based on discrete sampling observations.

As Corradi and White (1999) point out, however, their test can be used to test a
parametric diffusion function at only a given point, and the time span of observations is
fixed. Their test cannot be used to detect diffusion function misspecifications over a

continuous range of the state variable.

Using discrete observations, | propose a new test for the functional specification of
the diffusion function without placing any restriction on the functional form for the drift
function. The test can be used to test the parametric specification of the diffusion function
over a time interval that can be fixed or lengthened to infinity. Using theories of
degenerate U-statistics, the test statistic is shown to be asymptotically distributed
standard normal under the null hypothesis, while diverging to infinity if the parametric
specification is misspecified over a significant range. The test can be applied to a wide
variety of continuous-time models in economics and finance. For example, in the finance
literature, when applied to eurodollar interest rates, Hong and Li‘s test (2005) rejects a
wide range of popular interest rate models, including the linear specifications of the

diffusion function in Vasicek (1977) and Cox, Ingersoll, and Ross (1985), and the nonlinear



specifications in Chan et al. (1992), Ait-Sahalia (1996b), and Ahn and Gao (1999).
However, Hong and Li’s tests (2005) cannot indicate whether the rejection is due to the
misspecification from the diffusion function, which is the critical component in the
specification of a continuous-time model of the spot interest rate (Durham 2003). Taking
advantage of our test, we can apply it to further explore whether there is statistically
significant evidence in favour of any potential choice among these competing
specifications of the diffusion function, or whether none of them is appropriate and an

alternative specification is needed.

The rest of this paper is organized as follows. In section 2, | state the hypothesis of
interest and introduce the test statistic. In section 3, | discuss the asymptotic properties of
the test. In section 4, | use Monte Carlo simulations to examine the test’s size and power

performance. Section 5 concludes. Proofs are provided in the appendix.

2. The Hypothesis and Test Statistic

The model I consider is the following autonomous stochastic differential equation:
dx; = p(X)dt +o(x,)dwy, (2.1)

with initial condition x; , where X, is the state variable and {w; :t=0} is a standard
Brownian motion process. The functions p(Qland oz(m are, respectively, the drift function

and the diffusion function of the process {w,; :t>0}.

| assume that the process {w, :t=0} isobservedatt = t;,t,,...,t, in the time

interval [ty T] , and that the observations are equispaced. Then,{ x; = X400 Xty 428 10

Xt,+na t ~are n  observations on the process {x;:t=0} at dates



{ty=to+A  t, =t +24, ..., t, =ty +nA,}, where A = (T-ty5)/n is the sampling

n

interval.

| use the notation Xp, j 1O express the observation on the process {w; :t>0} at

{t=t+]JA} iie, Xy =Xy 4 ja Where j =1,2,..,nandn=1.

A parametric family of the specification of the diffusion function o” (OVis

{cg(x, 0) : 606}, with® being a subset of RY. I want to justify the use of a parametric
specification of the diffusion function without knowledge of the functional form of the
drift function. Thus, the null hypothesis to be tested is that the parametric specification of

02(.) is correct,
Ho: oz(x) = (ocz)(x, 8y)) amost everywhere for some 6,0 O . (2.2)

The alternative hypothesis is oz(x) z og(x, 0) for all 8 0 © over a significant range; that

is,
Hj: oz(x) Z oé(x, 0) onasubset S with positive measure forany 60 O. (2.3)

The testing approach is based on the squared-error goodness-of-fit function

between cz(x) and og(x, 0),
1(8, 0%) = E%(oz(xt) —62(x,, ©))TI(X,)] 2a(xt)§
= J’[(oz(x)—og(x, 6))T[(x)]2a(x)dF(x), (2.4)

where 11(x) and F(x)are, respectively, the unknown density function and cumulative
distribution function of x, . Distance measures similar to (2.4) are used as a basis for

testing the model specifications of either a parametric density function or a general
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regression function by, for example, Bickel, and Rosenblatt (1973), Hall (1984), Fan (1994),

Ait-Sahalia, Bickel, and Stoker (2001), and Li and Tkacz (2004).

The density function 1i(x) is introduced in (2.4) to avoid the problem of trimming
the small values of the random denominator in the nonparametric estimation of the
diffusion function. The weighting function a(x) is included in (2.4) to allow me to focus
goodness-of-fit testing on particular ranges of the state variable. Specifically, | will assume
that a(x) is bounded with compact support SR (Assumption 8 in section 3). This
assumption will help prevent technical problems in proving uniform convergence of the
nonparametric estimations of the marginal density and diffusion function on S. By
choosing an appropriate a(x), the specification test can be tailored to the empirical
guestion of interest. In practice, a(x) can be chosen as the indicator function of a compact
set related to the empirical question of interest. For example, to infer the behaviour of the
short-term interest rate within a range of levels—say, [0.05, 0.10] —only the paths of the

state variable that cross the interval [0.05, 0.10] are used in the specification analysis.

Under the null hypothesis, Hy, (8, cg) = 0, and under the alternative, H,,
1(6, og) >0 forany 0[] ©. Hence, the measure 1(6, og) can be used as an indicator for

the misspecification of the diffusion function, 02([)1

If cz(x) , 85, and Ti(x) were available, then 1(6,, cg) can be estimated by its
n
sample analogue, %z [(oz(xnli)—og(xnli,e))n(xi)]za(xn,i). To get a feasible test
i=1
statistic, it is necessary to estimate g®(x), 8y, and T(x) .

Under both H, and H, the true, unknown cz(x) can be estimated by the kernel

method, which is proposed by Jiang and Knight (1997) and Bandi and Phillips (2003):



2

n-1
z Kg(nlr; XE[Xn,Hl_Xn,i]
n

A2 i=
Ga(x) = =

X , (2.5)
O

n—1
A Y Kg(”'r: _

i=1 n
where K(.) is a kernel function and h, is a sequence of bandwidth parameters.

As (2.5) shows, the nonparametric estimator Gﬁ(x) is built without imposing any
restrictions on the functional form of the drift function. The derivation of the asymptotic
distribution of the nonparametric estimator Gﬁ(x) depends crucially on the assumption
A, = (T-=ty)/n - 0 as n - « (Jiang and Knight 1997; Bandi and Phillips 2003). In fact,
Nicolau (2003) shows that, without the assumption A, = (T -t;)/n - 0 as n - o, the
nonparametric estimator (2.5) is not consistent. In contrast, in a semiparametric model
with the drift function specified parametrically, the semiparametric diffusion function

estimator proposed by Ait-Sahalia (1996a) and Kristensen (2004) requires that the

sampling interval A, be fixed in order to obtain asymptotic results.

Since my aim is to construct a test for the parametric specification of the diffusion
function without a functional form specification of the drift function, the nonparametric
estimation procedure (2.5) basedon A, = (T —t;)/n - 0 as n - o isused to construct

the test statistic.

The estimator of 8,, 8, is defined as follows:

n-1
N ) -1
By = argming o 3 [10905(%, i, 0) + (00X 1 8)A,) (X is1 =% )T - (26)

i=1
Corradi and White (1997) provide regularity conditions under which 6,, is a quasi-

maximume-likelihood estimator. These regularity conditions are given in the assumptions

listed in section 3.



