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Abstract

The authors use identification-robust methods to assess the empirical adequacy of a New

Keynesian Phillips curve (NKPC) equation. They focus on Galí and Gertler’s (1999)

specification, for both U.S. and Canadian data. Two variants of the model are studied: one based

on a rational-expectations assumption, and a modification to the latter that uses survey data on

inflation expectations. The results based on these two specifications exhibit sharp differences

concerning: (i) identification difficulties, (ii) backward-looking behaviour, and (iii) the frequency

of price adjustment. Overall, the authors find that there is some support for the hybrid NKPC for

the United States, whereas the model is not suited to Canada. Their findings underscore the need

for employing identification-robust inference methods in the estimation of expectations-based

dynamic macroeconomic relations.

JEL classification: C13, C52, E31
Bank classification: Econometric and statistical methods; Inflation and prices

Résumé

Pour éprouver la validité empirique d’une équation fondée sur la nouvelle courbe de Phillips

keynésienne, les auteurs adoptent des méthodes d’inférence qui permettent de surmonter le

problème de l’identification. Ils appliquent la spécification proposée par Galí et Gertler (1999) à

l’étude des données américaines et canadiennes. Deux variantes du modèle retiennent leur

attention. La première repose sur l’hypothèse des anticipations rationnelles, et la deuxième est

basée sur une version modifiée de celle-ci qui met à profit des mesures de l’inflation attendue

tirées d’enquêtes. Les résultats obtenus à l’aide de ces deux variantes sont nettement différents en

ce qui concerne : i) le problème de l’identification; ii) le comportement adaptatif; et iii) la

fréquence de rajustement des prix. Les auteurs concluent que la nouvelle courbe de Phillips

keynésienne hybride décrit assez bien la dynamique de l’inflation dans le cas des États-Unis mais

pas dans celui du Canada. Leurs observations confirment l’utilité de méthodes d’inférence

robustes sur le plan de l’identification pour l’estimation de relations macroéconomiques

dynamiques faisant intervenir des anticipations.

Classification JEL : C13, C52, E31
Classification de la Banque : Méthodes économétriques et statistiques; Inflation et prix



1. Introduction

A standard feature of macroeconomic policy models is an equation that describes the evo-
lution of inflation. Nowadays, this process is typically modelled as a hybrid New Keynesian
Phillips curve (NKPC). This specification results from the efforts of recent years to model
the short-run dynamics of inflation starting from optimization principles; see, for example,
Woodford (2003) and the references cited therein. In its basic form, the NKPC stipulates
that inflation at time t is a function of expected future inflation and the current output gap.
With its clearly elucidated theoretical foundations, the NKPC possesses a straightforward
structural interpretation and therefore presents, in principle, a strong theoretical advantage
to the traditional reduced-form Phillips curve (which is justified only statistically).

Given the statistical failure of the basic NKPC formulation when confronted with the
data, however, the curve has evolved into its more empirically viable hybrid form. In partic-
ular, it has been noted that: (i) adding a lagged inflation term to the above model (referred
to as a hybrid NKPC ) corrects the signs of estimated coefficients (Fuhrer and Moore 1995;
Roberts 1997; Fuhrer 1997), and (ii) using a measure of real marginal cost derived from a
given production function instead of the output gap provides a better statistical fit according
to generalized method of moments (GMM)-based estimates and tests (Gaĺı and Gertler 1999;
Gaĺı, Gertler, and Lopez-Salido 2001). Yet the question of which production function (i.e.,
which marginal cost measure) is empirically preferable is not yet resolved, because the choice
for the marginal cost proxy seems to affect evidence on the weight of the backward-looking
term (Gagnon and Khan 2005). In addition, there are different theoretical ways of incorpo-
rating backward-looking behaviour in the curve, and which yield differing outcomes (Fuhrer
and Moore 1995; Gaĺı and Gertler 1999; Eichenbaum and Fisher 2004).1

Discriminating between competing alternatives calls for reliable econometric methods.
Full-information models are typically non-linear and heavily parameterized.2 Therefore, in
practice, these models are often estimated by applying standard limited-information (LI) in-
strumental variable (IV) methods to first-order conditions of interest. Indeed, the popularity
of NKPC models stems in large part from studies such as Gaĺı and Gertler (1999) and Gaĺı,
Gertler, and Lopez-Salido (2001), who find empirical support for their version of the curve
using GMM, and the fact that the model is not rejected according to Hansen’s J -test.

But even as the popularity and usage of the NKPC has grown, criticisms have been
raised with respect to its empirical identifiability with IV-based methods. The main issue
is that IV methods such as GMM are not immune to the presence of weak instruments
(Dufour 1997, 2003; Staiger and Stock 1997; Wang and Zivot 1998; Zivot, Startz, and Nel-
son 1998; Stock and Wright 2000; Dufour and Jasiak 2001; Stock, Wright, and Yogo 2002;
Kleibergen 2002; Khalaf and Kichian 2004, 2005; Dufour and Khalaf 2003a,b; Dufour and
Taamouti 2003a,b, 2004, 2005). These studies demonstrate that standard asymptotic pro-
cedures (which impose identification away without correcting for local-almost-identification)
are fundamentally flawed and lead to spurious overrejections, even with fairly large sample
sizes. In particular, the following fundamental problems occur: in models that may not be

1For example, Gaĺı and Gertler (1999) appeal to the assumption that a proportion of firms never reopti-
mize, but set their prices using a rule-of-thumb method; Eichenbaum and Fisher (2004) use dynamic indexing
instead.

