N

Bank of Canada [qjili] Banque du Canada
it

Working Paper 2003-16 / Document de travail 2003-16

Some Notes on Monetary Policy
Rules with Uncertainty

by

Gabriel Srour



ISSN 1192-5434

Printed in Canada on recycled paper



Bank of Canada Working Paper 2003-16

June 2003

Some Notes on Monetary Policy
Rules with Uncertainty

by

Gabriel Srour

Research Department
Bank of Canada
Ottawa, Ontario, Canada K1A 0G9
GSrour@bankofcanada.ca

The views expressed in this paper are those of the author.
No responsibility for them should be attributed to the Bank of Canada.






Contents
AcCKNOWIEdgEMENTS. . . . . e V.
ADSIraCt/RESUME . . . . . %
1. INtrodUCHiON . .. oo e 1
2. TheBaseline Model ... ... ... e 5...
2.1 Theoptimalrule . .. ... . 6
2.2 Efficiency frontiers ... ... .. 7
3. Uncertainty . ... 11
3.1 Parameter uncertainty . .. ... ... .. 12
3.2 Numerical results . ... ... 14
3.3 Taylor rules versus forecast-based rules . .......... ... .. .. . .. . ... 21
3.4 Model uncertainty . ... ... .. 24
3.5 DatauncCertainty . .. ... ...t 25
4. The Case of aSmall Open ECONOMY . ... .. i e 27
4.1 Optimal rules . ... ... 8....2
4.2 Supply ShOCKS . . ... 33
4.3 Parameter UnCertainty . ... .. ... ...ttt 34
5. Estimated VARS . . ... 36 ..
6.  CONCIUSION . .. 41
REfEIEBNCES . .. e 42
Appendix A: Comparative StatiCs . ... ... ... 3..... 4
Appendix B: Commitment Versus Discretion: AsnExample . . .......... ... .. ... ... ... 45

Appendix C: Solution to the Linear-Quadratic Problem Under Uncertainty ............... 46



Acknowledgements

The author would like to thank Allan Crawford and Brian O’Reilly for helpful comments, and
Elsa Wong and David Tulk for excellent technical assistance. Of course, the author is solely
responsible for any errors.



Abstract

The author explores the role that Taylor-type rules can play in monetary policy, given the degree
of uncertainty in the economy. The optimal rule is derived from a simple infinite-horizon model of
the monetary transmission mechanism, with only additive uncertainty. The author then examines
how this rule ought to be modified when there is uncertainty about the parameters, the time lags,
and the nature of shocks. Quantitative evaluations are subsequently provided. In particular, it is
shown that if the degree of persistence of inflation in the Phillips curve is not high, a simple rule
such as the original Taylor rule that offsets demand shocks and puts a relatively small weight on
inflation shocks may be an appropriate benchmark for the conduct of monetary policy.
Conversely, it is argued that if the degree of persistence of inflation in the Phillips curve is high,
then finding a Taylor-type rule that can act as a benchmark for monetary policy is likely to be
difficult.

JEL classificationE52
Bank classificationtUncertainty and monetary policy

Résumé

L'auteur explore le role que les régles a la Taylor peuvent jouer dans la conduite de la politique
monétaire compte tenu du degré d'incertitude de I'économie. Il tire la regle optimale d’'un modele
simple a horizon infini du mécanisme de transmission monétaire, ou I'incertitude intervient sous
une forme additive. Il examine comment cette régle doit étre modifiée quand il y a incertitude au
sujet des parametres, des retards et de la nature des chocs et procéde ensuite a des évaluations
guantitatives de la nouvelle regle. L'auteur montre en particulier que, si le degré de persistance de
l'inflation dans la courbe de Phillips n’est pas éleve, une regle simple telle que la régle initiale de
Taylor — ou la politique monétaire contrecarre I'effet des chocs de demande mais réagit
relativement peu aux chocs d’inflation — pourrait servir de modéle de référence pour la conduite
de cette politique. A l'inverse, il pourrait étre difficile de trouver une régle a la Taylor pouvant
jouer ce réle si l'inflation est tres persistante.

Classification JEL E52
Classification de la Banquédncertitude et politique monétaire






1. Introduction

While a consensus has yet to be reached regarding the conduct of monetary policy, there is now
general agreement with Friedman (1960) that there is too much uncertainty about the economy to
fine-tune monetary policy responses to every shock. At the same time, fixing the growth rate of
the money supply once and for all, as Friedman advocated, is widely seen as unrealistic. Rather,
attention in recent years has turned towards simple reaction functions, such as the well-known
Taylor rules (Taylor 1998), which specify how the instrument of policy ought to be adjusted when
certain state variables deviate from equilibrium. These types of rules can be viewed as a
compromise in that while they prescribe exactly how the policy instrument ought to respond to
certain shocks, they also allow the responses to differ for different kinds of shocks. Still, one may
remain skeptical about the use of such rules in practice, either because they would have to involve
too many variables, i.e., too much fine-tuning, or they would be overly rigid. This paper will
explore what role, if any, Taylor-type rules can play, given the degree of uncertainty in the
economy.

Clearly, some type of rule is helpful and perhaps necessary as a guide and benchmark for the
conduct of monetary policy. A rule promotes credibility and facilitates communication, both
externally with the public, and internally within a central bank during the decision-making
process. It conveys to the public not just the objectives of monetary policy, but also the way in
which the objectives will be achieved while providing policy-makers with a reference point.

A large body of work has sought to derive efficient, simple Taylor-type rules within the context of
large macroeconometric models of the econb®yir approach is different in that we examine

how policy should respond to primary shocks in the context of small models that incorporate a
few broad stylized facts about the transmission mechanism. This approach implicitly concedes
that, at best, a rule can act as a benchmark for policy, and that judgment must be applied in every
period on a case-by-case basis to adjust the response to the particular characteristics of that
period.

Some stylized facts regarding the monetary transmission mechanism are widely accepted. For
example, interest rates affect output with a lag, and output, in turn, affects prices with a lag.
Others, however, are still hotly debated. This is especially the case with regard to the degree of
persistence of inflation, or the degree to which inflation expectations are backward-looking in the
Phillips curve. On the one hand, inflation appears to have been highly persistent over certain

1. See,forinstance, Levin, Wieland, and Williams (1999); Armour, Fung, and Maclean (2002); or Coté,
Kuszczak, Lam, Liu, and St-Amant (2002).



periods. On the other, there are indications that the degree of persistence has trended downwards
over time, perhaps because of improvement in the conduct of monetary policy. The degree of
persistence of inflation plays a pivotal role in our context, because the appropriate monetary
responses are sensitive to the calibrations and to uncertainty when this degree is close to 1, but
quite robust otherwise. The reason is that, with a degree of persistence that is close to 1, inflation
is almost non-stationary. Hence, given the lag between monetary actions and their effects on
inflation, small shocks to the transmission mechanism, or alternatively, small changes in the
specification of the model or the policy objective, are quickly magnified and have non-trivial
consequences. Accordingly, we single out the role of this parameter in our discussion.

The gist of our results is that, under the conditions of uncertainty usually encountered, if the
degree of persistence of inflation in the Phillips curve is not ﬁigl‘en a simple rule (such as the
original Taylor rule) that mostly offsets demand shocks and puts a relatively small weight on
inflation shocks may be appropridte.

This conclusion stands in contrast with the results usually found in the context of large
macroeconometric models. Armour, Fung, and Maclean (2002), for example, find that efficient
Taylor-type rules usually involve a weight on inflation shocks that is substantially larger than the
value of 0.5 in the original Taylor rule (e.g., around 2.0). Levin, Wieland, and Williams (1999)

find that efficient rules typically incorporate a strong persistence in interest rate movements. One
should note, however, that in these studies the efficient rules are derived under the assumption that
policy-makerscommitforever to the given rule, whereas the efficient rules derived in our study

are better compared withme-consistentules, in the usual sense that policy-makers re-optimize
policy in every period, letting bygones be bygones. We would submit that commitment to time-
inconsistent rules is unrealistic. It is not easy to justify monetary policy actions to the public if
these actions are dictated in some complicated fashion by objectives decided in the past. And
since digressions from the announced rule are inevitable given the complexity of the economy,
they are not easy to justify without the monetary authorities losing credibility. In these respects,
time-consistent rules are much more attractive.

2.  Letussayitis below 0.5 annually in the context of a fully backward-looking model.

3.  Although we do consider the case of open economies, our focus will be on monetary responses to
domestic shocks.

4.  Aninteresting alternative approach explored in the literature is to show that the optimal rule with
commitment is equivalent to a time-consistent rule that is optimal with regard to some redefined
objective. Under some conditions, for instance, it can be shown that inflation targeting with
commitment is equivalent to price-level targeting without commitment (see Srour 2001).



Conversely, it is shown that if the degree of persistence of inflation in the Phillips curve is high,
then finding a Taylor-type rule that can act as a benchmark for monetary policy may be difficult.

Our analysis consists of five parts. First, we examine the optimal policy rule that obtains in a
small, stylized, closed-economy model of the transmission mechanism, with only additive white
noise shocks. Second, we examine the case where the model incorporates diverse exogenous
variables and shocks. Under these circumstances, it would be hopeless to design a practical rule
that purports to describe monetary policy responses to every possible shock. We show, however,
that the optimal responses to changes iretidogenousariables are independent of the nature

and behaviour of exogenous variables. In this sense, the simple rule found in the context of the
small model that incorporates few primary shocks can still act as a benchmark reaction function,
with the understanding that monetary responses must be assessed on a case-by-case basis to
consider exogenous shocks.

Third, we examine the case where the model's parameters may varyJmtichare unknown.

It can then be shown that the optimal policy again has the form of a Taylor-type rule, but its
coefficients may also vary in tinfelime-varying parameters, therefore, can seriously hinder the
use of a rule for monetary policy. Clearly, if the economy is in a state of transition, or if it is
frequently subject to permanent structural changes that alter the key relationships, then finding a
benchmark rule would be virtually impossible.

If the model's parameters are relatively stable, however, even though they are time-varying and
uncertain, a benchmark rule might still be appropriate. Thus, it can be shown that if the
parameters’ data-generating process is stationary, then so are the coefficients of the optimal policy
rule. If the model’'s parameters can be considered to be i.i.d., then the optimal response
coefficients are functions solely of the unconditional means and variances of the parameters’
distributions and are, therefore, constant. Moreover, in this last case, we show that if the degree of
inflation persistence in the Phillips curve is not high and under plausible calibrations otherwise,
the effect of this type of uncertainty on monetary policy is small. In light of these results, we argue
that the optimal rule that obtains when parameter uncertainty is ignored can be used as a
benchmark under plausible conditions.

5.  Time-varying parameters could be a consequence of learning about the economy, of structural changes
in the economy, or of omitted variables.

6.  Forthisclaimto hold, learning must be assumed to be passive. Also, strictly speaking, the optimal rule
is not linear, since the response coefficients may be correlated with the state variables. (See Chow
1975.)