The parametric function og(x, By) is estimated by og(x, 6,) . The unknown

density function of x,, 1(x), can be consistently estimated by the kernel estimator,
n-1
A0 = L 5 kEni T
fi(x) = nhn_ZlKD h O (2.7)
1 =

Let F(x) be the empirical cumulative distribution estimator of F(x). Inserting
these estimates into the definition of 1(8,, og) , given by (2.4), yields the following

estimator of 1(6,, 0(2)):
Iy = I[(éﬁ(x) —G5(X, Bn)) f(x)] 2a(x)d|3(x)
= % > [(82(Xn ) = O5(Xn i Ba)) Xy )] 2a(xn,i) . (2.8)
i=1

The test statistic is a properly centred and scaled version of | ,,

J,= (nhn“){ln : nzim;(aﬁm, NECANLC jKZ(u)du}/vn . (9
where
0 = Eizl(éz(xn’i))4ﬁ3(xn,i)a2(xn,i) [URK W+ wdu)’dw . (210)

3. Assumptions and the Limiting Distribution of the Test Statistic
| specify assumptions for the functions u(.), o(.), and the parametric family of
{og(x, 8) : 606} , under which the asymptotic validity of this test statistic, J,, can be

established.

Assumption 1. Let D = (I, r) bean open interval with —o <l <r<o. p(.) and o(.)
are twice continuously differentiable on D, and Lipschitz continuity is satisfied; i.e., for any

compact subset A [0 D there exists a positive constant C, such that, for every X,y 0 C,,



(X)) =)l +1o(x) —a(y)l < Calx -yl . (3.1)
Assumption 2. oz(x) >0 forany xOOD.

Assumption 3. The global growth condition is satisfied; i.e., there exists a positive

constant, Cp, , such that, forevery x D,
u2(x) +0%(x) < Cp(1+x°) . (3.2)
Assumption 4. There exists a positive constant, C,, such that, for every x,y 0 D
[0%(x) ~a?(y) < Cylx—yi. (33)
Assumption5. Limy, _ ,lo(x)/[2u(x) =0 (x)a"(X)]| <o, Limy,  ,(0(X)T(x) = 0).

Assumption 6. The parametric space, @, is compact. For any 6 [0 ©, the given function
(X, 0) satisfies Assumptions 1-5, and dag(x, 8)/06 , 8°G4(x, 8)/0606', (X, 8)/0X ,

azog(x, 0)/0x00 exist and are continuouson R x @,

Assumption 7. For almost all (x,0) IRx0©,0 S(x, 0,)# og(x, 0,) if 8, #0,. For at
least finitely many x, there exists a constant, C,, such that 0<C,<agy(x, eo)scz‘l.
Pxo(og(xt, 8)>0) = 1 for (t,0) O[t, T] xO, where PX0 denotes the probability measure

generated by the initial value, X, -

Assumption 8. a(x) is a given Borel measurable function and bounded with compact
support, S O Dt (x) and its derivative are continuous and bounded on D, and 1t(x) is bounded
away from zero on the compact support, S, of a(x). There exists o >0, such that

Iexp(axz)n(x)dx < o,



Assumption 9. K(.) is a bounded and symmetric function about O, with IK(u)du =1,

J’IIuIIK(u)du <o, and J’uK(u)du =0.

Assumptions 1 and 2 ensure the existence and uniqueness of a strong solution to
the stochastic differential equation (2.1). Assumptions 3 and 4 are used to establish some
important moment inequalities (for example, Theorem 2.2 in Friedman 1975, 127) that are
needed to derive asymptotic results. Assumption 5 is taken from Hansen and
Scheinkman (1995, 801). Ait-Sahalia (1996a, 552) proves that, under Assumption 5, the
various classical mixing properties of the discrete observations from the stochastic
differential equation (2.1) are satisfied. In particular, the observation process is absolutely
regular with a geometric decay rate. Without this assumption, the central limit theorem
for second-order degenerate U-statistics of absolutely regular processes can fail. Corradi
and White (1999, Theorem 3.2) use Assumptions 6 and 7 to ensure that 8, is a
Jn—consistent  estimator of 8, under the null hypothesis, whereas, under the
alternative, én is a »/n—consistent estimator of some 80, where 800 ©. Assumption 8
requires a(x) to be bounded with compact support. As stated earlier, without this
assumption | cannot prove uniform convergence of the nonparametric estimations of the
marginal density and diffusion function on S. In practice, a(x) can be taken as the
indicator function of a compact set related to the empirical question of interest.

Assumption 9 is a standard regularity condition imposed on a kernel function.

The asymptotic null distribution and consistency of J , is provided in the following

theorem.

Theorem 1: Suppose that Assumptions 1-9 hold and that h, = O(n_l/y), where

1.5<y<45.If T iseither fixedor T — o, Thﬁ/2

10
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(a) under Hy, J,, —» N(0,1) indistributionas n - o ,and Oﬁ is a consistent estimator

of v°, where v*= 8[0”(x)1t'(x)a” (x)dx[[ [K(W)K(w + u)du] “dw ;
(b) under H,, Pr(J, =B,) — 1, for any nonstochastic sequence B, = o(nh,"?).

Proof: See the appendix.

4. Monte Carlo Simulations

In this section, | examine the finite-sample performance of the test using Monte
Carlo simulations. As stated in section 1, assuming that the drift function is specified
correctly and that the closed-form expression of the model-implied transition density is
available, transition density-based tests can also be used for the specification of the
diffusion function in a diffusion process. Hong and Li (2005) conduct a simulation study
to examine the size and power of their tests. For comparison, | adopt simulation designs

that are similar to Hong and Li’s (2005).

To examine the test’s size performance, | simulate data from the Vasicek (1977),
Cox, Ingersoll, and Ross (1985) (CIR hereafter), and drift-misspecified CIR (DMCIR

hereafter) models, respectively.

Vasicek’s model is:

dx, = B(a—xydt+adw, (4.1)
CIR’s model is:
dx; = B(a—x)dt+o,/xdw,. (4.2)

The DMCIR model is:

11



dx, = (a_lxt_1+a0+alxt+a2xf)dt+0@dwt. (4.3)

For Vasicek’s model, the null hypothesis is that the diffusion function is a constant;
i.e., Hy: 0’2()() = constant. Under the null hypothesis, the estimator of 6 = o’ is given by
Gﬁ = nil(xn,Hl_xn’t)Z/T . Under the assumption that the drift function is correctly
speciftic-:-:d1 as B(a—x), Hong and Li’s (2005) test can be used to test the null hypothesis by
testing whether the data are generated from a normal transition density (Hong and Li
2005, 21). In the Vasicek model, the parameter 3 determines the persistence of the process.

The smaller B is, the higher the level of persistence in the process, and, consequently, the

slower the convergence to the long-run mean, a.

As with Hong and Li (2005) and Pritsker (1998), to examine the impact of the level
of persistence on the size performance of our test, | consider both low and high levels of
persistent dependence and adopt their parameter values. The parameter values for low

and high levels of persistent dependence are, respectively, (3, a, 02) = (0.85837,
0.089102, 0.002185) and (3, 0(,02) = (0.214592, 0.089102, 0.000546) .

To examine the test’s size performance when the drift function is misspecified, |
consider two cases. For Case 1, the data are assumed to be from CIR’s model, but they are
generated from the DMCIR model. For Case 2, the data are assumed to be from the
DMCIR model, but they are generated from CIR’s model. For both cases, | test the null
hypothesis that the diffusion function is ozx; ie, Hy: 02(x) = o°x . Obviously, in both
CIR’s model and the DMCIR model, with the drift functions being misspecified, the
diffusion functions are correctly specified. The parameter values of CIR’s model are taken

as ([3,0(,02) = (0.89218, 0.090495, 0.032742), which are from Hong and Li (2005),

12



whereas the parameter values of the DMCIR model are taken as

(a_l,ao,al,az,oz) = (0.00107, -0.0517, 0.877,-4.604, 0.032742) . Under the null

n-1 2
hypothesis, the estimator of the parameter, 6 = o® , isgiven by 6ﬁ = z
t=1

X

(Xn,t+1_ n,t)

Txn,t

Since Vasicek’s and CIR’s models have closed-form transition density and
marginal density functions (Pritsker 1998, 456; Hong and Li 2005, 22), the simulated
sample path can be constructed by their transition densities. The initial values are drawn
from their marginal densities. The discrete observations of sample size n are generated
over a time period [0, T] with a sampling interval of A, = T/n. For the DMCIR model
(4.3), because its transition density has no closed form, data are simulated using Milstein’s
scheme (see (4.7)). Throughout the experiment, | generate 500 realizations of a random
sample {xn,j} ;‘z , for sample sizes n = 250, 500, 1000, 2500, respectively. I discard the
first 500 observations to eliminate any start-up effects. T issetto 1 and 5 to consider the

impact of the sample interval on the test performance.