2In this literature, some of the parameters are typically calibrated, while others are estimated.
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identified over all the parameter space, (i) standard t-type tests have significance levels that
may deviate arbitrarily from their nominal levels, since it is not possible to bound their null
distributions, and (ii) Wald-type confidence intervals—of the form: estimate ± (asymptotic
standard error) × (asymptotic critical point)—have dramatically poor coverage irrespective
of their nominal level, because they are bounded by construction (Dufour 1997).3

To circumvent difficulties associated with weak instruments, the above-cited recent work
on IV-based inference has focused on two main directions (see the surveys of Dufour 2003
and Stock, Wright, and Yogo 2002): (i) refinements in asymptotic analysis that hold whether
instruments are weak or not (e.g., Staiger and Stock 1997; Wang and Zivot 1998; Stock and
Wright 2000; Kleibergen 2002; Moreira 2003b), and (ii) finite-sample-justified procedures
based on proper pivots; i.e., statistics whose null distributions do not depend on nuisance
parameters or can be bounded by nuisance-parameter-free distributions (boundedly pivotal
functions) (Dufour 1997; Dufour and Jasiak 2001; Dufour and Khalaf 2002; and Dufour and
Taamouti 2003a,b, 2004, 2005). The latter include methods based on Anderson and Rubin’s
(1949, AR) pivotal F -statistic that allow unbounded confidence sets.

Identification difficulties have led several authors to re-examine the NKPC models, par-
ticularly the Gaĺı and Gertler NKPC specification. Linde (2001) performs a small-scale
simulation study based on a Gaĺı-Gertler-type model and documents the superiority of full-
information maximum likelihood (FIML) relative to GMM. In particular, GMM estimates
appear sensitive to parameter calibrations. Ma (2002) applies the asymptotic methods pro-
posed in Stock and Wright (2000) to Gaĺı and Gertler’s NKPC in view of getting confidence
sets that account for the presence of weak instruments. These sets prove to be much too
large to be informative, which suggests that the parameters of the curve are indeed not well
identified. Nason and Smith (2003) study the identification issue of the NKPC in limited-
information contexts analytically, solving the Phillips curve difference equation. They show
that typical GMM estimations of such curves have parameters that are not identifiable (or
nearly so), and that FIML can make identification easier. Applications to U.S. data yield
GMM estimates that are comparable to the values obtained by Gaĺı and Gertler (1999). In
contrast, Nason and Smith’s FIML estimates (which they feel are more reliable) point to a
greater role for backward-looking behaviour. For Canada, Nason and Smith report that the
NKPC is poorly identified, whether GMM or FIML estimation is used. Finally, Fuhrer and
Olivei (2004) consider improved GMM estimation, where the instrumentation stage takes the
constraints implied by the structure formally into consideration. They demonstrate (via a
Monte Carlo simulation) the superiority of their approach. In addition, Fuhrer and Olivei
estimate an inflation equation using U.S. data, and obtain a large forward-looking component
with conventional GMM, but a much lower value for this parameter with “optimal” GMM
and maximum likelihood.

In this paper, we reconsider the problem of estimating inflation dynamics, in view of these

3Poor coverage (which implies that the data are uninformative about the parameter in question) is not
really due to dramatically large estimated standard errors, or even to poorly approximated cut-off points.
The problems stem from the method of constructing the confidence set as an interval that is by definition
“bounded.” Any valid method for the construction of confidence sets should allow for possibly unbounded
outcomes, when the admissible set of parameter values is unbounded (as when parameters are not identifiable
on a subset of the parameter space). In this case, a bounded confidence set would inevitably “rule out”
plausible parameter sets, with obvious implications for coverage.
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recent econometric findings. Our aim is to derive identification-robust estimators and confi-
dence sets. Identification-robust procedures should lead to uninformative (e.g., unbounded)
confidence sets when the parameters considered are not identified (Dufour 1997). We focus
on two types of procedures: the AR procedure and a method proposed by Kleibergen 2002.
The AR procedure is particularly appropriate from the viewpoint of validating a structural
model, because it is robust not only to weak instruments, but also to missing instruments and
more generally to the formulation of a model for endogenous explanatory variables (Dufour
2003; Dufour and Taamouti 2003 a,b). A drawback of the AR procedure is that it leads to the
inclusion of a potentially large number of additional regressors (identifying instruments), and
hence to a reduction in degrees of freedom, which can affect the test power in finite samples.
To assess sensitivity to this type of effect, we apply a method proposed by Kleibergen (2002),
which may yield power gains by reducing the number of “effective” regressors (although at
the expense of some robustness).4

Our applications study U.S. and Canadian data using: (i) the benchmark hybrid NKPC
of Gaĺı and Gertler, which uses a rational-expectations assumption, and (ii) a modification
to the latter that uses survey-based measures of expected inflation. Our analysis allows us to
compare and contrast both variants of the model; this is relevant because available studies
imply that the specification of the expectations variable matters empirically. For instance,
Gaĺı and Gertler 1999 suggest that, when the model is conditional on labour costs, under
rational expectations, additional lags of inflation are no longer needed. In contrast, Roberts
2001 argues that those results are likely sensitive to the particular specification of labour
costs, and that the need to include additional lags could reflect the fact that expectations
are not rational; see also Roberts 1997, 1998. Our results reveal very sharp differences with
both specifications for the United States and Canada.

In section 2, we reproduce Gaĺı and Gertler’s (1999) NKPC hybrid specification. In
section 3, we describe the specific models and the methodology used in this paper. Section 4
discusses our empirical results, and section 5 concludes. Appendixes A and B provide details
and a formal treatment of the statistical procedures that we apply.

2. Gaĺı and Gertler’s Hybrid NKPC Model

In Gaĺı and Gertler’s hybrid specification, firms evolve in a monopolistically competitive
environment and cannot adjust their prices at all times. A Calvo-type assumption is used
to represent the fact that a proportion of firms, θ, do not adjust their prices in period t.
In addition, it is assumed that some of the firms do not optimize but use a rule of thumb
when setting their prices. The proportion of such firms (referred to as backward-looking price-
setters) is given by ω. In such an environment, profit maximization and rational expectations
lead to the following hybrid NKPC equation for inflation (πt):

πt = λst + γfEtπt+1 + γbπt−1, (1)

with

πt+1 = Etπt+1 + υt+1, (2)

4For further discussion of this issue, see Dufour and Taamouti (2003a,b).
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and for

λ =
(1 − ω)(1 − θ)(1 − βθ)

θ + ω − ωθ + ωβθ
(3)

γf =
βθ

θ + ω − ωθ + ωβθ
, γb =

ω

θ + ω − ωθ + ωβθ
. (4)

Etπt+1 is expected inflation at time t, st represents real marginal costs (expressed as per-
centage deviation with respect to its steady-state value), and υt is unexpected inflation. The
parameter γf determines the forward-looking component of inflation, and γb its backward-
looking part; β is the subjective discount rate.