Finally, we examine the implications of the exchange rate channel in the case of a small open
economy such as Canada. One difficulty that arises in this context is the large uncertainty
regarding the pass-through effects of the exchange rate to domestic inflation and the uncertainty
regarding the interest-exchange rate relationship. We show, however, that under reasonable
calibrations, these uncertainties can, to some extent, be ignored. The reason is that, on the one
hand, in Canada, the pass-through effect of changes in the exchange rate to domestic inflation is
small and transitory. On the other hand, when determining monetary policy responses to domestic
demand shocks, what needs to be known is the combined effect of the interest rate and the
exchange rate on demand—knowledge of the exact interest-exchange rate relationship is not
necessary.

This paper extends the analysis in Srour (1999, henceforth referred to as [S]). While in [S] we
made use of strong simplifying assumptions, such as two-period horizons and strict inflation
targeting, this paper derives optimal solutions under general conditions and provides quantitative
evaluations of policy rules. We continue to use calibrated models, as in [S], since there are strong
indications that certain parameters of the transmission mechanism have changed over time, and
since calibrated models are amenable to running comparative exercises and investigating the
implications of uncertainty. However, we also verify some of the conclusions with the help of
estimated models.

In addition, we continue to use reduced-form, i.e., backward-looking, models, and we assume that
the objective of monetary policy is to minimize in every period the expected discounted sum of
(weighted squared) deviations of output from potential and inflation from the target. One reason
for using such models is tractability of the effects of uncertainty. Another reason is that no one
forward-looking model has yet been agreed on. Besides, in many cases, one can judge the
implications of forward-looking elements by examining a reduced-form model with alternative
values of the parametefdlonetheless, the results are subject to the Lucas critique and must be
taken with caution.

The paper is organized as follows. Section 2 describes the baseline model and derives the optimal
rule when uncertainty in the model enters only in the form of white noise additive shocks. We run
comparative static exercises with respect to the model’s parameters, paying special attention to the
degree of persistence of inflation in the Phillips curve.

7.  Forexample, a hybrid Phillips curve that involves backward- and forward-looking inflation
expectations can for some purposes be approximated with a Phillips curve that involves backward-
looking elements and a constant.



In section 3, we discuss the implications of other types of uncertainty, including parameter
uncertainty, model uncertainty, and data uncertainty. In section 4, the analysis is extended to a
small open economy with a flexible exchange rate. Some of the results are verified in estimated
vector autoregression (VAR) models in section 5. Section 6 concludes and suggests directions for
further research. It would be particularly useful to discuss in some detail how the introduction of
forward-looking elements in our baseline model affect efficient rules. In this context, it is also
important to come to some conclusion regarding which rules are more appropriate: time-
consistent efficient rules or efficient rules that obtain under commitment.

2. The Baseline Model

We consider the following model of the transmission mechanism in a closed economy as a
benchmarlé

T[[+1_T[D: a(T[t_1TED+d(yt_y|:b+Et+l (l)

Ye+1— YD = by, —yD—c(r—rD) +ny, 4, )

wherey, is the log of aggregate outpyit! is the log of potential output (assumed for now to be
constant)st, is the inflation ratet] s the inflation target;  is the instrument of monetary policy
(here identified with the one-period nominal interest rate);  is the real interest rate,

=i -Em,, 9 rOis the equilibrium real interest rate (assumed for now to be constabt)ca,

andd are positive constants,<1 ;arg] amd are white noise random shocks. Of course,
equations (1) and (2) stand for a Phillips curve and an IS curve, respectively.

The main feature of this model is that the instrument of monetary policy acts on output with a
one-period lag. In turn, aggregate demand acts on inflation with a one-period lag, so that monetary
actions affect inflation only after two periods. This is roughly consistent with the empirical facts
in Canada if periods are chosen to be annual. The form of the Phillips curve implies that there is a
trade-off between output and inflation: an increase in inflation requires a temporary demand
contraction to bring inflation back to its initial level relatively quickly, that is, more quickly than
would follow from the mean-reverting character of inflation witnessed by the coefficiene
coefficienta, which measures the degree of persistence of inflation, can be thought of as a

8.  Thisisthe same model used by Ball (1997), Svensson (1997), or [S], except that their Phillips curve is
accelerationist,i.ea = 1

9. E, denotes the expectational operator conditional on information at.time



measure of the degree to which the public is backward-looking with respect to prices or,
alternatively, as the degree of (lack of) credibility the public has in the inflation target.

2.1 The optimal rule

The policy-maker is assumed to minimize in each pdraodiscounted (weighted) sum of
expected deviations of output and inflation from target

B> 6iL(T[t+i’yt+i)' (3)
i=0

where

L(y) = a(y—yD*+ (1—a) (-1, 4)

0 isthe discountratfd<d<1 ,armmd is the relative weight placed on output and inflation
stability, 0sa < 1. The larger i® , the greater is the weight placed on long-run costs. At the
limit, & = 1, only the long-run costs matter, in which case equation (3) is identified with the
unconditional expectatioBL(T, y;) . The smallecis , the more concerned is the policy-maker
with inflation stability, the casea = 0 corresponding to what Svensson calls strict inflation
targeting.

If the central bank could control output directly, then equation (2) would be redundant, and it can
be shown that the optimal policy rule would have the form

yi—yHd = -k (-1,

wherek; is a constant that dependsdort , , and the paramaeteds, which measure the
trade-off between output and inflation witnessed in the Phillips ddmewever, the central

bank can only affect output with a one-period lag. It follows that the optimal rule must, in fact, be
expressed as

Ei(Yi+1—YD = K E (G, -1

or equivalently, substituting that equation back into the Phillips curve, as

B, ,— T = KE(T4, -1, (5)

72 )
- —o*tdua’—8d (1-c)+ /A ;o = (o saal+ 502(1—a)] +45%ad2aZ(1—a) |

10. Ky 26ada




wherek = a— dk measures the optimal speed at which the central bank ought to bring inflation
back to the target following a shock.

Using equations (1), (2), and (5), the optimum rule can also be written as

re—rt= A(y,—yD + B(m, — 1) (6)

a-K+b.o an = A3 K,g1

cd

Elementary algebraic manipulation shows thista constant between 0 amdnd that it
increases witla. Likewise, the response coefficiedtandB in the optimal instrument rule (6)
can be shown to increase wigha larger coefficiena means that inflation is more persistent, and
therefore would return more slowly to the target level, ceteris paribus, andikheilicee larger.
For the same reason, a largeequires sharper monetary responses to reduce deviations in
inflation, hence larger coefficiemdsandB.

whereA =

Similarly, one can examine the behavioukcndA andB, with respect to the model’s other
parameters. A detailed discussion is provided in Appendix A.

Unless otherwise stated, is assumed to equal 1 from now on.
2.2 Efficiency frontiers

By definition, drawn irvar(y) —var(m) space, the variances of output and inflation under any
policy rule are bounded (to the southwest) by the variances associated with the optimum rules.
The latter trace an efficiency frontier as the relative wemht in the loss function ranges between
Oand 1.

Figure 1 plots the efficiency frontier under the assumption that

b=028 c=1 d =04,

11. Alternatively, the rule can be expressed in terms of the nominal interest rate
i, —it= A'(y,—yD) +B'(,—1) , whereA’ = A+d>0 B’ = B+121 ,andt= rl+rl .



Figure 1: Efficiency frontiers'?
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12. Owing to limited space, the efficiency frontier in the case 1 is not shown fully.



and the shocks to inflation and outpgt, amd , are uncorrelated and have variances equal to 1.0
and 2.5, respectively. This parameterization is roughly consistent with the Canadian data at an
annual frequency? The figure shows the efficiency frontiers wheetakes the values 1, .5, and 0.

It also shows the outcomes for the standard Taylor rule (T),

re—rt= 0.5y, -y +0.5(r, — 1) *, (7)

and the Alternative rule (A),

re—rt = 1(y, -yl +0.5(m,—m). (8)

For example, whea = 1 and an equal weight is placed on output and price stability, i.e.,
a = 0.5, the optimum rule is

re—rt= 113y, -yD +0.8(m, —11); 9)

the variances of inflation and output under this policy are 3.55 and 4.22, respectively; whereas,
under the Taylor rule, the variances of inflation and output are 5.2 and 4.91; and under the
Alternative rule, 4.89 and 3.47.

When considering the desirability of a particular rule, the policy-maker is concerned with its
relative efficiency (i.e., its position relative to the efficiency frontier) and the trade-off it involves
between output and inflation variability. Although the present model does not specify a value of
the relative cost of output and inflation variability (i.e., the weght in the loss function), one
may deem unsuitable outcomes that involNarge trade-off between output and inflation
variability.1 One may therefore want to rule out, on practical grounds, those outcomes on the
efficiency frontier associated with too large or too small values of ,0e0.75 o <@.25 ,
for which a small increase in the variance of output can produce a large reduction in inflation

13. The covariance matrix of the shocks does not affect the coefficients of an optimal rule. Moreover, for
any linear policy rule such as equation (6), the variances of the state variables under that policy are
proportional to the variances of the shocks. So the variances in Figure 1 should be understood only up
to a constant of proportionality, say equal{® . Of course, the relative variances of output and
inflation under one given rule, as well as the relative efficiency (as measured by the loss function) of
two different rules, may change if the relative variances of the two types of shocks change. For
example, a rule that responds little to output innovations can be more or less efficient, depending on
whether output shocks are small or large. What is pertinent in the calibration, therefore, is that the
variance of output shocks is assumed to be 2.5 times larger than that of inflation shocks.

14. Arguably, this claimis less clear if the variances of output and inflation are small to begin with (also
see next paragraph).
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variability, or vice versa. This has important consequences, since as will be seen, certain claims
are reasonable for mid-range valuesiof , but unreasonable for extreme values.

Excluding the lower and upper tails@f amounts to excluding the more vertical and more
horizontal segments of the efficiency frontier. For exampleafer 1 , the variance of output
under optimum rules varies between 2.68 and 11.25 vehen ranges over the whole [i&éjval ,
and the variance of inflation varies between 2.4 and 19.12; whereas, if one restricts  to the
interval [0.25 0.7% , the variance of output varies between 3.5 and 5.36, and the variance of
inflation varies between 2.88 and 4.79.

As the degree of persistence of inflatiapdecreases, the range of the efficiency frontier shrinks.

In other words, for lower values afthe exact weighta , placed on the relative cost of output

and inflation variability makes less difference. For example, as already noted avheh , the
variance of output under optimum rules varies between 2.68 and 11.25, and the variance of
inflation varies between 2.4 and 19.12. Wreerr 0.5 , the variance of output varies between 2.5
and 3.52, and the variance of inflation varies between 1.65 and 1.87. The reason is that the smaller
is the degree of persistence of inflatianthe less inflation shocks feed into future inflation and

the more the overall objective becomes identified with the objective of achieving output stability.
This is also reflected in a greater weight accorded to demand shocks relative to inflation shocks in
the optimal rule. For instance, whan= 0.5 and= 0.5 , the optimum rule is

re—rt=0.8qy,—yD) +0.1(m —m) .

Of particular interest is that, for valuesadbelow 0.5, which are the values sometimes found in
empirical studies, the optimal response coefficients, as well as the variances of output and
inflation, do not change significantly with . In the limit cages 0 , the efficient frontier
reduces to a single point, and the optimal rule always consists in bringing output back to potential
next period, whatever the valueof |, e.g.,

re—rt= 0.8y, —yD.