To study the test’s power performance, | consider two cases. For Case 1, the null
hypothesis stipulates that the data are generated by a model with a constant diffusion
function; i.e., Hy: 02(x) = constant. However, | simulate data from three different
models: CIR’s model, Chan et al.’s (1992) (CKLS hereafter) model, and Ait-Sahalia’s
(1996b) nonlinear drift model. The same parameter values as in Hong and Li (2005) are
again adopted. If | impose the assumption that the drift function is correctly specified as
B(a—x), Hong and Li’s (2005) test can be used to test the null hypothesis by testing

whether the data are from a normal transition density.

The CKLS model is,

13



dx, = B(a —x,)dt+oxPdw, , (4.9)
with parameter values (a, 3, 02, p) = (0.0808, 0.0972, 0.52186, 1.46) .
Ait-Sahalia’s nonlinear drift model (1996b) is:
dx, = (0_ X"+ 0+ 0y X, + 0,X0)dt + oxPdw,, (4.5)
with parameter value (a_l,ao,al,az,oz,p) = (0.00107,-0.0517, 0.877,—-4.604, 0.64754,
1.50).

For Case 2, the null hypothesis stipulates that the data are generated by a model
with the diffusion function o°x. However, the data are simulated from three different
models: the CKLS model (4.4), the nonlinear drift model (4.5), and a modified CKLS

(MCKLS) model. The MCKLS model is:

3/2

dx, = B(a—x,)dt+(a/ (3% %a))(x, +2) °dw,, (4.6)

with the parameter values (J3, q, 02) = (0.89218, 0.090495, 0.032742) used in CIR’s
model. Note that the process (4.6) has a nonlinear diffusion function and the same drift
function as in CIR’s model. Particularly, the linear diffusion function in CIR’s model is
tangential to the diffusion function in the MCKLS model at point x = 0.090495. This

design helps in evaluating the test’s power for testing curvature.

For the CKLS model (4.4), Ait-Sahalia’s nonlinear drift model (1996b) (4.5), and the
MCKLS model (4.6), since their transition densities have no closed forms, | simulate data

using Milstein’s scheme:

12 2
Xtra, = Xe+ HX)B, +0(x) /Brg + 507 (x) A (g7 —1) (4.7)
14



where ¢, is a standard normal distribution. The initial value is set to equal the average

interest rate level of the data set in Ait-Sahalia (1996 b).

Throughout this experiment, | use the standard normal kernel. The bandwidth
parameter h ischosenaccordingto h, = coxn_l/y, where o, is the standard deviation
of observations. I choose y = 2.1, 3.5. The choice of h, satisfies the conditions of Theorem
1. To check the sensitivity of the test with respect to the choice of bandwidth h, I change
h, through different values of ¢: ¢ = 0.5,1,15. The function a(x) is the indicator
function of the interval S = {x|x [0[0.002, 2]} . The critical value z, is from the standard

normal distribution; i.e., 5o, = 2.33, 555 = 1.645,and z,, = 1.28.

Table 1 reports the estimated size of the test. Four general conclusions can be
drawn from the table. First, the test has satisfactory size performance at all three levels for
sample sizes as small as n = 250. In contrast, it is clear that, under the same simulation
setting, Hong and L.i’s tests show strong overrejections under the 1 per cent level (Hong
and Li 2005, Figures 1 and 2), and the size of their tests is about 2.1 per cent on average,
even if the sample size increases to 5500. Second, the impact of the level of the dependent
persistence on the size of the test is minimal, which suggests that the test achieves
robustness to the persistent dependence. This result can be explained by the fact that the
test statistic is independent of the specification of the drift function, which determines the
level of the persistent dependence. Third, the test still exhibits a satisfactory size
performance even if the drift function is misspecified. In contrast, the Monte Carlo
simulation shows that, under the null hypothesis that the data are generated from CIR’s
model, the power of Hong and Li’s (2005) tests for rejecting the DMCIR model is about 59

per cent, even if the sample size is increased to 2500 across lag orders from 1 to 20. In other
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words, Hong and Li’s (2005) tests strongly reject the correct null hypothesis of
oz(x) = g°x. It is obvious that the rejection arises because of the misspecification of the
transition density. Fourth, note that the estimated size of the test is quite stable over

different choices of bandwidth, particularly for large samples.

Table 2 reports the estimated power of the test when the null hypothesis is that the
diffusion function is a constant but in fact the data are generated from the CIR model, the
CKLS model, and Ait-Sahalia’s (1996b) nonlinear drift model, respectively. Table 3 reports
the estimated power of the test when the null hypothesis is that the diffusion function is
o’x but in fact the data are generated from the CKLS model, Ait-Sahalia’s (1996b)

nonlinear drift model, and the MCKLS model, respectively.

The simulation results of the test’s power performance lead to three conclusions.
First, Tables 2 and 3 indicate that the test detects the misspecifications of the diffusion
functions quite well in both Vasicek’s and CIR’s models against their respective
alternatives. For a given alternative, the test’s power always increases rapidly with
respect to the sample size, in line with the test’s consistency property. By comparison, the
power of Hong and Li’s (2005) tests in detecting Vasicek’s model against CIR’s model is
about 50 per cent when n increases to 2500, which is noticeably worse than against the
CKLS model and Ait-Sahalia’s nonlinear drift model (Hong and Li 2005, Figure 3).
However, under the same simulation setting, the power of the test is above 90 per cent.
Second, the test has good power in detecting CIR’s model against the MCKLS model
when the sample size increases to 2500. This test, however, has a lower power in detecting
CIR’s model against the MCKLS model than the CKLS model and Ait-Sahalia’s (1996b)

nonlinear drift model. This result can be explained by the fact that the diffusion function
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in the MCKLS model is closer to the diffusion function in CIR’s model than in the two
other models. Third—even though the test’s power is already quite stable over different
choices of h, for large samples (n = 1000, n = 2500)—the higher the value of the
bandwidth, h_(i.e., the higher the value of c¢), the higher the test’s power. This result can

be explained by the fact that the test statistic diverges to + o at the rate of nhrl]/2

under
the alternative. Hence, a higher h,, (in a certain range) will lead to a more powerful test
against some fixed alternatives (in finite samples). This result does not mean that one
should use a very large value of h, in practice, because it would oversmooth the data,
and hence obliterate any deviation of the data from the null data-generating process. Of
course, one should not use a very small value of h, because it could result in an
inaccurate kernel estimation. Specifically, an h,, that is too small tends to make the test
less powerful. Since the test is based on high-frequency data, the large sample sizes
available should make the choice of h, less crucial than the moderate sample size. How

to choose the bandwidth optimally, so that the test’s power is maximized and the size is

kept under control, is left for future research.

Simulation results for T = 5 are not presented, but are available from the author.

They are qualitatively similar to those for T = 1.

5. Conclusion

In this paper, | propose a consistent test for the parametric specification of the
diffusion function in a diffusion process without any restrictions on the functional form
of the drift function. The test is based on a comparison of the kernel estimate of the true

unknown diffusion function with the parametric specification of the diffusion function. It
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is shown to have the standard normal distribution under the null hypothesis. The Monte

Carlo simulation results suggest that the overall performance of the test is satisfactory.