Gaĺı and Gertler rewrite the above NKPC model in terms of orthogonality conditions.
Two different normalizations are used for this purpose.5 The first, orthogonality specification
(1), is given by:

Et {(πt − λst − γfπt+1 − γbπt−1) zt} = 0, (5)

and the other, orthogonality specification (2), is written as:

Et {(φπt − φλst − φγfπt+1 − φγbπt−1) zt} = 0, (6)

with φ = (θ + ω − ωθ + ωβθ).
The vector zt includes variables that are orthogonal to υt+1, allowing for GMM estimation.

Quarterly U.S. data are used, with πt measured by the percentage change in the GDP deflator,
and real marginal costs given by the logarithm of the labour income share. Finally, their
instruments include four lags of inflation, labour share, commodity-price inflation, wage
inflation, the long-short interest rate spread, and the output gap (measured by a detrended
log GDP).

Gaĺı and Gertler’s estimations yield values for ω, θ, and β: (0.27, 0.81, 0.89) for specifi-
cation (1), and (0.49, 0.83, 0.91) for specifications (2). Where the subjective discount rate
is restricted to one, the estimates are (0.24, 0.80, 1.00) and (0.52, 0.84, 1.00), respectively.
The implied slopes are all positive and found to be significant judging from the IV-based
asymptotic standard errors, and given the fact that the overidentifying restrictions are not
rejected relying on the J-test. Accordingly, Gaĺı and Gertler conclude that there is good
empirical support for the NKPC, and, furthermore, that the forward-looking component of
inflation is more important than the backward-looking component; i.e., the estimated γf is
larger than the estimated γb.

Given that the severity of weak-instruments effects is now well understood in economet-
rics, however, it is important to ascertain that these results are not invalidated by such prob-
lems.6 Ma (2002) uses corrected GMM inference methods developed by Stock and Wright

5In Gaĺı and Gertler (1999), the orthogonality conditions are written for the case ω = 0; see Gaĺı, Gertler,
and Lopez-Salido (2001) for the general case.

6For details on weak instruments and their effects, see Nelson and Startz 1990a,b; Buse 1992; Choi and
Phillips 1992; Maddala and Jeong 1992; Angrist and Krueger 1994; McManus, Nankervis, and Savin 1994;
Bound, Jaeger, and Baker 1995; Cragg and Donald 1996; Hall et al. 1996; Dufour 1997; Staiger and Stock
1997; Wang and Zivot 1998; Zivot, Startz, and Nelson 1998; Stock and Wright 2000; Dufour and Jasiak 2001;
Hahn and Hausman 2003; Kleibergen 2002; Moreira 2003a,b; Stock, Wright, and Yogo 2002; Kleibergen and
Zivot 2003; and Wright 2003. Several works are also cited in Dufour (2003) and Stock, Wright, and Yogo
(2002).
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(2000) to re-evaluate the empirical relevance of the NKPC specifications. The corrected 90
per cent confidence sets (called S -sets) that Ma calculates are very large, including all param-
eter values between [0, 3] for two of the structural parameters, and [0, 8] for the third. The
fact that all parameter combinations derived from these value ranges are compatible with
the model suggests that the parameters are weakly identified. We next reassess the NKPC
model using identification-robust (or robust to weak instruments) methods.

3. Statistical Framework and Methodology

We consider two econometric specifications to assess Gaĺı and Gertler’s NKPC:

πt = λst + γfπt+1 + γbπt−1 + ut+1, t = 1, ..., T (7)

and
πt = λst + γf π̃t+1 + γbπt−1 + ut+1, t = 1, ..., T (8)

where π̃t is a survey measure for inflation expectations.
The two models differ in their assumptions regarding the formation of inflation expecta-

tions. In (7), expected inflation, Etπt+1, is proxied by the realized value, πt+1, while in (8)
it is replaced by the survey-based measure, π̃t+1, of expected inflation. It is easy to see that
both approaches raise error-in-variable problems and the possibility of correlation between
explanatory variables and the disturbance term in the two above equations. Researchers such
as Roberts (1997, 1998, 2001) have noted that the maintained specification for how expecta-
tions are formed has important implications for the empirical validity of the curve. That is,
additional lags not implied by the NKPC under rational expectations may be required, even
if the model is conditional on labour costs.

The parameters λ, γf , and γb, defined in equation (3), are nonlinear transformations of the
“deep parameters” ω, β, and θ. The statistical details underlying our inference methodology
are provided in Appendix B, where, to simplify the presentation, we adopt the following
notation: y is the T -dimensional vector of observations on πt, Y is the T × 2 matrix of
observations on st and either of πt+1 and π̃t+1, X1 is the vector of observations on the
inflation lag πt−1, X2 is the T × k2 matrix of the instruments (we use 24 instruments; see
section 4) and u is the T -dimensional vector of error terms, ut.

The methodology we consider can be summarized as follows. To obtain a confidence set
with level (1 − α) for the deep parameters, we invert the F-test described in Appendix B
associated with the null hypothesis:

H0 : ω = ω0, β = β0, θ = θ0, where ω0, β0, and θ0are known values. (9)

Formally, this implies collecting the values ω0, β0, and θ0 that are not rejected by the test
(i.e., the values for which the test is not significant at level α). Taking equation (8) as an
example, the test under consideration proceeds as follows (further discussion and references
are provided in Appendix B).

(i) Applying (3) and (4), obtain the values of λ, γf , and γb associated with ω0, β0, and θ0;
denote these transforms λ0, γ0

f , and γ0
b .