Given the policy rule and the variances of output and inflation, one can derive the variance of the
real interest rate. In the case of optimal rules, this variance is larger, the greater the relative weight
on inflation stability (i.e., the smallerés ), since this requires a larger monetary response to
inflationary shocks: foa = 1 , the variance of the real interest rate ranges between
approximately 1.78 and 19.95 over all valuesiof , and it ranges between 2.79 and 5.95 when one
restrictsa to range between 0.25 and 0.75. As before, that range shrinflsaisases.
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Interestingly, the Alternative Taylor rule is found to lie almost on the efficiency frontier, and to be
unambiguously more efficient than the standard Taylor rule. As noted in footnote 12, however,
this is dependent on the calibration of the shocks’ variances. If the variances were actually
specified to be equal, then the Alternative rule, which calls for an equal reaction to inflation
shocks and a stronger reaction to output shocks than the Taylor rule, can be shown to lead to a
higher variance in inflation than the Taylor rule. The reason is that, following an inflation shock,
although both rules respond equally initially, the Alternative rule subsequently slows the
convergence of inflation towards the target, since it responds more strongly to the induced output
gap. If inflation shocks are in large part responsible for the movements in inflation, i.e., if the
variance of inflation shocks is large enough relative to demand shocks, then the variability of
inflation will be greater under the Alternative rule than the Taylor rule. The relationship between
the magnitude of the response coefficients in a monetary rule and the relative variability of output
and inflation is therefore not obvious.

3. Uncertainty

The analysis in the previous section assumes that, except for white noise, all the components of
the transmission mechanism and the loss function are known with certainty. The data are assumed
to be complete and reliable, and the nature of the shocks, the magnitude of non-observable
variables such as the output gap and the equilibrium interest rate, and the manner in which the
shocks and monetary actions are transmitted to the rest of the economy are all assumed to be
known with certainty. But this is hardly realistic.

To investigate the implications of uncertainty on the conduct of monetary policy, we assume that
the state variables are not observed, and the elasticities in the transmission mechanism, the nature
of shocks, and the weight in the loss function are uncertain. Formally, we suppose that the model
of the transmission mechanism has the form

The1 = ey H i Ve + Py X +e (10)
Yie1 = ProaYi—Copale ¥ Wea X +Ngig (11)
Xivo1 = Tt X+ 641, (12)

and the periodic loss function has the form

LT y) = ay(y)* + (L—a,) (1), (13)
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where all state variables are measured as deviations from their equilibrium values (which
themselves can be varying in time); the paramelgts, c,, d;, ®,, W,, I'; gand  are random
variables; X, is a vector of diverse autonomous variables and shocks affecting the economy; and
&, N;, andB, are white noise shockge,,; = Eny,, = E6;,1 =0

Note that any innovatiog, , ; in the economy can be decomposed into a comignent
forecasted at timg which can be incorporated into the vecXgr  , and a white noise shock that
can be incorporated into the shoaks ; n,.; ,&d; . Thus, through the rmsX, and
Wi X the model can incorporate the fact that different shocks may propagate differently
through the economy, and their effects are uncertain.

Decision-making is assumed to proceed as follows. At the beginning of every peraity-

makers gather data and form their beliefs about the state of the economy and its future outlook
based on all information available. More specifically, they form beliefs about the nature of the
shocks, the state variablgs 1, r,, ,a4d  atfiheand the elasticities in the transmission
mechanism. The policy-makers’ belief about any particular parameter &k tsneentified with

the model-consistent expectations of that parameter based on all the information available.
Learning can occur, but it is assumed to be passive (see below). The policy-makers then take
action that optimizes the objective function.

The solution to the optimization problem in full generality appears quite complex. We consider
the case of data uncertainty and parameter uncertainty separately. The proofs are provided in
Appendix C.

3.1 Parameter uncertainty'®

Suppose that the state variabjgst, ,r, , ,&pd  are observed &tdintethat learning is
passive in the sense that actions taken at anyTtionesarlier are assumed not to affect the joint
distribution of{ a,_4, a;, b, ¢, d;, ®;, W, 'y, &, Ny Gt}tZT+2 ,
available at timel + 1 . (This would follow automatically if the series

{a,_, a,b,c,d, ®, W, I, €,N, is independently distributed over time.)

conditional on all information

et}t2T+2

15. Theuncertainty about stems from the uncertainty about the equilibrium interest rate.

16. Theimplications of parameter uncertainty for policy were first studied by Brainard (1967), and a
number of other authors since then (see Estrella and Mishkin 1998, Sack 1998, Svensson 1997, and
Srour 1999).
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Under these conditions, it can be shown that the optimum rule is to some extent of a Taylor form,
except that the response coefficients may vary in time (see Chow 1975, ch. 10). The optimum rule
has the form

re = Ay + B, + Ci X, + Dy, (14)

where the response coefficienfg a)d depend on the data-generating process governing the
parameter§ a,, a;, b;, ¢, d;} , conditional on information available as of tinaad the response
coefficientC, and the auxilliary scaldd,  depend on the data-generating process governing all
of the model’'s parametefst, _,, a, b, ¢, d,, ®, W, I, €, N, 6} , also conditional on

information available as of time!’

As a benchmark for the conduct of monetary policy, the above rule would be impractical unless
the response coefficients on the most relevant state variables are relatively stable. The stability of
the response coefficients in turn depends on the data-generating process governing the model’s
parameters. Sinck; is a vector of diverse autonomous variables—other than output and
inflation—affecting the economy, one cannot expect the process govetning , or that governing
{®, W, I}, and hence the response coeffici€pt , to be stable.

Except in times of structural transition, however, there are indications that the data-generating
process governing at least the paramefexsb;, c,, d;} may be stable. This is apparent from the
consensus among central bankers regarding a number of key stylized facts about the transmission
mechanism. Furthermore, it seems safe to assume that the wgight  in the social loss function is
exogenously given, i.i.d., and independent from all the other parameters of the model. In that case,
one can without loss of generality replage by its unconditional mean, and hence assume that
the weight in the social loss function is constant.

Accordingly, suppose that the data-generating process governing the parameters

{a, &, b, c,d} is stationary. One can then show that the data-generating process governing the
response coefficientd, am] in the optimal rule is also stationary (see Appenix C).
NonethelessA;, anB;, may vary in time, as the paramgtgrsy, b, ¢, d;} vary, and one

17. Thus, strictly speaking, the rule is not linear, since the response coefficients may be correlated with the
state variables. For completeness, and because of some differences in model specification, we provide
a proof in Appendix C.

18. Ifall of the model's parametefs,, a,, b;, ¢, d,, @, ¥,, I, €, N, 6;}  are stationary, then so are all
of the response coefficients in the optimal rule.
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learns more about their values over tiiéiowever, if one learns about the changes in

{a, a;, b, c,d} slowly,i.e., if by the time one learns about the past changes in

{a, a, b, c,d}, the current new values are unrelated, then for all practical purposes,

{a, a, b, c,d} can be consideredto bei.i.d. Inthat case (in particulpaif a,, b,, c,, d;} are
constant), the®, anB, can be shown to be functions solely of the means and variances of
a, by, ¢;, d;, anda, , and hence constant. This is not surprising since, under the assumption of an
i.i.d. distribution, the dynamic evolution of changes in inflation and output is unchanged
regardless of the realizations of other variables or shocks in the model. Moreover, if the shocks
&, Ny, and6, are independent from the model's paramgt@ysa,, b;, ¢, d;, ®,, W,, I';} , then

D, = 0.

One concludes from the above analysis that a certain amount of discretion, exhibited by a time-
varying coefficientC, and stemming from the diversity and unpredictability of exogenous shocks,

is likely to be unavoidable. However, if there is an underlying core to the transmission mechanism
that is relatively stable, e.g., if the data-generating process governing the paraapdigrs, d, ,
anda, is exogenous to the shocks affecting the economy, and changes in these parameters are not
very persistent relative to the speed with which one learns about the changes, then the coefficients
A, B, will be practically stable and will therefore provide benchmark responses to output and
inflation shocks. Otherwise, a rule such as equation (15) cannot act as a benchmark for monetary
policy, and monetary responses must be decided essentially on a case-by-case basis.

3.2 Numerical results

Srour (1999) ([S]) relied on strong simplifying assumptions, such as the restriction to two-period
models and strict inflation targeting, to analyze the effects of parameter uncertainty on monetary
policy. It was argued, for example, that uncertainty about the interest rate elasticity of demand,
calls for more cautious policy responses to shocks, i.e., weaker response coefficients in the policy
rule, than when no such uncertainty is present; whereas uncertainty about theagdégrekich

inflation feeds into future inflation calls for sharper responses. Whether the effect of simultaneous
uncertainty about several parameters calls for more cautious or bolder policies than when no such
uncertainty exists depends on the relative magnitude of uncertainty about the various parameters,
and the correlations between the parameters, and is therefore an empirical issue. In this section,

19. Forexample, if the parametdra,, a, b;, ¢,, d;}  are observed atttiamel they follow an AR
process where the innovations are independent from the model’s other parameters, then one can show
that A, andB, are functions of the realizations{ad,, a;, b;, ¢, d;} as of timechanges in
{a, a, b, c,d} arepersistent, thenchangesdp  @)d  willbe as well, in which case a
benchmark rule would be impractical.
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we examine numerically the effects of parameter uncertainty on the optimal rule under much
more general conditions than in [S].

We assume tha,, b, ¢, d; ,amm arei.i.d., uncorrelated with the shgcks nand , with mean
a, b, ¢ d, anda , and that there are no exogenous variailes(W¥, = 0 ). Under these
conditions, the optimum rule has the same form as in the case without parameter uncertainty, e.g.,

ry = Ay, + BT,

but the response coefficieisandB are now complex functions of the variances of the model’s
parameters as well as their meamd, ¢, andd, anda and A andB can be evaluated
numerically.

Tables 1 and 2a, b, and c provide the optimal response coefficients under the specification

a=1 b=2028 c=1 d=04

and a variance for the output gap 2.5 times larger than that of inflation. Four cases are considered:
no uncertainty¢ alone is random with standard deviation 0.5 (hendestigtistic equals 2p

alone is random with standard deviation 0.5 (hendesitatistic equals 2); and baéhandc are

random, uncorrelated, and with equal standard deviation 0.5. For each case, Table 2 provides the
variances of output and inflation under the optimal rule as well as the variances (den@jgd var
under the optimal rule that obtains if one ignores parameter uncertainty (i.e., the rule exhibited
under the no-uncertainty case in Table 1).

For example, whe = 0.5 and there is no uncertainty, the optimal rule is

r, = 1.13y, + 0.82m, and the variances of inflation and output under this policy are 3.55 and
4.22, respectively. If, in facg andc are random with equal standard deviations 0.5, then the
optimal rule isr, = 1.04y, + 1.01r, , and the variances of inflation and output under this policy

are 9.95 and 12.25, respectively. Hence, the overall loss is 11.1, whereas the variances of inflation
and output under the previous rule, which ignores the uncertainty about the parameters, are 14.41
and 11.43, and the overall loss is 129.