Extensions to multi-dimensional diffusion processes (including unobservable state
variables) and applications to evaluate the performance of a variety of specifications for
the diffusion function in the spot interest rate process (Durham 2003) will be considered
for future work. It would also be useful to develop a test for the parametric specification

of the drift function in a diffusion process.
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Table 1: Percentage of Rejections of the True H

c=05 c=1 c=15
n 1% 5% 10% 1% 5% 10% 1% 5% 10%

Vasicek’s Model with Low Level of Persistent Dependence
250 0.006 0.026  0.040 0.010 0.032 0.044 0.012 0.028 0.054
500 0.018 0.046 0.062 0.010 0.036 0.076 0.020 0.046 0.072
1000 0.020 0.058  0.086 0.014 0.062 0.090 0.012 0.054  0.082
2500 0.010 0.054 0.088 0.012 0.056 0.096 0.008 0.052 0.090
Vasicek’s Model with High Level of Persistent Dependence
250 0.010 0.022 0.044 0.008 0.028 0.046 0.022 0.048 0.072
500 0.012 0.046  0.064 0.020 0.046 0.084 0.020 0.052 0.074
1000 0.008 0.044 0.068 0.020 0.038 0.090 0.020 0.048 0.076
2500 0.008  0.046  0.076 0.010 0.048 0.092 0.012 0.050 0.086
Case 1: Data are assumed to be from CIR model but in fact are generated from DMCIR model
250 0.020 0.030  0.050 0.022 0.046 0.074 0.004 0.024  0.044
500 0.016 0.056 0.108 0.014 0.044 0.072 0.022 0.060 0.090
1000 0.014  0.052  0.066 0.012 0.054 0.104 0.020 0.058 0.094
2500 0.012 0.052 0.078 0.010 0.048 0.102 0.014 0.054 0.098
Case 2: Data are assumed to be from DMCIR model but in fact are generated from CIR model
250 0.014 0.040 0.064 0.014 0.042 0.068 0.020 0.042 0.068
500 0.016  0.050  0.076 0.020 0.050 0.074 0.028 0.056 0.082
1000 0.016 0.054 0.082 0.020 0.048 0.072 0.020 0.052 0.084
2500 0.014  0.052  0.090 0.012 0.052 0.078 0.012 0.050 0.096
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Table 2: Percentage of Rejections of the False H,,

c=05 c=1 c=15
n 1% 5% 10% 1% 5% 10% 1% 5% 10%

Cox, Ingersoll, and Ross’s Model (CIR)
250 0.114 0.166  0.202 0.146 0.216 0.280 0.196 0.282 0.344
500 0.230 0.324  0.400 0.308 0.416 0.474 0.362 0.458 0.578
1000 0534 0.632 0.696 0596 0.692  0.748 0.668  0.738  0.792
2500 0.904 0922 0.950 0.942 0.968 0.980 0.944 0.960 0.974
Chan et al.’s Model (CKLS)
250 0.262 0.360 0.426 0.270 0.370 0.452 0.328 0.424 0.496
500 0.752 0860 0.908 0.822 0.892  0.926 0.900 0.946  0.960
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000  1.000
Ait-Sahalia’s Nonlinear Drift Model
250 0.276  0.362 0.438 0.342 0.432 0.482 0.424 0.518 0.582
500 0.660 0.714  0.752 0.718 0.798 0.832 0.736 0.802 0.836
1000 0904 0938 0952 0.936 0956  0.968 0.952  0.974 0.978
2500 0.994 0.998  0.998 1.000 1.000 1.000 1.000 1.000 1.000

23



Table 3: Percentage of Rejections of the False H,,

c=05 c=1 c=15
n 1% 5% 10% 1% 5% 10% 1% 5% 10%
Chan et al.’s Model (CKLS)
250 0176 0260 0314 0250 0.360 0.434 0316  0.374  0.430
500 0.394 0.490  0.550 0.446 0.552 0.608 0.528 0.624 0.668
1000 0.604 0.680 0.718 0.676 0.728  0.782 0.696  0.776  0.818
2500 0.842 0.892 0.912 0.878 0.904 0.922 0.904 0.938 0.956
Ait-Sahalia’s Nonlinear Drift Model
250 0.058 0.110 0.148 0.060 0.102 0.156 0.064 0.124 0.162
500 0.228 0.330 0402 0.252 0.350  0.420 0302 0.396  0.458
1000 0.700 0.824  0.880 0.784 0.858 0.890 0.824 0.875 0.908
2500 0974 0.990 0996 0.992 0992  0.996 1.000 1.000  1.000
Modified CKLS (MCKLS) Model

250 0.010 0.010 0.012 0.014 0.016  0.018 0.026  0.044  0.104
500 0.052 0.064 0.114 0.062 0.090 0.126 0.092 0.098 0.142
1000  0.154 0.254 0330 0.256 0.356  0.420 0328 0.386 0.472
2500 0468 0.630 0.662 0.618 0.706 0.740 0.670 0.734 0.802
5500 0.818 0.854 0.886 0.834 0.862  0.890 0.850  0.884  0.904
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Appendix: Proofs

Let {X, ¢} ={X, ;;Isn; nz1} be a triangular array of random variables, and

Mg‘t denote the sigma algebra generated by (X, ..., X, {) for s<t.

Definition. (i). {X, } is said to be a strictly stationary triangular array of random
variables if for positive integers s;, s, and k, {X; . X, 1, X5 4 and

{Xn s, Xn,s,+10 -+ Xps,+1d  Nave the same joint distribution, where s, +k<n, s, +k<n.
(i). Let {X,} be a strictly stationary triangular array of random variables
and By = SUPg 1< nElSUP, e {|P(AIML () =P(A)}]. Then, {X,} is said to

satisfy an absolute regularity condition with the mixing coefficient 3, ifB,, - 0astT - .

Lemma 1. Let &, 4,...,&, , be random vectors taking values in R satisfying an
absolute regularity condition with the mixing coefficient (... Let a(y;, ...,y,) be a Borel

measurable function such that, for some >0,

Mo = maxCElaEn i, &)1 E[Ee, g [18GE B ) T
O O

exists. Then,

—=1/(1+0),8/(1+9)

|E[a(En‘i1, & i)l ‘E[Ein,il ---‘En,ij[a(zn,il’ ok ik)]]| < AM;, o/
where,
Bty i [0 1y 0 & DT
= ﬂa(yil, .-"yij'En,ij+1!'- N Ik)|1+a‘> J(yll -’yij) |
m =y, =1j, Finl""'ij(yil,---,yij) is the distribution function of random vectors

iy B and i <ip < <.
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Proof: Lemma 1 follows straightforwardly from Lemma 1 in Yoshihara (1976).

For simplicity, h,,and Kg(“’hi _XE are expressed by h and K;(x), respectively. El s

n

used to express the conditional expectation with respect to the o-field generated by
{x,;usty+jA} . The symbol C denotes a generic big enough positive constant. The
notation A 0B means that A has an order no larger than that of B. Also, let B(.,.,.) bea
Borel measurable function, and F(x, X) be the joint distribution function for (x, ;, X, j) ,

where i # . | denote: Ei[B(Xn, i» Xn, j» Xn, ] EIB(X, Xn, j Xn, WAF(X)
Ek[B(xn, i Xn, j» Xn, Wl = IB(Xn, is xm-,x)dF(x) , and
Ei’ j[B(xn’ i Xn, j» Xn, ] EHB(X, X, Xp, WdF (X, X).

Lemma 2. Suppose that Assumptions 1-4 and 6 hold and E(xtz,') < + oo for some positive

integer |, and t' O [ty T).Then, for t'>ty+ jA, :

j 21 21\ N
@ E (xt.—xnyj) < Dn(1+xn,j)(t —t,—jh,) (A1)
where D, = 2@ N2 t—t,—ja) +[121-1)1} .