5



(ii) Consider the regression (which we denote the AR regression, following Anderson and
Rubin 1949) of

{
πt − λ0st − γ0

f π̃t − γ0
b πt−1

}
on {πt−1 and the instruments}. (10)

Under the null hypothesis—specifically, (8) and (9)—the coefficients of the latter regres-
sion should be zero. Hence, testing for a zero null hypothesis on all response coefficients
in (10) provides a test of (9).

(iii) Compute the standard F-test associated with the exclusion of all regressors, namely,

{πt−1 and the instruments}

in the regression (10); see (23) in Appendix B. In this context, the usual classical
regression framework applies, so the latter F-test can be referred to its usual F or χ2

cut-off points.

Tests of this type were originally proposed by Anderson and Rubin (1949) for linear Gaus-
sian simultaneous equations models. The AR approach transforms a structural equation such
as (8) into the regular regression framework as in (10), for which standard finite-sample and
asymptotic distributional theory applies. The required transformation is extremely simple,
despite the complexity of the model under test. Indeed, the basic test we use for inference
on ω0, β0, and θ0 differs from a standard IV-based Wald or t-type test, in that it avoids
estimating the structural equation in its (8) form, which faces identification difficulties. In
contrast, the AR-regression (10) satisfies the usual classical regression assumptions (because
no “endogenous” variables appear on its right-hand side). Whereas any statistical analysis
of (8) requires identification constraints, these are no longer needed for inference on (10).
As is shown more rigorously in Appendix B, the AR regression provides information on the
structural parameters because it is linked to the statistical reduced form associated with the
structural equation (8). By identification-robustness we mean that the F-test is valid whether
the model is identified or not.7

Transforming the test problem to the AR-regression framework comes at some cost: the
identification-robust F-test requires assessing—in the regression (10)—the exclusion of πt−1

and the 24 available instruments (25 constraints), even though only three structural param-
eters are being tested. Instrument abundance thus leads to degrees-of-freedom losses, with
obvious consequences for test power. It is possible to characterize what an “optimal” instru-
ment set looks like from the point of view of maximizing test power: up to a non-singular
transformation, the latter (say, Z) should be the mean of the endogenous explanatory vari-
ables in the model, or, which is equivalent,

X2 × {the coefficient of X2 in the first-stage regression, assumed known},
7We emphasize in Appendix B that the latter test will be exactly size correct if we can strictly condition

on the regressors and, particularly, the instruments for statistical analysis; weakly exogenous regressors in
our dynamic model with instruments orthogonal to the regression error terms are not in accord with the
latter assumption. Nevertheless, the tests are still identification-robust. An exact test can still be devised for
the NKPC model at hand, despite its dynamic econometric specification, if one is willing to consider strongly
exogenous instruments.

6



where X2 (as defined above) refers to the matrix of available instruments; see Dufour and
Taamouti 2003b and Appendix B). The first-stage regression is the regression of the left-
hand-side endogenous variables in (8)—marginal cost and expected inflation—on the included
exogenous variable (the inflation lag) and X2. Formally, this implies applying the above steps
(i) to (iii), replacing the instruments by Z, and whose dimension is T × 2. Therefore, the
optimal identification-robust F-test requires assessing, in the regression (10), the exclusion of
πt−1 and the two optimal instruments (three constraints); recall that the number of structural
parameters under test is indeed three. This provides optimal information reduction, which
improves the power of the test (and thereby may tighten the confidence sets based on these
tests).

In practice, however, the coefficient of X2 in the first-stage regression (Π2 in Appendix B)
is not known, estimates of this parameter must be “plugged in,” which of course leads to an
“approximately optimal” procedure. As described in Dufour (2003), many procedures that
aim at being identification-robust as well as improving the AR procedure from the viewpoint
of power rely on different choices of Z. In particular, if a constrained OLS estimator imposing
the structure underlying equation (8)—denoted Π̂0

2 in Appendix B; see (25)— is used, then
the associated procedure yields Kleibergen’s (2002) K-test.8 In other words, Kleibergen’s
(2002) K-test applies the above steps (i) to (iii), replacing the instruments by

Z̄K = X2Π̂
0
2.

To avoid confusion, the tests based on X2 and Z̄K are denoted by AR and AR-K, respectively.
We invert these tests to get confidence sets as follows: using a grid search over the

economically meaningful set of values for ω, β, and θ, we sweep relevant choices for ω0, β0,
and θ0.9 For each parameter combination considered, we compute the statistics AR and AR-
K and their respective p-values. The parameter vectors for which the p-values are greater
than the level α constitute a confidence set with level (1 − α). Since every choice of ω0, β0,
and θ0 entails—using (3)—a choice for λ, γf , and γb, this procedure also yields conformable
confidence sets for the latter parameters. These confidence sets reflect the structure, and are
obtained without further computations, although λ, γf , and γb are transformations of the
deep parameters. Therein lies a significant advantage in using our approach as an alternative
to standard nonlinear Wald-based techniques.

In summary, two points are worth emphasizing. First, if the confidence set we obtain by
inverting any of these AR-type tests is empty (i.e., no economically acceptable value of the
model’s deep parameters is upheld by the data), then we can infer that the model is rejected at
the chosen significance level. Our procedure can therefore be seen as an identification-robust
alternative to the standard GMM-based J -test. In the same vein, utterly uninformative (too-
wide) confidence sets also allow the model fit to be assessed, since unbounded confidence sets
do occur under identification difficulties (see the discussion in Dufour 2003). Our procedure

8To correct for plug-in estimation effects (i.e., to estimate Π2), Dufour and Jasiak (2001) and Dufour
and Taamouti (2003a,b) recommend split sample estimation techniques, where the first subsample is used
to calculate Π2 and the second subsample to run the optimal AR test with the latter estimate. The results
obtained by applying these versions of the tests are available from the authors upon request.