In general, Table 2 shows that, far= 1 , and for a given weight , the response coefficients and
the individual variances of output and inflation may differ significantly between the optimal rules

20. Notshowninthe table, when balandc are random with equal standard deviations 0.5, and perfectly
positively correlated, the optimal ruleiig = 1.23y, + 1.11r, , the variances of inflation and output
under this policy are 13.35 and 18.58 respectively; and valserdc are perfectly negatively
correlated, the optimal ruleig = 0.95y, + 0.97r, , and the variances of inflation and output are 7.82
and 9.85.
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Table 1: Optimal response coefficientsa( = 1)

no uncertainty

¢ random with
0.5 standard

arandom with
0.5 standard

a and c random
with 0.5 standard

deviation deviation deviation
a T y T y T y T
0.00 2.50 1.80 1.50 1.24 2.50 1.80 1.50 1.24
0.05 1.98 1.59 1.31 1.16 2.20 1.68 1.42 1.21
0.10 1.70 1.48 1.17 1.11 2.01 1.60 1.35 1.18
0.15 1.50 1.40 1.07 1.07 1.86 1.55 1.29 1.16
0.20 1.35 1.34 0.98 1.03 1.75 1.50 1.24 1.13
0.25 1.23 1.29 0.91 1.00 1.65 1.46 1.19 1.12
0.30 1.13 1.25 0.84 0.98 1.57 1.43 1.15 1.10
0.35 1.04 1.22 0.79 0.95 1.50 1.40 1.11 1.08
0.40 0.96 1.18 0.73 0.93 1.43 1.37 1.07 1.07
0.45 0.89 1.16 0.68 0.91 1.37 1.35 1.04 1.06
0.50 0.82 1.13 0.63 0.89 1.31 1.33 1.01 1.04
0.55 0.76 1.10 0.59 0.88 1.26 1.30 0.97 1.03
0.60 0.69 1.08 0.54 0.86 1.21 1.28 0.94 1.02
0.65 0.63 1.05 0.50 0.84 1.16 1.27 0.91 1.01
0.70 0.57 1.03 0.46 0.82 1.12 1.25 0.89 0.99
0.75 0.51 1.01 0.41 0.80 1.07 1.23 0.86 0.98
0.80 0.45 0.98 0.36 0.79 1.03 1.21 0.83 0.97
0.85 0.39 0.95 0.31 0.76 0.98 1.19 0.80 0.96
0.90 0.31 0.92 0.25 0.74 0.93 1.17 0.77 0.95
0.95 0.22 0.89 0.18 0.71 0.88 1.15 0.73 0.93
0.99 0.10 0.84 0.08 0.67 0.84 1.14 0.71 0.92
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Table 2a: Variance @ = 1)

no uncertainty

¢ random with 0.5 standard deviation

a var(m) var(y) loss wvar(m) var(y) loss varg(m) Vvargy) loss
0.00 2.40 11.25 2.40 3.28 10.26 3.28 29.00 343.75 29.00
0.05 2.46 8.25 2.75 3.32 8.57 3.58 4.13 24.81 5.16
0.10 2.56 7.00 3.00 3.40 7.60 3.82 3.55 15.40 4.74
0.15 2.66 6.26 3.20 3.49 6.94 4.01 3.42 11.91 4.69
0.20 2.77 5.75 3.37 3.59 6.46 4.16 3.40 10.02 4.72
0.25 2.88 5.36 3.50 3.70 6.07 4.29 3.44 8.80 4.78
0.30 3.00 5.06 3.62 3.82 5.75 4.40 3.51 7.93 4.84
0.35 3.12 4.80 3.71 3.95 5.48 4.49 3.60 7.26 4.88
0.40 3.25 4.58 3.78 4.10 5.25 4.56 3.70 6.73 491
0.45 3.40 4.39 3.85 4.25 5.04 4.61 3.83 6.29 4,94
0.50 3.55 4.22 3.89 4.42 4.85 4.64 3.97 5.92 4.95
0.55 3.73 4.06 3.91 4.62 4.67 4.65 4.13 5.59 4.93
0.60 3.93 3.91 3.92 4.85 4.50 4.64 4.33 5.30 491
0.65 4.16 3.77 3.91 5.11 4.34 4.61 4.56 5.03 4.87
0.70 4.44 3.64 3.88 5.43 4.19 4.56 4.84 4.78 4.80
0.75 4.79 3.50 3.82 5.83 4.04 4.49 5.20 4.55 4,71
0.80 5.25 3.37 3.75 6.37 3.88 4.38 5.67 4.32 4.59
0.85 5.91 3.23 3.63 7.13 3.72 4.23 6.35 4.08 4.42
0.90 6.99 3.08 3.47 8.38 3.55 4.03 7.47 3.84 4.20
0.95 9.36 2.90 3.22 11.15 3.34 3.73 9.96 3.56 3.88
0.99 19.04 2.68 2.84 22.51 3.07 3.26 20.16 3.23 3.40
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Table 2b: Variances & = 1)

arandom with 0.5 standard deviation

a var(rt)  var(y) loss  varg(m) varg(y) loss
0.00 4.80 18.75 4.80 4.80 18.75 4.80
0.05 4.88 15.39 5.41 5.04 13.42 5.46
0.10 5.01 13.63 5.87 5.43 11.37 6.02
0.15 5.17 12.51 6.27 5.89 10.21 6.54
0.20 5.34 11.70 6.61 6.40 9.46 7.01
0.25 5.52 11.08 6.91 6.97 8.93 7.46
0.30 5.71 10.59 7.17 7.64 8.54 7.91
0.35 5.90 10.18 7.40 8.42 8.26 8.36
0.40 6.11 9.84 7.60 9.37 8.06 8.85
0.45 6.33 9.54 7.77 10.55 7.95 9.38
0.50 6.56 9.28 7.92 12.08 7.92 10.00
0.55 6.82 9.05 8.05 14.19 8.00 10.79
0.60 7.10 8.84 8.14 17.30 8.27 11.88
0.65 7.40 8.66 8.22 22.44 8.86 13.61
0.70 7.75 8.50 8.28 32.80 10.29 17.04
0.75 8.14 8.35 8.30 65.71 15.28 27.89
0.80 8.59 8.22 8.29
0.85 9.12 8.10 8.25
0.90 9.78 8.01 8.19
0.95 10.61 7.94 8.07
0.99 11.48 7.92 7.96




Table 2c: Variances & = 1)

a and c random with 0.5 standard deviation

a var( ) var(y) loss  varg(m) varg(y) loss

0.00 8.19 19.52 8.19

0.05 8.23 17.76 8.71 13.49 63.07 15.97
0.10 8.33 16.51 9.15 9.44 30.65 11.56
0.15 8.46 15.57 9.53 8.81 22.14 10.81
0.20 8.62 14.83 9.86 8.86 18.12 10.71
0.25 8.80 14.22 10.16 9.20 15.76 10.84
0.30 8.99 13.71 10.41 9.75 14.20 11.09
0.35 9.20 13.27 10.62 10.49 13.11 11.41
0.40 9.43 12.89 10.81 11.46 12.33 11.81
0.45 9.68 12.55 10.97 12.72 11.78 12.30
0.50 9.95 12.25 11.10 14.41 11.43 12.92
0.55 10.25 11.98 11.20 16.78 11.29 13.76
0.60 10.58 11.73 11.27 20.35 11.44 15.00
0.65 10.95 11.51 11.31 26.38 12.07 17.08
0.70 11.36 11.31 11.33 38.92 13.91 21.41
0.75 11.83 11.14 11.31 82.06 21.28 36.48
0.80 12.38 10.98 11.26

0.85 13.02 10.84 11.17

0.90 13.80 10.73 11.04

0.95 14.77 10.65 10.86

0.99 15.77 10.62 10.67
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that take parameter uncertainty into consideration and those that ignore it. However, for the
middle range of values far , the rules that ignore parameter uncertainty remain close to the
efficiency frontier. This is apparent in Figure 2, which plots the efficiency frontier in the case
wherec is random with standard deviation equal to 0.5, together with the frontier associated with
the optimal rules that ignore the uncertainty atlwo(The efficiency frontiers associated with the
other cases have similar qualitative properties.) Thus, ignoring parameter uncertainty seems to
lead more to a lateral displacement of the efficiency frontier rather than to a level shift. An
intuitive explanation is that taking parameter uncertainty into consideration amounts to some
extent to rescaling the relative weight on price and output staﬁﬂﬂ:)onsequently, the additional
overall loss implied by the optimal rules that ignore parameter uncertainty is not substantial.

Figure 2: Efficiency frontiersa = 1.0 anda = 0.5

N uncertainty (a="1.0)

E alpka = 025

o vncertalnty ([ a= 0.5)

no uncertalnty (a= 1.0)

alpha = 075

nncertainty (a=0.5)

ar(pi)

21. Forinstance, taking uncertainty about the interest rate elasticity of demantd,consideration
amounts to placing more weight on output variability.
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Since smaller degrees of persistence of inflation tend to collapse the efficiency frontier, it is not
surprising to find that for values of the degree of persistensejaller than 0.5, one can safely

ignore parameter uncertainty of the order of magnitude considered above. This is also apparent in
Tables 3 and 4, which provide the optimal response coefficients and overall loss under the rules
that take parameter uncertainty into consideration and those that ignore itavhedh 5 cisand
random with standard deviation equal to 0.5. A more formal explanation is that the smaller the
degree of persistence of inflation, the less current volatility feeds into the future, and the quicker
the state variables can be brought back to equilibrium, hence the less parameter uncertainty ought
to matter for policy.

Our numerical results confirm that whether parameter uncertainty calls for more or less cautious
responses depends on the relative magnitude of uncertainty about the various par%?rﬁmms.
“more cautious” means smaller responses to shocks. Alternatively, caution can be defined as
inertia, i.e., acting in a manner that deviates relatively little from past policies. Sack (1999)
showed that, under this alternative interpretation, if the uncertainty about the parameters stems
from ordinary least squares (OLS) estimation, then in a sense it always calls for more caution.
That is, taking into consideration the statistical uncertainty attached to the parameters when
estimated by OLS over the past, leads to an optimal rule that is closer to the past behaviour of
monetary policy. This proposition is not inconsistent with our results, since parameter uncertainty
can be inherent in the monetary transmission mechanism and not necessarily due to econometric
estimation, and past policies can be either too weak or too strong to begin with, relative to the
optimal policy without uncertainty. However, it raises the issue of how to evaluate parameter
uncertainty. It does not appear easy to disentangle the uncertainty inherent in the transmission
mechanism from the statistical uncertainty arising from econometric estimation.