N 1 A
(b) Let 1y(Zp, %, B0) = =K 0L, 101X 2_al(x, 600,

where Z, . = (X ;, X, ;1) - Then, under the null hypothesis, for x J S:
E[rn(Z, o % 80)] = O(na %) +O(nh%) + o(n™?n 7Y, (A2)
A \q2 2
EJ’[rn(Zn’ %, 0n)] a(x)dF(x)= TJ’GA'(X)n(x)a(x)dF(x)Ikz(x)dx
n“h
+o(aY2n%hy " +n? | (A3)

where &> 1.
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Proof of (a) of Lemma 2: (A.1) directly follows Theorem 2.2 of Friedman (1975),

simply by replacing the unconditional expectation with the conditional expectation.
to +(j+ 1)An

Proof of (b) of Lemma 2: For simplicity, | 9(u)du s denoted by Jg(u)du,

tO"'J.An
where g(u) is any integrable function. An application of 1t6’s formula yields:

E(ra(Zp 5 % Bn))= ﬁE%j(x)Ej[i(xu—xn,j)u(xu)du+J’n(02(xu)—02(xn,j))du}§
1 0
+ F]A—nhEEKj(x)A[n(oz(xm ) —oz(x))dug
—LE[K;(x)(05(x, Bn) ~0°())]
= Anl + An2 _An3'

| will prove (b) of Lemma 2 by showing A,; = O(Ai/zn_l). A = O(n_lhz), and

-3/2,1/8-1
hl/¢

A,z = O(n ). From Assumptions 3 and 4, (A.1), and Schwarz’s inequality, it is

172

straightforward to have that A, = O(A, n_l). For A,,,, by assumption 4, | have,

_ 1 =X 2 2 _ 4 2 2
Ay, = EIKDTD[G (u)=o"(X)]m(u)du =n IK(V)[G (x + hv) —o”(x)]mt(x + hv)dv
= o(n*h [KUVA(x -+ hv)dv) = o(m™'h? , where | use the Taylor extension
(X + hv) = TI(x) + Tt (x)hv + %T{"(S)hzvz, and 8 O (x, x +hv). For A_,, under H,, from

Assumption 6 and Holder ‘s inequality, there exists & >1 such that,

B " 1/ _ _
[Angl < CNM)TECK ()T TE[Bn -84 "= O™ *h"5 Y

where n = (1—E_l)_1. Hence (A.2) holds. | show (A.3).
E[(rn(Zp, 5% B)) a(x)dF (x)
—2. U 2 2 2 2 0
= (nha,) E%[Kj O)(Xn, ;41— Xn, ;)" =07 (X, 0p)A] a(x)dF(x)S
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+ (nh)_ZEEI’KJ-Z(X)VZ(X, 6, On) a(x)dF(x)
0
2,1 2 2 2 A N
+(nh) "A, E%[Kj O)(Xp, ;o1 =X%n, )" =07 (X, 6p)An] V(X, By, en)a(x)dF(x)E
_ Al 2 3
=AnztAnzt Anz,
where V(x, 8y, 8n) = 05(x, B) — (X, Bp).

Using (a) of Lemma 2, the mean value theorem (to og(x, én)—oz(x, 8y) ).

A -1/2

Xp i —X
Oh—06y = Op(n ), and changing the variable by —2L— = v | it is straightforward to

h

-1 _ A
1/2(n5/2h) ) +0O(n 5/2). | next consider Aﬁ3.

have A2, = O((n°h) ) and A%, = O(AL
Applying It8’s formula to (x, ;. 1 =%y )" and (X, ;41 =Xy )7
Al, = (nhAn)_ZEIE[KjZ(X) J4Ej(xu—xn‘j)gp(xu)du}a(x)dF(x)
_an, IE[KJ-Z(X) J El(xy =%y j)u(xu)du}oz(x)a(x)dF(x)
+6 IE[KJ-Z(X) J El(xy =% 1) (0%(x,) - oz(x))du}a(x)dF(x)
+12 J’E[KJ-Z(X) J J':Mn El(x, X, J.)p(xs)dsdu}cz(x)a(x)dF(x)
+ GIE[KJ-Z(X) J f:wn El(a®(x,) —oz(x))dsdu}oz(x)a(x)dF(x)
2 IE[KJ-Z(X)An f:, " El(6?(x,) - 02(x))du}02(x)a(x)dF(x)
2B} 0050012000001
=AL AR+ AR s AL AR+ A AL

By using (a) of Lemma 2, it can be shown that:
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11 1/2, 2,1 12 172, 2,1 13 172, 2,1 -2
AL = 0(AYA(n*h) ), AL = oAV (n%h) ), AN = oY% (n*h) T +n7d),

172

V2 (n?h) " +n7?), AL = o(al

14 2, -1 15 1/2
A = O(An (n"h) ), A3

o(A

(%) " +n?),

ArL = 2(n2h)_lI[n(x+hv)04(x)a(x)dF(x)] IKZ(v)dv: 2(n2h)_1J’[T[(x)04(x)a(x)dF(x)]
x IKZ(v)dv +0(n7?) .

, H 11 0
To summarize the above, | have shown that maxDAﬁ3, AﬁB, Az A,l]g Aﬁ?g:
O 0

-1 -1 _
oA 2(n°h 7)) , max{ A, Ara Ang = O(4y%(n*h)~ +n ™), and

Ang = 2(n2h)_1_[ﬂ(x)04(x)a(x)dF(x)IKz(v)dv +0(n™%). These results imply that

(A.3) holds.

Lemma 3. Under Assumptions 1-9 and the null hypothesis, I, can be written as:

172,71

I, = In+0,((nh™%) ), (A.4)
where 1= J’[(Gﬁ(x)—og(x, én))ﬁ(x)] 2a(x)dF(x) :

Lemma 3 indicates that the only difference between I,, and |, is that the latter is
average over the empirical conditional distribution function, instead of F. Lemma 3
shows that this difference is inconsequential for the asymptotic distribution of the test

statistic.
Proof of Lemma 3: | need to prove that:
. A nas nq2 -
€n EJ’[(Gﬁ(X) —~05(x, Bn))Ti(X)] “a(x)d(F(x) —F(x))

=3 I(nhAn)_ZKi(x)Kj(x)[(xnyi+1—xn’i)2—0(2)(x, Bn)A, ]
ij=1
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X [(Xn 141~ Xn. })° = Oa(X B)A ] a(x)d(F(x) —F(x))

1/2,-1

= 0,((nh™"%) 7). (A5)

First, under Assumption 5, the observed data sequence { x, ¢ isabsolutely regular
with a geometric decay rate; i.e., {Xx, ¢ satisfies the absolute regular condition with
mixing coefficient B, = O()\m) (Ait-Sahalia 1996a, 552), where A is a positive constant
determined by the integral operator of the diffusion process (2.1). Let m = [blogn] and

K = —logA >0, where b is a sufficiently large positive constant. Then,

—bklog,n

By = OO™) = O(A ) = 0(n™) .