9We allow the range (0, 1) as the admissible space for each of ω, θ, and β. The values are varied with
increments of 0.03 for ω and θ, and by 0.01 for β. The increment of 0.03 was chosen for the first two
parameters (rather than 0.01), to minimize the computational burden.
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(which performs, for practical purposes, the same specification checks as a J -type test) has
a clear “built-in” advantage relative to GMM-based t-type confidence intervals, backed by a
non-significant J -test.10

Our procedure offers a second important advantage not shared by the latter standard
approach. So far, we have considered the estimation and test problem given a specific signif-
icance (or confidence) level, α. Alternatively, the p-value associated with the above defined
tests, which provides a formal specification check, can be used to assess the empirical fit of
the model. In other words, the values (uniqueness is not granted) of ω0, β0, and θ0 that
lead to the largest p-value formally yield the set of “least rejected” models; i.e., models
that are most compatible with the data.11 In practice, analyzing the economic information
content of these least rejected models (associated with the least rejected “deep parameter”
combinations) provides decisive and very useful goodness-of-fit checks.

4. Empirical Results

We applied the above-defined inference methods to the hybrid NKPC models in (7) and (8)
for both U.S. and Canadian data. One difference between our specifications and those of Gaĺı
and Gertler is that we use a real-time output-gap measure in the set of instruments, instead
of a gap detrended using the full sample. The latter measure is likely not an appropriate
instrument since, when the full sample is used, lagged values of the gap are, by construction,
related to future information. To avoid this, we proceed iteratively: to obtain the value of
the gap at time t, we detrend GDP with data ending in t. The sample is then extended by
one observation and the trend is re-estimated. This is used to detrend GDP and yields a
value for the gap at time t + 1. This process is repeated until the end of the sample. In this
fashion, our gap measures at time t do not use information beyond that period and it can
therefore be used as valid instruments. A quadratic trend is used for this purpose.12

Regarding survey expectations, the Federal Reserve Bank of Philadelphia publishes quar-
terly mean forecasts of the next quarter’s U.S. GDP implicit price deflator. We first-difference
this series to obtain our inflation-expectations series for the United States.13 In the case of
Canada, the survey-based inflation expectations series were obtained from the Conference
Board of Canada survey; further details on the Canadian data are provided in the Appendix.
For the remaining variables, other than the output gap, we use the Gaĺı and Gertler data and
instrument set for the United States, and the corresponding variables in the case of Canada.
Because of the expectations variables in the data set, our samples start in 1970Q1.

We first apply the AR test to the U.S. data and to equation (7), to assess the Gaĺı and
Gertler (1999) reported estimates. Specifically, we test whether ω, θ, and β are (0.27, 0.81,
0.89) or (0.49, 0.83, 0.91), which correspond to those authors’ estimates for their orthogonality

10Indeed, if the AR confidence set with level (1− α) is empty, then the usual LIML overidentification test
statistic will exceed a specific bounds-based identification-robust α-level critical point; i.e., the associated
overidentification test is conclusively significant at level α.

11This method underlies the principles of Hodges-Lehmann estimators; see Hodges and Lehmann 1963,
1983). Least rejected values may thus be interpreted as “point estimates.”

12We repeated our estimations using a cubically detrended real-time gap measure, as well as the Christiano-
Fitzgerald one-sided band-pass filter, and obtained qualitatively similar results.

13Source: <http://www.phil.frb.org/econ/spf/index.html>.
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Table 1: Anderson-Rubin Tests with Rational Expectations

Test type Unrestricted model
Max p-value Deep parameters Reduced-form parameters Freq.

(ω, θ, β) ( λ, γf , γb)

AR U.S. 0.2771 (0.40, 0.64, 0.96) (0.08, 0.60, 0.39) 2.78
Canada - - - -

AR-K U.S. 0.9993 (0.40, 0.61, 0.98) (0.09, 0.59, 0.40) 2.56
Canada 0.9990 (0.01, 0.37, 0.21) (1.53, 0.21, 0.03) 1.59

β = 0.99
Max p-value Deep parameters Reduced-form parameters Freq.

(ω, θ, β) ( λ, γf , γb)

AR U.S. 0.2765 (0.37, 0.64, 0.99) (0.08, 0.63, 0.37) 2.78
Canada - - - -

AR-K U.S. 0.9987 (0.37, 0.64, 0.99) (0.08, 0.63, 0.37) 2.78
Canada 0.2900 (0.01, 0.10, 0.99) (7.30, 0.91, 0.09) 1.11

Notes: AR is the Anderson-Rubin test and AR-K refers to the Kleibergen approximate optimal
instruments test. Freq. is the average frequency of price adjustment, measured in quarters.
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specifications (1) and (2), respectively. We find all tests to be significant at conventional
levels, so that Gaĺı and Gertler’s estimates are rejected. We then ask whether, for the same
instrument set, there are any parameter combinations for which the hybrid NKPC is not
rejected. Interestingly, we find some dramatically different results depending on whether
model (7) or (8) is used.

For the U.S. rational-expectations solution, we find a bounded but fairly large confidence
set. This means that a multitude of different parameter combinations are compatible with
the econometric model tested, although the set is much smaller than the S-sets constructed
by Ma.14 However, for the model using survey expectations, the confidence set is empty at
the 95 per cent level. Thus, not a single parameter value combination is compatible with this
particular econometric model, which implies that, with survey expectations, the model is not
identified. Regarding the Canadian data, we find that the outcomes are reversed. Thus, it
is the model with rational expectations that generates the empty confidence set, while the
specification using survey data yields the non-empty one. The latter is so small that there
are only some parameter value combinations for which the model is statistically valid.

Along with the identification-robust confidence sets, one of the great advantages of using
the Anderson-Rubin method is that it yields the parameter combination that is least rejected,
or, alternatively, that has the highest p-value. Formally, as explained in the previous section,
this point estimate corresponds to the so-called Hodges-Lehmann estimate and it can be
compared with point estimates obtained using more conventional estimation methods (such
as GMM). We report this estimate for the United States and Canada in the upper panels
of Tables 1 and 2, respectively. From here, we can see that, under rational expectations,
the values of the deep parameters that correspond to the maximal p-value for the United
States are given by the set (0.40, 0.64, 0.96) for (ω, θ, β), respectively. These translate into a
value of 0.6 for the coefficient of the forward-looking component of inflation, γf , and 0.39 for
the coefficient of the backward-looking component, γb. Furthermore, the coefficient on the
marginal cost variable is 0.08, and the average frequency of price adjustment is 2.78 quarters.