3.3 Taylor rules versus forecast-based rules

In Taylor-type rules, the instrument of policy is set as a functi@oaemporaneougariables.
Alternatively, one can consider forecast-based rules whereby the policy instrument is set as a
function offorecastedsariables. As a matter of fact, since the objective function is a function

solely of expected (squared deviations of) inflation and output from equilibrium, the optimal rule
can always be stated as a function solely of forecasted future deviations of inflation and output
from equilibrium. In the context of the present model of the transmission mechanism, since
forecasts can always be expressed in terms of contemporaneous variables, Taylor-type rules and
forecast-based rules are completely interchangeable, except that in Taylor form, the optimal type

22. See Craine (1979) for an early discussion of the effects of parameter uncertainty.
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Table 3: Optimal response coefficientsa( = 0.5)

no uncertainty

c random with 0.5
standard deviation

a s y m y
0.05 0.48 1.18 0.32 0.90
0.10 0.38 1.11 0.27 0.85
0.15 0.32 1.05 0.22 0.82
0.20 0.27 1.01 0.19 0.79
0.25 0.23 0.98 0.16 0.77
0.30 0.19 0.96 0.14 0.75
0.35 0.17 0.93 0.12 0.74
0.40 0.14 0.91 0.11 0.72
0.45 0.12 0.90 0.09 0.71
0.50 0.11 0.88 0.08 0.70
0.55 0.09 0.87 0.07 0.69
0.60 0.08 0.86 0.06 0.68
0.65 0.06 0.85 0.05 0.68
0.70 0.05 0.84 0.04 0.67
0.75 0.04 0.83 0.03 0.66
0.80 0.03 0.82 0.02 0.66
0.85 0.02 0.82 0.02 0.65
0.90 0.01 0.81 0.01 0.65
0.95 0.01 0.81 0.01 0.64
0.99 0.48 1.18 0.32 0.90




Table 4: Variances & = 0.5)

¢ random with 0.5 standard deviation

alpha  var(m) var(y) loss varg(m)  vargy) loss

0.05 1.86 3.38 1.93 191 491 2.06
0.10 1.87 3.22 2.00 1.88 4.24 2.11
0.15 1.88 3.12 2.07 1.87 3.88 2.17
0.20 1.90 3.06 2.13 1.87 3.66 2.22
0.25 1.91 3.01 2.19 1.87 3.50 2.28
0.30 1.92 2.97 2.24 1.87 3.39 2.33
0.35 1.94 2.95 2.29 1.88 3.31 2.38
0.40 1.95 2.93 2.34 1.89 3.24 2.43
0.45 1.96 291 2.39 1.90 3.19 2.48
0.50 1.97 2.90 2.44 1.903 3.15 2.53
0.55 1.98 2.89 2.48 1.91 3.12 2.58
0.60 1.99 2.88 2.53 1.92 3.09 2.62
0.65 2.00 2.88 2.57 1.93 3.07 2.67
0.70 2.01 2.88 2.61 1.93 3.05 2.71
0.75 2.02 2.87 2.66 1.94 3.03 2.76
0.80 2.02 2.87 2.70 1.94 3.02 2.80
0.85 2.03 2.87 2.74 1.95 3.00 2.85
0.90 2.04 2.87 2.78 1.96 2.99 2.89

0.95 2.04 2.87 2.83 1.96 2.98 2.93
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rule must involve all of the contemporaneous variables, including the exogenous vaKables,
since they help forecast future deviations in inflation and output from equilibrium. The forecast-
based version of the optimal rule, on the other hand, does not have to refer explicitly to the
exogenous variablex,

In fact, the forecast-based rule needs to refer to forecasts of inflation and output only up to the
horizon over which the changes in the exogenous variables are expected to persist, since forecasts
of inflation and output up to that horizon are sufficient to forecast inflation and output at all
horizons. Thus, for a country such as Canada, where the exogenous variables are mainly variables
that describe commodity prices or the state of the economy in the United States, and that are
expected to return to equilibrium within a two- to three-year period, the forecast-based optimal
rule needs to refer only to forecasted deviations of inflation and output up to a two- to three-year
horizon.

The forecast-based version can therefore provide a more parsimonious representation of the
optimal rule than the Taylor-type version, and furthermore, should be more efficient than simple
Taylor-type rules that ignore changes in exogenous varigBldswever, this apparent advantage

of forecast-based rules must be strongly qualified by the fact that, in order to implement these
rules, one must use the full model anyway to evaluate the forecasts, and that requires taking into
consideration changes in all the variables in the model, including the exogenous ones.

3.4 Model uncertainty

Suppose that there are several possible models of the transmission mechanism, only one of which
is true. (The alternative models are all backward-looking, but differ with respect to the elasticities
attached to the variables.) What then is the optimum rule for monetary policy?

One can tackle this question within the framework described above if one approaches the problem
from a Bayesian perspective. That is, one first assigns a probability to each model of being the
true model, and then one applies the analysis above to derive the optimum rule under the assigned
parameter uncertainty

There is an important caveat to this approach, however. Under the formulation of the objective
function used in the previous sections, what matters for welfare are the ex ante expected

23. Indeed, Armour, Fung, and Maclean (2002) find that in the Quarterly Projection Model used at the
Bank of Canada, inflation-forecast-based rules do significantly better than Taylor-type rules where the
policy instrument responds to deviations of output and inflation from equilibrium.

24. Note that it also depends on subjective beliefs.
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deviations in the state variables. A rationale is that the uncertainty about the outcome results in a
welfare cost. However, one can argue that what matters for welfare are the deviations that take
place, i.e., the deviations ex post. In that case, any given monetary policy must be evaluated
separately in each model. The true welfare function is likely to combine both ex ante expectations,
arising from, for instance, risk aversion, and ex post deviations resulting from the direct effects of
disequilibrium on welfaré®

3.5 Data uncertainty

Suppose now that the parameteysb,, ¢, d,, ®, W, I,  ,apd  are known and cdfidiant,

the state variabley, 1, r, ,aX| are notobserved attime¢y,, v, U;, andt, denote their
forecast errors respectively (e.g, = Ei(y,) +H; ). Itis well known that as an immediate
consequence of the certainty-equivalence property of the model, the optimum rule under these
conditions has the form

re = AE(y) + BE(T) + CE(X)), (15)

where coefficientsA B ,an@ are identical to those obtained when there is no data uncertainty.
Thus, data uncertainty has no bearing on the optimum monetary policy rule. Of course, the larger
the uncertainty about the data, the less reliable are the fordedst$, E(1T,) E.(&pd , and
the greater the potential for error, but the optimal response to the forecasts remains the same.

The same conclusion, however, may not be true if policies are restricted to a particular form (e.g.,
Taylor-type rules with a restricted number of variables), or if policies are formulated in terms of
some measure of the state variables that does not use all relevant information. In that case, data
uncertainty may require either stronger or weaker responses to shocks than in the certainty case,
depending on the type of policy.

To illustrate, suppose that the true valugtpf  is observed, but not the output gap, and that the
monetary rules pursued by the central bank are of the form

25. ltis notimmediately clear how the two approaches relate to each other. For example, itis not clear
whether a rule that is found to be efficient in every model separately would be efficient with respect to
minimizing ex ante variability, and vice versa. One attractive feature of the approach based on
parameter uncertainty is that it provides an already established framework within which to derive an
efficient rule under model uncertainty. Moreover, because of the quadratic form of the loss function,
such a rule would automatically put more weight on avoiding worst case scenarios, as intuition would
suggest.

26. Infact, we need only the parameteysb, ¢, d, to be known and constant.
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r, = Am + By,

where y{n is a forecast of the output gap that does not use all available information. Then,

a priori, it is unclear how the optimal coefficienfs aBd  would relate to the coefficlents  and
B that would be optimal if the output gap is in fact observed. For instaryq"é, if isbasedona
measure of potential output that relies mostly on past observations of output, as is the case with
many filter-based measures, on the one hand, the larger the uncertainty about the output gap, the
larger the weighfA one may want to place on contemporaneous inflation, on the basis that
contemporaneous inflation becomes a relatively more reliable indicator for the output gap. On the
other hand, contemporaneous inflation may not be a good indicator of the contemporaneous
output gap because of lagged effects on prices, in which case one must exercise caution in
reacting too strongly to inflation. Consequently, the overall effect of uncertainty about the output
gap onA is ambiguous.

Likewise, the implications for the response coeffici@nt  are not clear a priori. Suppose, for
instance, that in a given period, potential output is suspected to have increased and, accordingly,
higher output is observed in the economy. The true output gap is therefore negative, and large or
small depending on how quickly actual output catches up with the increase in potential. If actual
output adjusts quickly to changes in potential, then the true output gap is likely to be relatively
small, while the measured output ggB, , iIs likely to be positive (bedausseasure of

potential is based on past observations) and relatively large. Under these circumstances, a more
cautious policy reaction to the measured output gap, i.e., a smaller response coBfficient  (than
the one without uncertainty), would be warranted. But, if actual output adjusts very slowly to the
change in potential (as might be the case in the wake of industrial restructuring or a large
technological innovation), then the true output gap is likely to be relatively large (and negative),
while the measured output gajqnf , IS likely to be found negative but smaller than the true output
gap. A stronger reaction would be called for to help close the gap more quickly.
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In any event, one is bound to make a forecast, perhaps based on judgment, about the true state
variables to infer the right monetary policy response under data unce%?ainty.

4. The Case of a Small Open Economy

The analysis so far has been restricted to a closed economy. In a small open economy like Canada,
an important role in the transmission mechanism must be assigned to the exchange rate and
exogenous variables such as real commodity prices. Consider, therefore, the extend®d model

T[Hl:aT[t+dyt—f(e,[—et_1)+l4th+r]t+1 (16)
Ye+q1 = byt—crt—get+CDXt+s,[+1 (17)

g = hry+ QX +v (18)

t )

whereet is the percentage deviation of the real exchange rate from its equilibrium (assumed for
now to be constant)—a greatemeans appreciation of the domestic currenqy;  is a vector of
exogenous variables observed at the beginning of peroedore any monetary action is taken;

X, € n, Vv are assumed to be white noise; &zl . For now, all of the model's parameters are

assumed to be known and constant.

This is essentially the baseline closed-economy model of section 2, with the exchange rate and the
exogenous variables, added as new explanatory variables. The exchange rate affects demand
through foreign trade, and the change in the exchange rate affects inflation through import prices
because, for instance, foreign firms desire constant real prices in their home currencies. Exchange

27. Orphanides (1998) argues that since implementation of thetruIeAT[tm + By[n would add noise to
the true optimal rule because of the measurement errors, one ought to respond cautiously to changes in
measured state variables. (Orphanides uses this argument to explain why historical monetary reactions
to shocks appear to be more cautious than model-based optimal reactions derived ex post from the
revised historical series of output and inflation.) However, this claim depends on the assumption that
the measurement errors are indeed noise, i.e., uncorrelated or at least positively correlated with the true
variables so that the variances of the measured variables are greater than those of the true variables.
Butitis not clear that this is the case for the measures used in practice. Of course, in the case where the
measured variables are the best forecasts, the measurement errors are negatively correlated with the
true state variables. We suspect that is the case for the majority of measures used, although the
variances of the measures may still be greater than the variances of the true variables. In fact, of eight
different real-time measures of the output gap listed in Orphanides and van Norden (1999, Table 1),
four have a smaller variance than the revised values of the output gap (which can be considered an
approximation of the true output gap). (See Swanson (2000) for an interpretation of Orphanides’
argument as a signal extraction problem.)