Recalling that Gg(x, 6n) —cg(x, Bp) = V(X, 6, 6n) , g, can be written as follows:
3 2 2 2
€y = n- (hAn) Z { Ki(xn, k)Kj(Xn, k)[(xn, i+1~Xp, i) - 0O(Xn, kr 9O)An]

ij k=1

X [(Xn,j+1=Xn. ;)" = To(Xn. 1 O)Anl a(Xp 1)

[KIOOK O (X, 1%, ) = 0% B)Bn] [(Xp, 1 =Xy, ) =G, )] a(X)dF (X))}

n
-3, 2 1 2 2
—2n "h A, z {Ki(Xn, DK% )X i 41— Xn, 1) = 00(Xn, ko O0)Ap]
k=1

X V(X 1 6 On)a(Xy, )

KK OO, 141 =X, )2 = 05(x, Bp)A1V(X, B, Bn)a(x)dF(x)}

n

+n Y nh)~ S KO K (X, V(X 10 80, @n)—J'Ki(x)K JOVE(x, 8, Bn)a(x)dF(x)}
ij k=1

=€,1— 28t €3 - (A.6)

I shall show that &,; = o ((nh"/ 7Y fori = 1,2,3. | will first show that

172\~

€np = 0p((Nh™7) 1). Let
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Wi 1) = {KiGn 0K 0L+ 1= Xn, 1) = O5(Xn, s 80) ]
X [(Xn, 1+ 1=%n, )" = Oo(Xn 1« Oo)Anla(X, )
K OK (X, 1% )2 —02(x, 6)A,]

X [(Xn,;+1=Xn. ;)" = To(X, B)Bla(X)dF(X)} |,

n
-3 -2
then, €1 = N “(h4,) Z Wi i k(Xn k)
i jik=1
-3 -2 n -3 -2
=n(hay) Y Wi i(xn ) +n 7(hay) szi,i,k(Xn,k)
i=1 ¥
-3 -2
+no(hdg) S Wi (X k)
iZ],k
1, 2 .3
=g +E FE. (A7)

-1 i -1
To prove that €, = op((nhl/z) ), I need to prove that s'nl = op((nhl/z) ) for
i = 1,2,3.For g;;, because (X, ;,1—X, ) = Op(&y) for | = 1,2 by (A.1)in Lemma

2, | immediately obtain:
1 2,2 1721
€n1 = Op((nhAn) Ay) = op((nh ) ). (A.8)
For sﬁl, | denote (aﬁl)2 as:
2 2 -2 —4
(€,1) = n "(nhA) szi,i,k zkwi’,i',k'
F: i"Fk'
2 |2 2 |2 2 |2
=(&q11) *+(En12) *+(En13)

2 2 2 _ :
where (eﬁll) : (eﬁlz) , and (sﬁB) , respectively, denote the cases where the summation
indices satisfy min{|k —k'|, [k—i|, k=i'} >m+1,eitheri =ik = k' ori = k',k =1’

2
and all remaining cases. For (sﬁll) ,using E, (W; ; (X)) = 0,and Lemma 1:
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E(nzh(eﬁll)z)sO+Ch_3(nAn)_4(hAﬁ)n4Bﬁfn2 = O(h*BP)= o(1).  (A9)

2 2
For (€,15) :

E(n’h(e2,,)") < ch3(na,)(n%an) = O((nh¥3)™) = o(1). (A.10)
For (eﬁB)z, using Holder inequality:
E(n’h(e25)7) = c(nh®) "h*3m = om(nh*®) ™) = o(1). (A11)
From (A.9), (A.10), and (A.11):
€2, = o,((nh3)7). (A12)
To evaluate a‘;’l, I consider the second moment of (nhl/zaﬁl)2 ;
E(nhl/zsﬁl)z _ h—3(nAn)‘4 Z Z EIW, Wi 5] (A.13)

EINEIING
I consider four different cases: (a) for any two summation indices | and L from
k,i,j,k',i"',j, [I-L|>m+1forall L#I; (b) there exist exactly four different summation
indices such that, for any index | from these four indices, || -L|>m+1 forall LZ1; (c)
there exist exactly three different summation indices such that, for any index | from these
three indices, || -L|>m+1 forall L#1;and (d) all the other remaining cases. | will use
EA, to denote these cases (s = a, b, c,d). For case (a), using E¢Wi k=0 or

E¢Wi i = 0 and Lemma 1:

i

1/2_
nm "~

172 172

EA,<0+C(h)(nA,)*n®(hah)BY ?= cn®h B2 = 0(n"BY )= o(1). (A.14)

For case (b), it is necessary to consider only the case |k—k'|<m+1, since

otherwise | will have k or k' is at least m periods away from any other indices and, by
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Lemma 1, | know it is bounded by CnGBnm

= 0(1) . With |k=k'| <m+1, | must be at
least m + 1 periods away from any other indices for | = i, j,i’, J'. Hence, repeating the

application of Lemma 1 yields:

-3 -4 6.1/2
EAp<h™(na)™ Y Z E[E;E(W; ; ) E;E;(Wp i )] +Cn"Bam .
iz, ki"z]), k'
<ch(na,)*(anh® + AShH)mn® + Cn®B/ %= o(1). (A.15)

For case (c), it is necessary to consider only |k—k'|<m+1,|k=ll<m+1 for
exactly one 1 O0{1i, j,i',]} , since otherwise it will be bounded by CnGBﬁﬁn2 by Lemma 1.
By symmetry it is necessary to consider only | = i. Repeating the application of Lemma
1 yields:

-3 —4 6.1/2
EAGShT (8" 5 5 ELE{(W, j ;B (Wi )] +Cn°Bom
i£Lki"£7, K

5/2
n

6,1/2

<Ch(na,) (820" + a3h%) (A2h° + 8 *hyn*m? + Ccn®B

2,1/2 3/2

= C(h®+h°AY?+A h+A° e

)m®+Cn®p 2= o(1) . (A.16)

For case (d), for any three different I's, |k —1| <m+ 1 for all k#|; case (d) has, at

most, m>n® terms. Hence, using Lemma 1:
— 3,2 .4 _
EA < Ch(nA,) *m®n’h?an + Cn®BL 2= cm®(nh)™ = o(1). (A.17)

From (A.13)-(A.17):

1/2,-1

gy = 0((Nh™9) 7). (A.18)

Finally, from (A.8), (A.12), and (A.18), £,; = o,((nh"/ 27,

172\~

To prove that € ,= op((nh ) 1) , expanding g (X, 6,) around 8, yields:
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" " 1 A .
ao(X, Bn) —0(x, B) = Og'oa(X, 90)(9n—90)+§(9n—90)'D§0(2)(x, B1) (6n—6,) .(A.19)
Using (A.19), €,, can be expressed as:

Enp = —(nAn)_l(nh)_2 > {Ki(xn,k)Kj(Xn,k)[(Xn,i+1_Xn,i)2_og(Xn,k' AW
i k=1

X DG'O(Z)(Xn, i’ e())a(xn, K)
_IKi(X) KON (X, 41— X, i)2 - G(Z)(X, 80)4,]0 GOS(X, Bp)a(x)dF(x)} 6n- %)

+ (B =80 (A (M)~ T K0 WK % ) 141X 1) = (X 0 B) ]
ij k=1

x D504(Xn, j» On)a(Xy 1) - [KIOOK (X, i+ 1% )2 —02(x, B)A,10505(X, B)
x a(x)dF(x)} (8, —8,)

= 8,112(@“—90) + (én—eo)'sﬁz(én—eo)- (A.20)

172\~

1
Using the same approach | used to prove that €., = op((nh ) ), I can prove

172\~

1
that &,, = 0,((Nh""%) ") . BY (X 141-%n)° = Op(4,) and Assumption 5, it follows

-1
that sﬁzz Op(l). Hence, €, = op((nhl/z) ).

Finally, for €5:

ag = NON) 3 (K (0K O V(X0 80, B)— K COKI OOV (X, B, B)a(x)dF ()}

i,k=1

+n Y (nh)”? S {Ki(n, K0, V(X 1o 8o, én)—IKi(x)K JOVA(x, 8, Bn)a(x)dF(x)}
i#] k

=gl e, (A.21)

i, 1. -1
Itis easy toshow that ;5 = O (n°h™) = 0,(1) andepy = Op(n"h ) = o, ().