Based on the Hodges-Lehmann estimates, the findings provide support for the
optimization-based Phillips curve, and the notion that the forward-looking component of
the U.S. inflation process is more important than its backward-looking component. In addi-
tion, the estimate for the average frequency of price adjustment is fairly close to the value of
1.8 obtained based on micro data (see for example Bils and Klenow (2004).15 On the other
hand, the graphs in the second panel of Figure 1 add a qualifier to the above statement.

In Figure 1, the graph in the bottom panel, on the left, depicts the 95 per cent (solid
line, p-value= 0.05) and 90 per cent (dashed line, p-value= 0.10) confidence sets based on
the AR test, and for the case where the subjective discount parameter is constrained to
lie between 0.95 and 0.99. An “X” marks the spot corresponding to the highest p-value
obtained (0.2797). Immediately, three features can be observed: (i) the set of parameter
values that the test does not reject at the 5 and 10 per cent levels are fairly large, (ii) within
these sets, there is more than one ω value that corresponds to a given θ, and vica versa, and
(iii) the parameter combination that yields the highest p-value is very close to points that
have a p-value of 0.10 only. In other words, even when β is constrained quite tightly, the

14There is a slight difference between our two instrument sets: Ma’s set includes a constant and has no
fourth lag for any of the variables in levels.

15Gaĺı and Gertler report average price adjustment frequencies of about 4 to 6 quarters.
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Table 2: Anderson-Rubin Tests with Survey Expectations

Test type Unrestricted model
Max p-value Deep parameters Reduced-form parameters Freq.

(ω, θ, β) ( λ, γf , γb)

AR U.S. - - - -
Canada 0.1009 (0.01, 0.97, 0.89) (0.00, 0.88, 0.01) 33.33

AR-K U.S. 0.9983 (0.01, 0.61, 0.64) (0.38, 0.63, 0.02) 2.56
Canada 0.0890 (0.01, 0.97, 0.90) (0.00, 0.89, 0.01) 33.33

β = 0.99
Max p-value Deep parameters Reduced-form parameters Freq.

(ω, θ, β) ( λ, γf , γb)

AR U.S. - - - -
Canada 0.0562 (0.01, 0.97, 0.99) (0.00, 0.98, 0.01) 33.33

AR-K U.S. 0.6057 (0.52, 0.22, 0.99) (0.40, 0.29, 0.70) 1.28
Canada - - - -

Notes: AR is the Anderson-Rubin test and AR-K refers to the Kleibergen approximate optimal
instruments test. Freq. is the average frequency of price adjustment, measured in quarters.
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uncertainty regarding the estimated values of the other parameters is relatively high. This
is seen more easily in the adjacent graph, which depicts the values corresponding to the 95
per cent confidence set in the γf and γb space. Notice, in particular, that a value of 0.60 for
the backward-looking component of inflation, and 0.37 for the forward-looking component is
as likely to be obtained as a value of 0.90 and 0.10 for the forward- and backward-looking
components, respectively.

Turning to the case of the AR test applied to Canadian data, recall that the model
with rational expectations is not compatible with the data, but that the model with survey
expectations does yield a non-empty set. The results corresponding to the highest p-value
for the latter are reported in Table 2. In this case, the maximal p-value is 0.1009, while
the deep parameters are (0.01, 0.97, 0.89) for (ω, θ, β), respectively. Based on the fact
that the proportion of firms that follow a rule-of-thumb is practically zero (ω = 0.01), we
would conclude that a purely forward-looking model is applicable to Canada. However, the
reduced-form parameters and the average frequency of price adjustment indicate that the
model is economically not viable. This is the case even if β is constrained to 0.99 in the
estimation.16

Results based on Kleibergen’s statistic are also reported in Tables 1-2. As for the AR
tests, two sets of outcomes are tabulated: the parameter values that yield the highest test
p-value for the unrestricted model appear in the upper panel of Tables 1 and 2, while in the
lower panel shows the correponding elements but with β constrained to 0.99.

Let us first examine the results for the United States with the rational-expectations model.
When Z̄K is used as the optimal instrument set, the model is least rejected for the parameter
combination (0.40, 0.61, 0.98), and the p-value is 0.9993. These values are extremely close to
those reported for the correponding restricted-estimation (with β constrained to 0.99) case,
and to those reported for the AR tests.

With the model based on survey expectations (Table 2), although the AR test yields an
empty confidence set for the United States, the AR-K test yields a least-rejected parameter
combination that suggests strongly forward-looking behaviour (γf = 0.63, γb = 0.02). In
addition, when the subjective discount rate is constrained to 0.99, the AR-K test points to a
much more important backward-looking component for inflation.

Our findings are somewhat similar with Canadian data. Thus, although the AR-K test
yields similar outcomes to those of the AR test for the unrestricted model with survey ex-
pectations, with rational expectations, the AR-K test yields parameter values that suggest
a more important backward-looking role in inflation. In addition, the estimate for the aver-
age frequency of price adjustment is 1.6, very much in line with micro data (as in Bils and
Klenow 2004). These results are nevertheless difficult to reconcile with the value for ω, which
is essentially zero. In addition, once the subjective discount rate parameter is constrained to
0.99, the conclusions for the rational-expectations specification from the AR-K test point to
a much more important forward-looking component of inflation (γf = 0.91, γb = 0.09). The
unusual feature in this case is the value of the coefficient on the marginal cost variable, λ,
which stands at 7.30.