28. Exceptforthe exogenous variabks |, this is the model used by Ball (1997).
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rate fluctuations are assumed to affect domestic demand and prices with a one-period lag. The
rationale for equation (17) linking the interest rate and exogenous variables to the exchange rate is
that a rise in the interest rate or such variables as commodity prices increases the demand for
domestic currency. The shook captures other influences on the exchange rate, such as shifts in
expectations and investor confidence.

4.1 Optimal rules

If the direct effect of the exchange rate on inflation is ignored,fi.e.,0 , then the present
Phillips curve and demand equation in equations (15) and (16) are identical to those described
earlier for the closed economy (with exogenous variables added) once th%—tteinm— rather
thanr, is thought of as the policy instrument. In that case, it follows that the optlmal rule in the
small open economy has the form

cry+9g = Ay, +Bm +CX,,

where the response coefficients A, B, and C equal those obtained in the closed-economy case up
to the constant.?® Thus, when the direct effect of the exchange rate on inflation is ignored, the
expression of the optimal rule does not require knowledge of the exchange rate-interest rate
relationship embodied in equation (17). This is particularly useful, since the exchange rate-
interest rate relationship is known to be difficult to evaluate.

Dividing by c + g, the above rule can be written in the form
ret(1-w)e = Ay, +Bm +CX,

where the weights on the real interest rate and the real exchange rate,l —\and , are
proportional to the coefficientsandg in the demand equatiomr, + (1 —w)et can be thought of
as a monetary conditions index (MCI).

If f#0,then the optimal rule (18) must be adjusted to take into consideration the direct effect of
the exchange rate on inflation through import prices. In this case, one can show that the optimal
rule takes the forif?

29. Asnoted in the previous sectighandB are independent of the coefficients on the exogenous
variables. Moreover, i = 0 the@equals® . To see this clearly, think of the teem + ge, — ®X;
as the instrument of policy and identify the model with the closed-economy model.

30. SeeBall (1997) or Srour (1999).
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W+ (1-w)e, = A'yt+BHTt+ e+ C'X, (19)

where the coefficients’ A’ , arig also now depend on the coeffidianth in the interest
rate-exchange rate relationsﬁf‘p Because the direct effect of the exchange rate on inflation is
transitory, the optimal rule calls for a response to the deviation in inflation that excludes the
previous period’s effect of the exchange rate, i.e., it calls for a response to thg 1eﬁq 1

The relative Welght on the exchange ra-lte— , in the dagd) , ought always to be larger than
the relative WelghtTV—V in the cade= 0 , since in the former case an increase in the
exchange rate is presumed to have a direct dampening effect on inflation. However, the
comparison between the optimal response coefficients in the two cases is a priori ambiguous. On
the one hand, the response coefficiehitsB’ , ,@nd  ought to be smallef witen , to the
extent that the direct effect of the exchange rate on inflation reinforces the desired effect of
monetary action following an inflationary shock. On the other hAhdB’ , Cand  oughtto be
larger, to the extent that the direct effect can be used to control inflation more quickly and this
requires a larger increase in the exchange rate than would be needed if inflation were affected
through demand only.

In any case, the fact that the direct effect of a change in the exchange rate on inflation is relatively
small and transitory implies that the cumulative effect of a change in the exchange rate on
inflation is also relatively small. It follows that an attempt to control inflation through this channel
will require large fluctuations in the exchange rate, hence large fluctuations in the interest rate and
output. One would therefore expect that, except in the case where the policy-maker places a
relatively large weightl —a , on inflation in the loss function, the optimal response coefficients
ought to be fairly close to the response coefficients obtained when one ignores the direct effects of
the exchange rate on inflation. In particular, the relative weights on the interest rate and the
exchange rate in the MCI introduced above should be approximately proportional to the effects
that these variables have on demand.

!

Table 5 confirms these claims. It provides the r?%?v-, and the optimal response coefficients
A' andB' under the specification

a=1b=08c=06g=02d=04f =02h=2,

31. w',A’",andB’' , however, continue to be independent of the coefficigritg Q on the vector of
exogenous variables, .Als@’ doesnotdepen@Qon :the effect of the exogenous variables on the
exchange rate is subsumed in the level of the exchange rate.



Table 5: Optimal coefficients, open-economy case

f=02 f=0.0
a . .
ratio Tt Yy ratio T Yy

0.00 0.00 4.99 2.00 3.00 3.13 2.25
0.05 0.67 3.05 1.75 3.00 2.48 1.99
0.10 1.03 2.46 1.66 3.00 2.12 1.85
0.15 1.29 2.11 1.60 3.00 1.88 1.75
0.20 1.51 1.86 1.55 3.00 1.69 1.68
0.25 1.69 1.67 1.51 3.00 1.54 1.62
0.30 1.84 1.51 1.47 3.00 1.41 1.57
0.35 1.98 1.38 1.44 3.00 1.30 1.52
0.40 2.10 1.26 1.41 3.00 1.20 1.48
0.45 2.21 1.16 1.38 3.00 1.11 1.44
0.50 2.31 1.07 1.36 3.00 1.02 1.41
0.55 2.40 0.98 1.33 3.00 0.94 1.38
0.60 2.48 0.89 1.31 3.00 0.87 1.35
0.65 2.56 0.81 1.28 3.00 0.79 1.32
0.70 2.63 0.73 1.26 3.00 0.72 1.29
0.75 2.70 0.65 1.23 3.00 0.64 1.26
0.80 2.77 0.57 1.21 3.00 0.57 1.23
0.85 2.83 0.49 1.18 3.00 0.48 1.19
0.90 2.89 0.39 1.15 3.00 0.39 1.16
0.95 2.94 0.27 1.11 3.00 0.27 1.11

0.99 2.99 0.12 1.05 3.00 0.12 1.05
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as well as the optimal response coefficigngdB whenf is assumed to equal 0. Figure 3 plots
the efficiency frontier, the frontier associated with the optimal rules derived under the assumption
f = 0, and the frontier associated with the optimal rules derived under the assumpti@n

and adjusted to exclude the transitory effects of the exchange rate on inflation.

It is apparent that, in the middle range of valuefor , the rules derived under the assumption
f = 0 and that respond only to inflation that excludes transitory effects of the exchange rate
rather than overall inflation are nearly as efficient as the fully optimal rules. In contrast, rules that
respond to overall inflation, and hence to transitory effects of the exchange rate, can lead to
unstable outcomes.
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Figure 3: Efficiency frontiers
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Note: The straight diagonal segment in the graph above is a fluke of the program, and should be ignored.
It corresponds to cases that do not, in fact, admit finite variances.

For example, when an equal weight is placed on output and price stabiktyQ.5 ), the
optimum rule under the specifications above is

0.7r, +0.3¢, = 1.36y, + 1.07(m, + 0.2¢, ),

and the variances of output and inflation are respectively 4.29 and 2.69. If the indirect effect of the
exchange rate on inflation is ignored, ie.z 0 , then the adjusted optimal rule would be

0.75,+0.258, = 1.41y, +1.02(m, +0.2¢,_,),
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and the variances of output and inflation would be respectively 4.22 and 2.82, whereas the
unadjusted optimal rule would be

0.75r +0.25¢, = 1.41y, +1.02n,

and the variances of output and inflation would be 4.85 and 3.56, respectively.

Static changes i § , and the model’s parameters can be shown to have similar effects on the
response coefficients as in the closed-economy case (see section 3), whereas the effect on the
degree of persistence of inflatica,leads the policy-maker to respond less sharply to inflationary

shocks, hence to put less weight on autonomous exchange rate shocks, i.e., to choose a larger ratio
WI

1w

relative Weight% can be ambiguous. It is worth mentioning, however, that a decrease in the

4.2  Supply shocks

So far, potential output, the equilibrium interest rate, and the equilibrium real exchange rate have
been assumed to be constant (or at least growing at a steady rate in the case of potential output).
Suppose now that these variables vary in time—denote yheml] , eland respectively.
Potential output may vary because of productivity shocks, changes in the supply of factors of
production, or structural changes in the economy. The equilibrium interest rate and equilibrium
real exchange rate may vary as a result of changes in potential output (e.g., changes in
productivity) or because of autonomous factors, such as changes in the risk premium due to
domestic or external shocks or changes in commodity prices. The three variables are therefore
closely, but not perfectly, correlated.

If the economy adjusts symmetrically to changes in supply, e.g., potential output and demand, and
to changes in the actual and equilibrium interest rates and exchange rates, then what matters for
the conduct of monetary policy are the deviations of the state variables from equilibrium. Whether
the deviations are driven by a demand shock or a supply shock is immaterial. Thus, an increase in
potential output, which translates into a drop in the output gap, would call for a similar ease in
monetary conditionselative to equilibrium as would a decrease in demand. However, whether

this implies an increase or a decrease ofiétvel of the MCI depends on whether the equilibrium

level of the MCI has risen in relation to the change in potential output, and by how much.

An autonomous change in the equilibrium level of the monetary conditions index that is unrelated
to a change in contemporaneous potential output, on the other hand, ought to be accommodated
by a similar change in the actual level of monetary conditions. For example, an autonomous drop
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in the exchange rate, resulting from portfolio rebalancing and accompanied by an ensuing
increase in equilibrium (e.g., long-run) interest rates, ought to be accommodated by a
corresponding increase in (short-term) interest Btes.

4.3 Parameter uncertainty

Consider now the case where the coefficierasidg on the interest rate and the exchange rate in

the demand equation are uncertain. As in the closed-economy casaavitom, such

uncertainty calls for more cautious monetary responses to shocks, i.e., smaller response
coefficients,A’ B' ,an@’ , than in the case where all parameters are known (see [S]). The
direction in which the weighte' arldw’  ought to be adjusted, however, depends on the
relative degrees of uncertainty omndg: a larger degree of uncertainty on the coefficigof the
exchange rate requires a larger response to autonomous changes in the exchange rate, hence a
larger weightl-w' on the exchange rate in the policy rule, in order to reduce the uncertainty of
the effects of the exchange rate on demand.

Table 6 provides the optimal coefficients and weights under alternative assumptions about the
magnitude of the parameter uncertainty and different choices of the relative weight in the loss
function. The table also provides the variances of output and inflation under the optimal rule as
well as under the optimal rule that ignores uncertainty. Figure 4 plots the efficiency frontier in the
case where the standard deviationg @andg are 0.3 and 0.2 respectively, as well as the frontier
associated with the optimal rules that ignore uncertainty. As in the closed-economy case, ignoring
uncertainty leads more to a lateral displacement of the efficiency frontier than to a level shift.