1/2
Hence, €,53 = o,(nh™ 7).
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A central limit theorem is required for degenerate U-statistics of the triangular
arrays of random variables {X, } , I<n, and nz1, which is used to derive the

asymptotic distribution of the test statistic proposed in this paper:

U, = 2: j{ Iﬂn(xnm’xnﬁ),

n
1<s<t<n

where H (., .) depends on n and satisfies J’Hn(x, y)dF,(x) = 0 forally,and F(.) isthe

marginal distribution function of X, ;. For every n, let {)N(m} |n: 1 be an independent,
identically distributed (i.i.d.) sequence that has the same marginal distribution as { X, } .
Following the same approach as in Fan and Li (1999), | define oﬁ = E[Hﬁ()N(n, 1 )N(n, 2)] . In
Lemma 4, Assumptions (A1)-(A3) in Fan and Li (1999) are said to be satisfied by { X, #

if the conditions in Assumptions (A1)-(A3) in Fan and Li (1999) calculated by every row

of { X, ¢ are satisfied.

Lemma 4. Let { X, ¢ be strictly stationary and satisfy the absolutely regular condition
with mixing coefficient B, .. If Assumptions (A1)-(A3) in Fan and Li (1999) are satisfied

~2U,
no

by{ X, ¢ ., then: - N[O, 1] indistributionas n - .

n
Proof of Lemma 4: The proof follows the same way as the proof of Theorem 2.1 (Fan and

Li 1999), and thus is omitted from here.

Proof of part (a) of Theorem 1: From Lemma 3, | will complete the proof of part (a) of

Theorem 1 by showing:

(i) Jns(nhl/z){in—n—fh S (Gﬁ(xn’t))za(xn,t)ﬁ(xn’t)Ikz(u)du} - N[0,V in
t=1

distributionas n — .
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(i) vﬁ ~VvZin probability as n — o.

Proof of (i): I, can be rewritten as:

- 0t 1 2 2. & 0
I, = J’DZ ij(x)[(xn,jH—xn]j) —0,(X, Bp)A]O0 a(x)dF(x) .
[%:1 n 0
Let fn(zn,j,x,e) = rn(zn’j,x,e)—E(rn(zn’j,x,e)) , Where 2, = (Xn p Xn j+1) -

decompose I,, according to

I,=2 zk Ifn(znlj,x,én)Fn(zn,k,x,én)a(x)dF(x)
1<j<ksn

+ 3 [ra(z,, % Bn)a(x)dF (x)
j=1
+2n-1) Y [Fa(Zn,p %, én)E(rn(zn'j, X, 0n))a(x)dF(x)
j=1
+n(n-— 1)J’[E(rn(zn, 1 % én))] 2a(x)dF(x)

=lpp+ I+ lng+1ng . (A.22)

| will show under the assumptions that I,; is asymptotically normal in
distribution, 1,3 and 1,4 are asymptotically negligible in probability, and 1, gives a bias

term. First, | prove that nh*’(i,,—Ei,») — O in probability under the null hypothesis:

Var[ing = S Var[‘l’rﬁ(zn’j,x, 8,)a(x)dF(x)]
j=1
+ 215%5 n{ E[J’rﬁ(znl o %, Bn)a(x)dF(x) XJ’rﬁ(znl o X, Bn)a(x)dF (x)]
—IE[rﬁ(zn, o %, Bn)]a(x)dF (x) XJ’E[rﬁ(zn, o %, Bn)]a(x)dF (x)}
=i+ . (A.23)

Changing variables by (x, ;—x)/h = u and using (a) of Lemma 2:
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g < E[Irﬁ(zn, % n)a() R ()] 2

) 4 2,0 A 2
Kj O(Xn, +1=%n,5) —200(%, Bn) A0 (X, 41— Xn, ;)

= E{[(nha,)
+5(%, 8n)Ap]a(x)dF(x)}?
< C((nAn)“hz)‘lEE[ [K(W)aly ,+ )T, +hu)du] (% o3 =X, ,-)f@

; C(n4h2)_lE[J’K2(u)og(xn,j +hu, Bp)a(x,  +hu)m(x, , +hu)du]

; C(n“hz)‘lE%sz(u)og(xmj +hu, Br)ax, , +hu)T(x,  +hu)du] “(x, 43 =X, j)"%

= o((n*h) 7). (A.24)

For iﬁz, | consider two different cases: (@) min{|j—k} >m+1 and (b)
min{|j—k}} <m+ 1 I will use EB, and EB,, to denote cases (a) and (b), respectively. By

Schwarz’s inequality and (A.24), uniformly for j and k:
2 A 2 A 2_ 4, 2,-1
E[frn(Zy, X, Bn)a(x)dF(x) x [ro(Z, o ¥, Bn)aly)dF(y)] = O((n"h7) ) . (A25)

Hence, by Lemma 1.

EB, <0+ C(nh) 22 (A.26)
EB,<Cmn>h™. (A.27)

By (A.3), (A.25), (A.26), (A.27), and ChebysheV’s inequality, it follows that:
nhY/ Z[in —n—2h J'o“(x)n(x)a(x)dF(x) J'kz(x)dx} = 0,(1) |, (A.28)

which characterizes the asymptotic bias term in the test statistic. Using Theorem 3.3.2 and

Remark 3.3.4 and Remark 3.3.5 in Gydrfit et al. (1989, Section 111.3), or Theorem 1(b) of
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Andrews (1995), | obtain the following results:

-1/2, -1/2 172

supy ol fix) —T(x)| = Oy (h®+n ™ *h™%(In(n))""?%) , (A.29)

-1/2, -1/2

sup, 15/6°(x) —a(x)| = 0 (h* +n™*h™?In(n)) . (A.30)

The proofs of (A.29) and (A.30) are available from the author upon request. By the

central limit theorem it is easy to verify that,

n—Zh [0 (OmE)a(x)dF(x) = n—gh T 0 (%, )X, X, ) + Oy~ *h7). (A1)
i=1
From (A.28)-(A.31), | obtain the sample analogue of (A.28):
nhl/z[inz—n—ghizl(éﬁ(xn,i))za(xn,i)ﬁ(xn,i)‘l’kz(u)du} = 0,(1) . (A.32)

_ .2
To prove that nh1/2|n3 = 0,(1), I evaluate E(nhl/zlns) . Using Lemma 2 and

choosing 1< <4/3 in (A.2):

E(nh%in3)” = n’(n-1)h > [[Elra(zy, % 80)ra(zy o Y BRI ELTo(2,, 1%, Bn)]

j k=1
! 2

< EDT0(Z,, 1Y Bl a()a(y)dF () dF (y)-n*(n — 1) A TEr,(2, 1, %, B 2a(x)olF(x)E
= 0(1), (A.33)

From E(i,3) = 0, (A.33), and Chebyshev’s inequality, it follows that nh*/?i,3 = 0,(1).

For 1,4, choosing 1 <& <4/3 from (A.2):

172

nhY2, = n¥n—1)h [E(rq(z,, 1,X,én))]2a(x)dF(X)

172

= O(ThY?) +o(nh*®) + 0(h?*7¥?) = (1) (A.34)

Next, | express |,,; in U-statistic form as:
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Ihy = 2 zk J’Fn(zn’j,x,eO)Fn(zn’k,x,eo)a(x)dF(x)
1<j<ks<n
+(nh)™ > JiK i ()[05(%, Bn) — 05 (x, 80)] — E[K;(x)(g(x, Bn) = ap(x, 86))]}
jZ

x { K, (X)[05(X, Bn) — 05X, Bo)] — E[K, (X)(02(X, Bn) — G5(X, 8))]} a(X)dF(x)

23 Jn(n, % B K0x)(0o(x, Br) — 0o, 80)) = ELK(x)(0o(x, Br) = 0o(x, B0))]}
j#
x a(x)dF(x)

=1p11 + Ini2—2ln13. (A.35)

Using Holder inequality, 1,75 = op((nhl/z)_l) and 1,13 = op((nhl/z)_l). I will use

Lemma 4 to prove that ;1 is asymptotically normal in distribution. | next verify that

Assumptions (Al)-(A3) in Fan and Li (1999) are satisfied under Assumptions 1-9.