Figures 1 and 2 show U.S. results for the AR-K test for the case where β is constrained

16For this reason, and because all of the admissible ω values in the AR-based confidence sets equal 0.01,
no figures are provided for Canada.
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Figure 1: AR and AR-K Tests (U.S., Rational Expectations)
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Figure 2: AR-K Tests (U.S., Survey Expectations)
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to fall between 0.95 and 0.99. With rational expectations (Figure 1), interestingly, the
confidence set based on inverting the AR-K test is larger than that based on AR, but the
results are in line with each other, in the sense that the 95 per cent confidence sets are more
skewed towards higher γf than γb. Turning to Figure 2, we find that the AR-K test produces
strong support for a larger backward-looking component to inflation.

Taken collectively, our results point to problems of weak identification in these models.
Nevertheless, we find that there is some support for the hybrid NKPC for the United States,
whereas the model is not suited to Canada.

5. Conclusion

In this paper, we used finite-sample methods to test the empirical relevance of Gaĺı and
Gertler’s (1999) NKPC equations, using AR tests as well as Kleibergen’s more parsimonious
procedure, for both U.S. and Canadian data. Two variants of the model were studied: one
based on a rational-expectations assumption, and a modification to the latter that uses survey
data on inflation expectations. In the U.S. case, Gaĺı and Gertler’s (1999) original data set
was used except for the output-gap measure and survey expectations, where applicable.

First, we found some evidence of identification difficulty. Nevertheless, the maximal p-
value arguments selected those parameter values for which the model is least rejected—a very
useful feature of our proposed identification-robust techniques. Second, we found support
for Gaĺı and Gertler’s hybrid NKPC specification with rational expectations for the United
States. Third, neither model was found to be well suited to describe inflation dynamics
in Canada. Fourth, we found that, for the cases where the Anderson-Rubin test yields an
empty confidence set, the AR-K procedure leads to conflicting results for the restricted and
unrestricted models.

These results underscore the need for employing identification-robust inference in the
estimation of expectations-based dynamic macroeconomic relations.
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Appendix A: Data Description for Canada

The inflation-expectations series is obtained from the Conference Board of Canada survey.
Each quarter, participants are asked to forecast the annual average (GDP-deflator) inflation
rate for the current year. Let us denote π̃a

1 , π̃a
2 , π̃a

3 , and π̃a
4 the annual average inflation

forecasts made in quarters 1, 2, 3, and 4 of a given year, respectively. Clearly, forecasts
that are made in the second, third, and fourth quarters are likely to integrate realized (and
observed) inflation in quarters 1, 1 and 2, and 1, 2, and 3, respectively.

To obtain a “pure” quarterly expectations series, we proceed as follows: First, denote
the forecasted quarterly inflation rate in quarters 1 to 4 as π̃q

1, π̃q
2, π̃q

3, and π̃q
4, respectively.

Similarly, let πq
1, πq

2, and πq
3 be the realized quarterly inflation rates in quarters 1, 2, and 3,

respectively. Then, the forecasted quarterly inflation rates are calculated as follows:

π̃q
1 = π̃a

1/4,

π̃q
2 = (π̃a

2 − πq
1)/3,

π̃q
3 = (π̃a

3 − πq
1 − πq

2)/2,

π̃q
4 = (π̃a

4 − πq
1 − πq

2 − πq
3).

The remaining data are quarterly time series from Statistics Canada’s database.
Any monthly data are converted to quarterly frequency.

Output gap is the deviation of real GDP (yt = lnYt) from its steady state, approxi-
mated by a quadratic trend: ŷ = 100(yt − ȳt), where Yt = I56001 − I56013 − I56018.

Price inflation is the quarterly growth rate of the total GDP deflator:
πt = 100(lnPt − lnPt−1) and Pt = D15612.

Wage inflation is the quarterly growth rate of compensation of employees:
wt = 100(lnWt − lnWt−1), where Wt = D17023/Nt.
Nt = LFSA201 for 1970Q1–1975Q4 and Nt = D980595 for 1976Q1–2000Q4.

Labour income share is the ratio of total compensation and nominal GDP: lst = lnSt,
and st = 100(lst − s), the labour income share in deviation from its steady state, where s =
lnS, S =

∑T
t ln(St)/T , and St = (D17023 − D17001)/(D15612 ∗ Yt).

Average real marginal costs for Cobb-Douglas Function: rmcavg
t = st.
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Appendix B: The AR Test and Related Procedures

Consider the following structural equation:

y = Y δ + X1κ + u, (11)

where y is a T × 1 dependent variable, Y is a T ×m matrix of endogenous variables, X1 is a
T ×k1 matrix of exogenous variables, and u is an error term that satisfies standard regularity
conditions typical of IV regressions (Dufour and Jasiak 2001). In our context (see section 3),
y is the T -dimensional vector of observations on πt, Y is the T × 2 matrix of observations
on st and π̃t+1 (or πt+1, depending on the context), X1 is the vector of observations on the
inflation lag πt−1, X2 is the T × k2 matrix of the instruments, and u is the T -dimensional
vector of error terms, ut.

Suppose that the reduced form associated with the right-hand-side endogenous regressors
is

Y = X1Π1 + X2Π2 + V, (12)

where V is a T ×m matrix of error terms assumed to be cross-correlated and correlated with
u, and X2 is the matrix of available instruments.17 In this case, the reduced form associated
with (11) is

y = X1p1 + X2p2 + u + V δ, (13)

p1 = Π1δ + κ, p2 = Π2δ. (14)

Identification constraints follow from (14) and amount to the rank condition

rank(Π2) = m. (15)

Consider hypotheses of the form

H0 : δ = δ0. (16)

In this case, the model transformed as follows

y − Y δ0 = Y (δ − δ0) + X1κ + u,

has the reduced form

y − Y δ0 = X1[Π1

(
δ − δ0

)
+ κ] + X2[Π2

(
δ − δ0

)
] + u + V

(
δ − δ0

)
. (17)

For this reason, the AR test assesses the exclusion of X2 (of size T × k2) in the regression of
y−Y δ0 on X1 and X2, which can be conducted using the standard F-test. Let X = (X1, X2),
and define

M = I − X(X ′X)−1X ′, M1 = I − X1(X
′
1X1)

−1X ′
1.