32. One small qualification to the previous argument is that in the Phillips curve, inflation ought to depend
on the change in the level of the exchange rate, which is not the same as the change in the deviation of
the exchange rate from equilibrium if the equilibrium exchange rate is not constant. As argued in the
previous section, however, this should have little consequence for the optimal rule, given the small
magnitude and transitional nature of the direct effects of the exchange rate on inflation.
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Table 6: Response coefficients and variances

a ratio 11 y var(m)  var(y) varg(m) varg(y)
025 169 167 151 191 565
=00 950 231 107 136 269  4.29
=00 o75 270 o065 123 402 352
025 204 150 138 204 60l 195  6.32
=03 o950 271 096 123 287 455 275 472
=00 475 313 059 111 429 374 410 383
025 163 162 148 196 582 193 593
=00 o950 216 104 133 277 442 272 447
=01 075 249 064 121 413 363 405 366
025 147 149 139 214 632 199  6.96
=00 o950 18 096 124 302 479 280 514
=02 475 201 060 113 450 394 418 414
025 196 146 135 210 618 197  6.68
=03 o950 253 093 120 296 468 278 495
=01 975 288 058 109 441 384 414  3.99
025 175 134 127 231 670 205 804
=03 o950 211 087 113 325 507 28 579
=02 075 232 054 103 482 416 428 458
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Figure 4: Efficiency frontiers o, = 0.3, o, = 0.2
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5. Estimated VARs

The previous results relied on calibrated models. In this section, we estimate the transmission
mechanism in Canada by means of a vector autoregression (VAR), and derive the optimal rules
associated with this model. The VAR involves two blocks of variables. One consists of the United
States growth in real GDP, the percentage change in a real non-energy commaodity price index, the
percentage change in the price of oil, a measure of the United States CPI inflation rate, and the
United States real federal funds rate. This block of variables is assumed to be exogenous,
reflecting the fact that Canada is a small economy. The second block consists of the Canadian
output gap, inflation, the percentage change in the Canada-U.S. real exchange rate, and the real
yield spread, that is, the difference between the 90-day prime corporate paper and the 10-year-
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and-over Government of Canada bond yield average deflated by the CPI inflation rate, excluding
food and energy and the effect of changes in indirect taxes. We view the real yield spread as a
proxy for the deviation of the short-term real interest rate, or instrument of monetary policy, from
its equilibrium.

The data cover the period from 1961 to 1999, at annual frequency. The measure of real GDP in the
United States is the U.S. Department of Commerce chain volume real GDP measure, in 1996
prices, seasonally adjusted at annual rates. The inflation measure is the log difference of the CPlI,
excluding food and energy. The measure of output in Canada is the real GDP in 199% prices,
seasonally adjusted at annual rates, and the measure of inflation is the log difference of the CPI,
excluding food, energy, and the effect of changes in indirect taxes. Real crude oil prices and the
real non-energy commodity price index are both in U.S. dollars deflated by the U.S. consumer
price index (excluding food and energy). The real exchange rate is defined as the U.S.-Canada
nominal exchange rate (e.g., the price of a unit of domestic currency in terms of the U.S.
currency) multiplied by the ratio of the Canadian GDP deflator to the U.S. GDP deflator.

The VAR is identified via standard Choleski decompositions, where the variables are ordered in
the manner they are listed above. The monetary policy instrument is placed last to capture the idea
that monetary policy may adjust to current events but its effects on output and prices occur with a
lag. A single lag on each variable is used, and the coefficient on lagged inflation in the output
eqguation is constrained to equal O.

Table 7 provides the estimated reduced-form Canadian demand equation and Phillips curve. One
apparent difference with the stylized model used earlier is that while the coefficient on the lagged
real yield spread in the Phillips curve is smaller than in the output equation, it is nevertheless
significant.

In deriving the optimal rules, a weight of 0.05 on changes in the real yield spread was
incorporated in the loss functioff.Incorporating such a weight has little effect on the loss due to
output and inflation variability under the optimal rule, but it reduces substantially the variability of
interest rates. The latter is implausibly large without such a constraint. The presence of such a
weight also implies that the optimal reaction function will involve a certain degree of persistence
(represented by a coefficient on lagged interest rates) in addition to responses to deviations of
inflation, output, and the exchange rate from equilibrium.

33. Ourmeasures do notincorporate the changes in the measures of GDP in the national accounts since
May 2001. For real GDP at market prices, these changes involve a move to chain volume measures,
while those for real GDP at factor cost involve a move to real GDP at basic prices.

34. Inotherwords, the |oss function nowpas the form

L(my) = a(y—y) + (L—-a)(m-)" +0.05(r,~r,_;)°.
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Table 7: Reduced-form estimated equations

Variable output equation inflation equation
Constant —0.22 (0.83) 0.40 (0.50)
U.S. gap 0.43 (0.07) 0.11 (0.42)
oil —-0.01 (0.48) 0.01 (0.40)
Commodity prices 0.05 (0.09) 0.04 (0.03)
U.S. inflation ~0.24 (0.20) 0.30 (0.02)
RFF -0.19 (0.11) 0.01 (0.83)
Core inflation 0.47 (0.01)
(Canada)

Canada gap 0.35 (0.26) 0.46 (0.02)
Real exchange rate —0.05 (0.48) -0.09 (0.02)
Real yield spread -0.49 (0.02) —0.28 (0.08)

Table 8 shows the optimal response coefficients, and Figure 5 plots the efficiency frontier when
the economy is subject only to domestic shocks. For example, when an equal weight is placed on
output and inflation variability, the optimal rule is
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Table 8: Response coefficients based on estimated VAR

a T y Ae r(-1)
0.05 0.56 0.62 -0.15 0.16
0.10 0.52 0.61 -0.15 0.15
0.15 0.49 0.60 -0.14 0.15
0.20 0.43 0.59 -0.14 0.15
0.25 0.43 0.58 -0.13 0.15
0.30 0.40 0.58 -0.13 0.15
0.35 0.37 0.57 -0.12 0.10
0.40 0.34 0.56 -0.12 0.15
0.45 0.31 0.55 -0.12 0.14
0.50 0.28 0.55 -0.11 0.14
0.55 0.25 0.54 -0.11 0.14
0.60 0.22 0.53 -0.10 0.14
0.65 0.19 0.53 -0.10 0.14
0.70 0.16 0.52 -0.09 0.14
0.75 0.14 0.51 -0.09 0.14
0.80 0.11 0.51 -0.09 0.14
0.85 0.08 0.50 -0.08 0.14
0.90 0.05 0.49 -0.08 0.14
0.95 0.02 0.48 -0.07 0.14
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Figure 5: Efficiency frontier based on the estimated VAR
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The long-run responses to output and inflation are therefore 0.64 and 0.32, respectively. Rules
with standard Taylor coefficients and without interest persistence, i.e.,

r, = 0.5y, +0.5m, - 0.11Ae,,
or
r. =y, +0.5m -0.11Ae,,

achieve almost equal total loss with respect to output and inflation variability alone compared
with the optimal rule—the variances of output and inflation are 0.53 and 0.47 for the former rule,
and 0.54 and 0.44 for the latter—but the variability of the interest rate is almost twice as large.
Interestingly, omitting the response to the change in the exchange rate from the optimal rules,
shifts the efficiency frontier significantly to the right (see Figure 5).

In so far as the outcomes of the optimal rules for values of the weeight  in the middle range are
fairly close to each other, the results based on the estimated VAR are consistent with those
obtained earlier with calibrated models when the degree of persistence in inftatismelatively

small.
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0. Conclusion

This paper explores the role that Taylor-type rules may play in the conduct of monetary policy. In
contrast to the literature that examines efficient rules in the context of large macroeconometric
models, this paper uses small, stylized, calibrated, backward-looking models. Although these
models are simplistic, and subject to the Lucas critique, they can still act as a very useful
benchmark for more complex models, and they are easily amenable to investigating the
robustness of rules and the effects of uncertainty.

We showed that if the degree of persistence of inflation in the Phillips curve is not high (below
0.5, for example), then a simple rule that mostly offsets demand shocks, and puts a relatively
small weight on inflation shocks, is efficient. Furthermore, such a rule appears to be robust to
alternative preferences regarding the relative weight on inflation and output stability, the presence
of diverse exogenous variables and, as long as the model’s key relationships are relatively stable,
parameter uncertainty.

We would therefore submit that a Taylor-type rule such as the above, for example, one that puts a
weight 0.75 or 1 on the output gap, a weight 0.5 on deviations of inflation from target, a small
degree of persistence in policy and, in the case of Canada, perhaps a small negative response to
changes in the exchange rate, can act as a reasonable benchmark for monetary policy responses to
domestic shocks. Inevitably, of course, uncertainty and the diversity of shocks affecting the
economy require policy-makers to adjust their policy responses to particular events as
appropriate on a case-by-case basis.

This type of rule differs from the type usually found in the literature in the context of established
macroeconometric models. However, these studies assume commitment to the rule, whereas the
optimal rules derived in this paper are better compared with time-consistent rules. We have argued
that time-consistent rules are more reasonable choices for public policy. Nonetheless, since the
models we used are backward-looking, it would be most useful (and relatively easy) to examine
how the introduction of forward-looking elements in the model might affect efficient rules. And
finally, although we provide some results in the open-economy case, our main focus has been on
domestic shocks. Further study is needed to analyze responses to foreign shocks.
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Appendix A. Comparative Statics

Elementary algebraic manipulation shows thesta constant between 0 aadhich increases
with a anda, and decreases with d addk is, however, independent from the parameteand
cin the IS curve. The interpretation is as follows.

The coefficienk reflects the trade-off between inflation and output as witnessed by the Phillips
curve: bringing inflation down requires a temporary output contraction; the greater the output
contraction, the greater the drop in inflatfolfi.no weight is placed on output stabilitgy (= 0 ),
then the policy-maker will attempt to achieve the inflation target as quickly as po&siblé ( ),
but at the cost of large fluctuations in output. If a positive weight is placed on output stability
(a>0), then following a shock the policy-maker will bring inflation back to its initial target
more slowly k>0 ) so as to reduce the fluctuations in output—the greater is the weight on
output stability, the larger is the coefficiddnd the more gradual is the adjustment of inflation.
At the other extreme where the policy-maker is targeting only outputd(i.e.,1 ), inflation
returns to the target at the speed implied by the degree of mean reversion in the Phillips curve:
k = a.

A larger coefficien means that inflation is more persistéaind would therefore return more

slowly to the target level, ceteris paribus, hekegll be larger; whereas a larggimeans that

inflation responds more strongly to changes in the output gap, hence inflation will return more
quickly to target, ceteris paribus, akdill be smaller. A large® means that a smaller weight is
placed on short-run variations. To the extent that variations in output are needed early to stabilize
inflation, a large® implies that a smaller weight is placed on output variability, and therefore
leads to a greater speed of adjustment, i.e., a srkaller

Similarly, one can verify that the response coefficiémasdB in the optimal instrument rule (6)
increase witreandd , and decrease with . The interpretation is as follows. A lagaplies a
more persistent inflation, and therefore requires sharper monetary policy responses to reduce
deviations in inflation. A larged means that a smaller weight is placed on short-run variations

1. Note that from equations (2) and (6), under the optimal policy rule, the dynamics governing the
movement of the output gap are summarized by

Veer =y = ~(@- Ry -y) -2 - +n,...
A positive output gap at timeor an inflation rate that is higher than the target level leads to a negative
output gap next period.

2. It may be more persistent because the central bank’s policy is less credible or because agents are more
backward-looking.