Let H(zn,j, zn,k) EJ’Fn(zn,j, x,GO)Fn(zn]k, X, 8p)a(x)dF(x) and {in,j} J_n:l be an

i.i.d. sequence having the same marginal distribution as {z, } ;‘z .- Then:
07 = E[H (2 1.20,2)] = [E[Fo(Zn, 1% 80)Tn(Zn, 1., B)]
% Elo(Zn, 2% 80) (20,2 V. Bp)] a(X)a(y) dF(X)dF (y)
= [[ELa(Zn 1% 80)7y(Zn, 1Y, 80)]
X ElTn(Zn, 2 80) n(Zn, 2 Y. Bp)] a(X)a(y) dF()F (y)
_ZJ’IE[rn(in, 1% 00)r, (2 1, Y, 8p)]
X Elro(Zn, 2%, 89| Elro(Zn, 2 ¥, 8] a(x)a(y)dF (x)dF (y)
+ [[ELTn(Zn, 1 % OQ) ELry(Z0, 1. Y. 89)]

X E[rn(Zn, 2. X, B0)1 E[r (2, 2 Y, Bg)la(x)a(y)dF (x)dF(y).
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To evaluate o2, | first evaluate E[r,(Z, 1, X, 80)Fn(Zn 1. Y, )]
€[00 (Zn, 1% O)n(Zn, 1., 8)] = (nhAn)‘2E§<1(x)K1(y)E1[(xn, — gz—o%x)%ﬁé
+ oz(x)An<nhAn)‘2E§<1(x)Kl(y)Eluxn, — 1)2—oz<x>An]§
—oz<y>An<nhAn)‘2EEkl(x)Kl(y)El[(xn, R 1>2—oz(x)An]§ .

Applying It6’s formula to (Xn,Z_Xn1)2 and (X, 2—xn1)4, and using similar arguments

as in the proof of Lemma 2, | obtain:
E[r(Zn 1, % 8)Fn(Zn 1Y, 89)] = 204(x)(n2h)_lIK(u)Kg%/ + WEn(x + hu)du
+J'K(u)KD‘ Y4 En(x + hu)du x O(n” 2+ 2AY2(n2h) 7
= 20*(x)(n°h)” IK(u)K L%T[(x+hu)du
+IK(u)KD( E=Y + En(x + hu)du x o(n 2y~ (A.36)
Ern(Zn, 1% B ELTn(Zn 1. Y. 80)] = O(n°A,) + O(n*h?) + O(n*hay %) (A.37)
From (A.36) and (A.37), it follows that:
E[ry(Zn, 1 % B0) E[rn(Zn, 1Y, 80)] = O(E[r(Zp 1, X, B0) 1 (Zp, 1, Vs 8p)]) -
Hence, | get;
0n= [[ETn(Zn, 1% 80)a(Zn, 1 Vs O ELFa(Zn, 2 X%, B0)Tn(Zn, 2 ¥, 8] a(¥)a(y)dF (X)dF (y)
+ O(UE[rn(in, 1 X, 00)rn(Zy, 1, Y, B Elr (2, 2 X, B0) (2, 2, Y, Bp)la(x)a(y)dF (x)dF(y))

Uo (x)o” (y)J’J’K(u)K(v)K +J§K +\)jT[(x+hu)1T(y+hv)dudv
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x a(x)a(y)m(x)m(y)dxdy +o(n~*h™)

= 4(n4h)_1Iog(y)n4(y)a2(y)dy [ KWK (W + u)K (w +v)dudvew + o((n*M ™)

= 4(n*h) " [o* T ai () dy[L[KWK W + wdu) dw + o((n*h) ),

(A.38)

To conserve space, the detailed proof of the rest of the conditions of the CLT in Lemma 4

is not incorporated here, but it is available from the author.

Hng =E[HYZ0 1.2, )] = O((°hD) )

= -4, 4/n-4
ynl].:maXtiS,t'¢S'E[H(Zn,t’Zn,S)H(Zn,t"zn,s')]ynl]_: O(n h 1 )

where ( is slightly larger than2and 1<n = (1- Z_l)_l <4/3 .

2

= 2 -8, —6+4/
yn22=maxtis,t'is'E[H(Zn,t‘ ans) H(Zn,t"zn,s') ] = O(n h * r]),

where 1<n<4/3.

= 1 3 -8, —-6+4/
yn13=maxtis,t'¢S'E[H(Zn,t'znys) H(Zn,t”zn,s’) ]= O(n h n),

where 1<n<4/3.
~ _ 2 -8, —-5+5/
Vn1a=maxe. [{E[H(z, 2, YH(z 2, JI} “dF,(2)= (O(n™h T>y)
where 1<n <5/3.

~ 2,~ =~ 2,~ = -8, —4+2/
Yn22 EE[H (2 1.2, 2)H (2, 1,25, 3)]= O(n "h ' n)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

where 1<n<2. To summarize the above, | have shown that oﬁ = O(n_4h_l),

-8, -3 o 4, 4/n—-4
Hnga = O(n "h %)y =max{yp1q, Yoo Ynigd = O(n 'h i

41

), and v, =max{yo, Yn13



= O 2h™°"*M). These results, together with the assumption h = O(n"Y) and

15<y <45, imply (Al) (i)-(iii) in Fan and Li (1999).

G, (2, zy) = EH(zn, 1 zt)H(zn’ 1 Zs)

2 _ 2 -8, -5+3/
0pe =E[G(2, 1 Z, 1= O(n"h™>" M) (A.45)
where 1<n<3/2.
2 -8, -4+3/
Moo = MaX; 2 (G2,  Z, 94Q(Z, 1 Z,, )= O(nh Ty (A.46)

where 1<n<3/2.
-8, —4+3/
Yne11 = max{ maxsis'¢s"|E[G(zn, s Zn,s)G(Zn,s“Zn,s")]| =O0(n "h ’ n) (A47)
Thus, (A2)(i)-(iii) in Fan and Li (1999) are satisfied.

Finally, it is easy to show that M, in Fan and Li (1999) is bounded by some positive

constant. From B, = O(n Y, m ’n Bﬁfnz/o = 0(1), provided I choose b sufficiently

large. Thus, (A3) (i)-(ii) in Fan and Li (1999) are all satisfied.
Proof of (ii): From Assumption 8, (A.29) and (A.30), we have:
inf, ;sT(x)=Cy>0 (A.48)
(@00m00' oo -
sup, sl (x)Tt(x)) — (o™ (x)T(x)) | = oy(1). (A.49)

From (A.48) and (A.49) it follows that:

4
" 6% Xn )T(Xn 1)) 2 (0°(Xq, )X, .)) O
Z T[(X”’I) a (Xn,i) T[(anl) ( n, |D‘

CHENE) M CACILC I

T(X)

1
n

(B°O9) (700 1)),

=*Pxs ) f(x)

+SUPyps
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= op(l) , which implies,

12 (0% I, )
ni T[(Xn,i)

10 (620 )X, )

2
ng, )  Cni) 0D

a%(xy 1) =

=1 =1

= Ics(x)n4(x)a2(x)dx +0,(1)
by the law of large numbers. Thus, vﬁ = vi+ 0,(1).
Proof of part (b) of Theorem 1:

Given Assumptions 1-9, from Theorem 3.2 in Corradi and White (1997), 6, is a
./n-consistent estimator of some 800 ©. | can show by using the similar arguments as

those in the proof of part (a) of the theorem that, under H,

I = [1(6%(x) ~ 5(x, BT aX)AF(X) +0,(L)

where J'[(oz(x)—oé(x, 0D)m(x)] ‘a(x)dF(x)>0, and plim_ .v2 = v2. Hence,

n

172

J, = 0,(nh”?).
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