17We stress that, in Dufour and Taamouti (2003a,b,c) and Dufour (2003): (i) linearity of the latter reduced
form is strictly not necessary, and (ii) further exogenous regressors (“excluded” instruments) may enter into
the equation in addition to the instrument set. To present the test in its simplest form, we maintain the
standard linear form (12) and refer the reader to later references for a discussion of the more general setting.
Note that the assumptions regarding the reduced form for Y do not affect the actual implementation of the
test, so our simplified presentation does not lack generality for practical purposes.
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The statistic then takes the form

AR
(
δ0

)
=

(y − Y δ0)
′
(M1 − M) (y − Y δ0) /k2

(y − Y δ0)′ M (y − Y δ0) / (T − k1 − k2)
. (18)

Under the null hypothesis, and imposing strong exogeneity and identically, independently
distributed normal errors,

AR
(
δ0

) ∼ F − (k2, T − k1 − k2). (19)

Following the usual classical regression analysis, the latter strong hypotheses on the error
terms can be relaxed so that, under standard regularity conditions,

(
k2 × AR

(
δ0

)) asy∼ χ2 (k2) . (20)

It is important to emphasize that identification constraints do not intervene here (exactly or
asymptotically). In other words (19) or (20) hold whether (15) is verified or not; this is what
“identification-robustness” usually means. The test can be readily extended to accommodate
additional constraints on the coefficients of (the full vector or any subset of) the X1 variables.
For example, the hypothesis

H0 : δ = δ0, κ = κ0, (21)

can be assessed in the context of the transformed regression

y − Y δ0 − X1κ
0 = X1[Π1

(
δ − δ0

)
+

(
κ − κ0

)}
+X2[Π2

(
δ − δ0

)
] + u + V

(
δ − δ0

)
, (22)

which leads to the following F-statistic:

AR
(
δ0, κ0

)
=

(y − Y δ0 − X1κ
0)

′
(I − M) (y − Y δ0 − X1κ

0) /(k1 + k2)

(y − Y δ0 − X1κ0)′ M (y − Y δ0 − X1κ0) / (T − k1 − k2)
. (23)

While the test in its original form was derived for the case where the first-stage regression
is linear, we re-emphasize that it is in fact robust to: (i) the specification of the model for
Y , and (ii) excluded instruments; in other words, the test is valid regardless of whether the
first-stage regression is linear, and whether the matrix X2 includes all available instruments.
As argued in Dufour (2003), since one is never sure that all instruments have been accounted
for, the latter property is quite important. Most importantly, this test 9and several variants
discussed in Dufour 2003) is the only truly pivotal statistic whose properties in finite samples
are robust to the quality of instruments.

Note that exactness strictly requires that we can condition on X (i.e., we can take X as
fixed for statistical analysis). This holds particularly for the instruments. In the presence of
weakly exogenous regressors, the test remains identification-robust. The intuition underlying
this result is the following: conducting the test via the Anderson-Rubin regressions (17)–(22),
which constitute statistical reduced forms, easily transforms the test problem from the IV-
regression (which requires (15)) to the classical linear regression statistical framework (which
does not require (15)). This provides an attractive solution to identification difficulties, a
property not shared by IV-based Wald statistics nor GMM-based J tests.
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Despite the latter desirable statistical properties, the test as presented above provides
no guidance for practitioners regarding the choice of instruments. In addition, simulation
studies reported in the above-cited references show that the power of AR-type tests may be
affected by the number of instruments. To see this, consider the case of (11)–(16): here, the
AR test requires assessing (in the regression of y − Y δ0 on X1 and X2) the exclusion of the
T ×k2 variables in X2, even though the number of structural parameters under test is m (the
structural parameter under test δ is m× 1). On recalling that identification implies k2 ≥ m,
we see that overidentification (or, alternatively, the availability of more instruments) leads to
degrees-of-freedom losses with obvious implications for power. To circumvent this problem,
an optimal instrument (in the sense of point-optimal power) is given by

Z̄ = X2Π2,

where Π2 is the coefficient of X2 in the first-stage regression; i.e., the regression of Y on X1

and X2 (Dufour and Taamouti 2003b). Formally, this implies applying (19) or (23), replacing
X2 by Z (observe that X2 intervenes in these statistics via M = I − X(X ′X)−1X ′, where
X = (X1, X2)).

Clearly, the latter optimal instrument involves information reduction, because the as-
sociated AR-test amounts to testing for the exclusion of the T × m variables in Z, which
preserves available degrees-of-freedom even if the model is highly overidentified. In other
words, the optimal test can reflect the informational content of all available instruments with
no statistical costs.

Unfortunately, Π2 is unknown, and so the approximate optimal instruments need to be
estimated, with obvious implications for feasibility and exactness. Dufour (2003) shows that
if the OLS estimator,

Π̂2 = (X ′
2M1X2)

−1X ′
2M1Y, (24)

of Π2 in the unrestricted reduced-form multivariate regression (12) is used in the construction
of Z, then the associated AR-test coincides with the LM procedure defined by Wang and
Zivot (1998). In addition, the K-statistic of Kleibergen (2002) may be interpreted as based
on an approximation of the optimal instrument (see Dufour and Khalaf 2003b). In this
case, Π2 is replaced by its constrained reduced-form OLS estimates imposing the structural
identification condition (15):

Π̂0
2 = Π̂2 − (X ′

2M1X2)
−1X ′

2M1

[
y − Y δ0

] [y − Y δ0]
′
MY

[y − Y δ0]′ M [y − Y δ0]
. (25)

Wang and Zivot (1998) show that the distribution of the LM statistic is bounded by the
χ2(k2) distribution; Kleibergen (2002) shows that a χ2(m) cut-off point is asymptotically
identification-robust for the K-statistic. To obtain an F (m, .) or χ2(m) cut-off point for both
statistics correcting for plug-in effects, split sample methods (where the first subsample is
used to estimate Π2 and the second is used to run the optimal AR test based on the latter
estimate) may also be exploited (see Dufour and Jasiak 2001; Dufour and Taamouti 2003b).
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