3.  Wethank Pierre Duguay for that observation.
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and therefore induces stronger immediate reaction to shocks. It is sometimes mistakenly thought
that a greater weighty , on output stability calls for a greater output-response coefAci€his

is not true in the present case because, following an inflationary shock, the actions taken by the
monetary authorities are intended to achieve a temporary output contraction. Greater concern
about output stability therefore implies that the output contraction should not be as sharp, hence it
requires a smaller coefficieAt similarly for B.

A increases witll, wherea®3 decreases witt: the larger is the coefficiedton output in the

Phillips curve, i.e., the larger is the effect of an output gap on future prices, the larger ought to be
the output response coefficiehtin order to offset the greater expected deviation in inflation
following a demand shock. But the smaller ought to be the inflation response coeticsente a
smaller change in output is needed to achieve the desired effect on future inflation.

Aincreases witlb, wherea® is independent frorh: the larger is the coefficiefiton output in the
demand equation, i.e., the more persistent are changes in demand, the greater ought to be the
response to a demand shock. In other words, the larger ought to be the output response coefficient
A in order to offset the greater expected future output gap.

Finally, for obvious reasons, the optimal response coefficheatsdB are inversely proportional
to the real interest rate demand elastidity,

It must be emphasized that the above comparative results depend heavily on the specification of
the loss function and the dynamic structure of the model, in particular the frequency of the data.
However, similar types of interpretation ought to apply in general. For example, it may turn out
that in a more complex model, say with quarterly data or perhaps a concern for interest rate
variability incorporated in the objective function, the optimal rule calls for a smaller positive,
rather than an immediately negative, output gap in the quarter following a positive demand shock.
In that case, a greater weight, , on output stability is likely to call for a greater, not smaller,
response coefficient on contemporaneous output in order to further close the output gap in the
quarter following a shock.
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Appendix B. Commitment Versus Discretion: An Example
Consider the following modé|

TG = Thaqet Yyr-1t&

Yo = Ty

(B1)

and suppose that, at tilhethe loss function is the expected discounted sum of squared deviations
of inflation from a target (assumed equal to 0), e.qg.,

E Y 8T+ 62)
i=0
Clearly, if in every period of time, policy-makers take bygones as bygones and seek to minimize
the loss function described above, then, at tifeeward, unless there is a new shogk, , they
would set output equal to 0 so as to achieve 0 inflation. Under the time-consistent optimal rule, the
public would therefore expect future output and inflation to equal 0, hapee &, , in which case
the unconditional variance of inflation would equal the varianeg of , say normalized to equal 1.

As an alternative policy, suppose now that policy-makers commit to the rule

=T, ;. (B3)

One can then show that inflation follows the process

T, = am, _,—ag,, (B4)
1- J_S . . . . . . a2
wherea = — in which case the unconditional variance of inflation would eqﬁat ,
l1-a

which is smaller than 1. Thus, the time-consistent optimal rule does not perform as well as the
alternative rule under commitment.

4, The notation is standard.
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Appendix C. Solution to the Linear-Quadratic
Problem Under Uncertainty

Suppose that one seeks to minimize the loss function

Etz6I(Z't+iRt+iZt+i+u't+iQt+iut+i)' (C1)
i=0

subject to

Zir1 = A1yt Bruite g, (C2)

whereR, andQ, are negative semi-definite symmetric matrices of random wedghts,  is a vector
of state variablesy, is a vector of control variables, s a vector of random shocké,and  and
B; are matrices of random parameters.  is not necessarily observed tatdirmpg be the

forecast errorZ, = E(Z,) + 1.

We assume that learning is passive. That is, in every p&ribd policy-makers assume that
actions taken at timé€ or earlier do not to affect the joint distribution of

{R. Qp €1 Hys1 Arsn B} s 14, conditional on all information available at tinfier 1

Note that this assumption is fully rational if the series of parameters

{R, Qi € 41 M+ 10 Aty 10 By 1} isindependently distributed over time. ¢t  denote the value
function at time.

Case A.Suppose thaZ, is observed at timbefore actions are taken.
We conjecture that/;,  has the form
V, = Z/PZ,+2Z'W, +d,,

whereP, is a positive semi-definite symmetric mathlX,  is avector,dynd isasPalav, ,
andd, are assumed to be unaffected by past choices of the control variable.

From the Bellman equation,

Vi = minE{Z"\RZ,+ U Qu, +3V,, 1}

min E{ Z"\RZ +u' QU +3Z'y 1Py 17,4 1 + 207" (W, +0d; 41},

one derives the first-order equation,
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E[0B't 1 1Pty 1Zp41+ 0Bt Wiy + QU] = 0.

Substituting the expression &f, ;  intermsZQf  and expanding, one deduces the optimal rule

u = FZ+ Gy,
where
! -1 [
Fi = OB [Q+3B', 1Pi+1Bisa]l BB+ 1Pr+ 1A 4]
] -1 ] ]
G, = -OEK[Q, + 0B t+1Pt+1Bt+1] EdB't+1Prs1€ 41t B 1 Wiiql-
Substituting back the expressiongf  into the Bellman equation and expargding in terms of

Z,, one obtains

Vi = BE{Z'"\RZ + U\ Qu +0Z' 1Py 1Zy 41+ 207", Wy, ; +0d;, 4}

E{Z'(RZ} +0E{Z" A, Py 1A 12} +E{U[Q +0B' 1P, 1B,q]u}
+20E{U' B’ 4 1Py a A1 Ze + U B 1P 1€ H 2 A 1P a8 1)
+OE{2Z" A", (Wit 2U' B, Wiy +2€', Wiy +€1, P18 +diy )

t+1
= E{Z"\RZ} +dE{Z' A", |Pri1A 124}

(-0E{ ZWA P Bii 1 T € 1P 1B n YW 1By s 1 Up)

+20E{U' B ;1P 1Ay 1 Zet U B 1P T2 A P8 1)

' I i ' ' 1 b
+O0E{2Z" A", (Wi +2U' B (Wi +2€ Wiy +€ 1 1Pri1€ig i)

= E{Z'\RZ} +3E{Z' A, ,
+O0E{2Z" A", | (Wi +U B Wy +2Z" A" 1Py 18 s 1)

I I I
Pio 1At 1Ze t 2 A 1Pra 1Bra U €44 1 Pri 1B U}

+OE{ €, 1Pri1€ 41126 Wiygtdisq}

= E{Z"\RZ;} +0E{Z" A", |Pri 1A+ 12+ 2 A 4 1P 1B 1 P2}

+O0E{2Z" A", (Wi +ZF' B Wi + 28 A 1P 1B 1Gr €4 1 Pra1Brs 1Py
+O0E{2Z" A"t P4 1841}

+OE{G/'B' , Wiy +2€ (Wi +€ 1 1Pri18 41 +€1 1P 1B Gy +diy 1}

Comparing the latter expression with thatgf , it follows that
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Py = B[R] +OE[A",1Prs 1A+ 1]
2 11 12 _1 ]
—O E[A 1P 1B+ 1]E[Q  + 0B Pri1Biia]l BB (4 1Py 1Arsal

W, = OB [A" L (Wi, (] +OE{ A, 1P+ 1841}

2 ) ' -1 ' '
(_6 Et[At+1Pt+1Bt+1]Et[Qt+6Bt+1Pt+1Bt+1] Et[Bt+1pt+1e‘[+1+Bt+1VV

d, = OE[trace(R , 1€ ,1€'(.+1)] + OF[d;, 1] + 20 [€/, s W, 4]

2 , p -1 '
(_6 Et[et+1Pt+lBt+1]Et[Qt+6Bt+1Pt+1Bt+1] Et[Bt+1Pt+1et+1])

2 , p -1 '
(_26 Et[et+1pt+lBt+1]Et[Qt +0B t+1Pt+1Bt+1] Et[B t+1Wt+1])1

assuming that these implicit equations do have solutions. Given the data-generating process of the
model’'s parameterg,R;, Q,, €, A;, B;} , one can solve numerically for the matices Wand
and hence for the coefficients, a@¢ , inthe optimal rule.

Note thatP, and therefore the optimal response végtor  in the optimal rule, depend solely on
the distributions oA, ,; B;,; R ,an@, , conditional on all information available as of time

t. W,, and hence the optimal response veGpr in the optimal rule, depend on the distributions
of all the model's parameters, ,; B,,; R, Q; ,a|®d; ,conditional on all information
available as of time

In generalF, ands; will vary with the information acquired over time. If the data-generating
process governingR;, Q,, &, A, B;}  is stationary, then so willlee ~ Gpd

If we suppose thaR, an@, are exogenously given, sEf&] = E[R] and
E[Q:] = E[Q],andthe parametefsA,, B;}  are independently and identically distributed over
time, then P, , and therefore the optimal response végtor , are constant.

If, moreover,g, is white noise (specifically,[e,, ;] = 0  at@land independent from

{A, B}, thenE[A",1P;+18+4] = 0 andg[B’;,,P;,1&,4] = 0 ,andthe vector O is a
trivial solution forW, . In that caseé;, = 0 , and the optimal rule reduces to the usual form
u = Fz, >

More generally, ife, = DX, + f; and;,; = C;,X;+ ¢, ,wher¥ isan autonomous
vector observed at timieand unaffected by the control variablg, ,ahd a@pd are white noise
shocks that are independent fré\p B, R, Q;, C;, ,&nd , jointly, then

EdA 1P a®eal = BA 1P 1D Gy g% and

5.  This of course applies in particular to the case where all of the model's parameters are constant.
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EdB't+1Pr+18+1] = E[B' 14+ 1Pr+1D1+1C, . (1%, It follows thatW, = KX, for some
vectorK, , which depends on the distributions®ef B, , R, ,Q,, C,, ,Bpd , conditional on
information available as of time In that case, the optimal rule takes the form= FZ, + H X,

for some vector of coefficientd, , which depends on the distributioAs @, R, Q, G, , ,
andD; , conditional on information available as of timié { A, B;, C,, D;} are independently
and identically distributed over time, thefi,  is constant. Then, one can use the identity
E[ZZ,] = E[Z,,Z;,,'] and equation (2) to evaluate numerically the covariance matrix
E[Z;Z,'] under the optimal rule.

Case B(data uncertainty). Suppose that the paramgterQ,, A, , 1, B;, 1} are known and
constant, butZ, is not observed at tim&hen, the optimal rule is identical to the optimal rule

found in the previous case, where there is no uncertainty about the data, except that it is expressed
in terms of the forecasts & , i.e., it has the form

u, = FE(Z) + G,

whereF andG; are as described above. To see this formally, define the new state variables
Y, =E(Z,). (RecallZ, = E,(Z,) + 1,.) Note that the objective function can be written

Et Z 6i(zlt+iRZt+i +u't+iQut+i)
i=0

o]

= Et Z 6I(Y't+iRYt+i +2Y't+iR“t+i +“'t+iR“t+i +u't+iQut+i)-
i=0

SinceE,(1;) = 0, and learning is assumed to be passive, and the policy instrument is assumed
not to affect the distribution of the forecast erggr, , minimizing this objective function is
equivalent to minimizing the function

00

= Z 8 (Y iRYpai + U4 QUyy)-
i=0

Then, apply the results of the previous section to the model
Yier = AYp+BU &4,

wheree, =€, + Al — U, - (Note that, is white noisedf is.)
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